
Multi Level Recursive Specifications for Context Free Grammars

 VASILE CRACIUNEAN CRISTINA ARON RALF FABIAN DANIEL HUNYADI
 Dept. of Computer Dept. of Computer Dept. of Computer Dept. of Computer
 Science and Economic Science and Economic Science and Economic Science and Economic
 Informatics Informatics Informatics Informatics
 Univ. “Lucian Blaga” Univ. “Lucian Blaga” Univ. “Lucian Blaga” Univ. “Lucian Blaga”
 Bd. Victoriei, No.10 Bd. Victoriei, No.10 Bd. Victoriei, No.10 Bd. Victoriei, No.10
 Sibiu Sibiu Sibiu Sibiu
 Romania Romania Romaina Romania
 craciunean@sln.ro cristina.aron@ulbsibiu.ro ralf.fabian@ulbsibiu.ro daniel.hunyadi@ulbsibiu.ro

Abstract: - The support for the material presented in this paper was waved around two fundamental concepts:
on one hand, the programming language concept regarded as an object that should be formally specified, and
on the other hand, the concept of heterogeneous algebraic structure HAS, regarded as a specification
mechanism. Also programming languages are probably one of the most studied objectives of computing
techniques; they raise problems for computers designers and users, as the concept of programming language
has not reached yet the maturity necessary to a mathematical object. Its different aspects constitute a study
objective since the beginning of computers age. But the study method is more engineering, without a
mathematical base.

Key-Words: - Fix point, context free algebra, HAS hierarchy, algebraic model

1 Introduction
At the beginning we recall some basic concepts
regarding sets and posets (partial ordered set: it is
reflexive, anti-symmetric and transitive).

 y is an upper bound of a subset Z of a poset
(,)P ≤ iff y P∈ and, for all z Z∈ , z y≤ ;

 y is the least element of Z iff y Z∈ and, for all
z Z∈ , y z≤ ;

 y is a maximal element of Z iff y Z∈ and
there is no z Z∈ such that z y≠ and y z≤ .

The notion of lower bound, greatest element, and
minimal element receive dual definitions (i.e.
definitions obtained by replacing “≤ ” by “≥ ”).
Also

 y is the supremum / infimum, denoted by Z∨ /
Z∧ , of Z iff y is an upper / lower bound of Z

and y is the least / greatest of the upper / lower
bounds of Z, and

Definition 1.1. A partial ordered set (,)P ≤ is called
domain if it has one least element and if any
ascending sequence over P has an upper bound in P.
Definition 1.2. Let 1 1(,),..., (,)n nD D≤ ≤ , 0n > be
domains. Then the product domain of n domains is a
domain (,)D ≤ , where:

1 ... nD D D= × × and

1 2 1 2(, ,...,) (, ,...,)n nx x x y y y≤ iff i i ix y≤ , 1,i n= ,
while 1 2 1 2 1(, ,...,), (, ,...,) ...n n nx x x y y y D D∈ × × .

Definition 1.3. Let D be a domain. A recursive
specification over D is a total function : D Dψ →

such that 2 3() () () ...ψ ψ ψ⊥ ≤ ⊥ ≤ ⊥ ≤ .
The sequence 2 3() () () ...ψ ψ ψ⊥ ≤ ⊥ ≤ ⊥ ≤ is called
Kleene sequence for ψ .
Lemma 1.1. If (,)D ≤ is a domain and

: (,) (,)D Dψ ≤ → ≤ is monotone then ψ is a
recursive specification.
Definition 1.4. Let (,)P ≤ be a partial ordered set
and : P Pψ → a total function. A fixed point of ψ
is an element f P∈ that verifies ()f fψ = . The
least fix point of ψ (if it exists) is the least element
from the set of fix points.
Theorem 1.1. Let (,)P ≤ be a poset, and

: (,)Pψ ≤ → (,)P ≤ a monotone function. If there
exists { | ()}f h h hψ= ∨ ≤ , then it is a fix point of
ψ .

2 Fix points
2.1 Kleen’s fix point theorem
Theorem 2.1.1. (Kleene’s fix point theorem)
Let (D,≤) be a domain and : (,) (,)D Dψ ≤ → ≤ a
continuous function. Then Kleen’s semantic

1
()k

k
fψ ψ

∞

=
= ∨ ⊥ is the least fix point of ψ .

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 275

Example 2.1.1.
We denote (,)Pfn X Y the set of all partial functions

:f X Y→ . Then ((,),)Pfn X Y ≤ is a domain, where
the relation ≤ is defined as follows:

() ()f g DD f DD g≤ ⇔ ⊆ and
() ()g x f x= , () ()x DD f∀ ∈ .

Thus, if 1 2jf f f≤ ≤ ≤ ≤ we define if∨ as

0
() ()i ii

DD f DD f
∞

=
∨ = ∪

()() ()i kf x f x∨ = , ()∀ k such that ()kx DD f∈ .
The function if∨ is well defined because if

() ()j kx DD f DD f∈ ∩ , then () ()j kf x f x= .
In this circumstances it can easily been seen that the
Kleene sequence 2 3() () () ...ψ ψ ψ⊥ ≤ ⊥ ≤ ⊥ ≤ is
indeed an increasing sequence in (,)Pfn X Y , and
Kleene’s semantic

1
() (())k

k
DD f DDψ ψ

∞

=
∨ = ∪ ⊥ ,

() ()()kf x xψ ψ= ⊥ , ()∀ k such that (())kx DD ψ∈ ⊥

satisfies the relation ()ifψ ψ= ∨ ⊥ .
Remark: The relation f g≤ shows as that g offers
at least as much information than f does.

2.2 Fix point and formal languages
In this part we focus on context free grammars (type
2 grammars in Chomsky’s classification).
We’ll show, using an example, that the language
generated by a context free grammar (CFG) can be
obtained from the smallest fix point of a well chosen
recursive specification.
Example 2.2.1.
Suppose the following simple CFG:

(, , ,)N TG V V S P= where
P= { S→A
 S→B
 A→aAb
 A→ab
 B→bBa
 B→ba
 }

{ , , }NV S A B=
{ , }TV a b=

and S is the grammar axiom (starting symbol).
First we rewrite the production rules in the
following way:
S→A+B
A→aAb+ab
B→bBa+ba
where “+” denotes the union.

We define the recursive specification:
* *3 3: (2) (2)T TV Vψ →

ψ(S, A, B)=(A+B, aAb+ab, bBa+ba)
Now we apply Kleene’s theorem to determine the
leases fix point for the above chosen ψ . Computing
the Kleene sequence we have:

0 (, ,) (, ,)ψ ⊥ ⊥ ⊥ = ∅ ∅ ∅
1(, ,) (, ,) { , ,)}ab baψ ψ⊥ ⊥ ⊥ = ∅ ∅ ∅ = ∅
2 2 2

2 2

(, ,) (, ,) { , ,

 }

ab ba ab ba a b ab

b a ba

ψ ψ⊥ ⊥ ⊥ = ∅ = + +

+

It can be easily seen that an induction over m proofs

that
() ({ |1 } { |1 },

 { |1 },{ |1 })

m j j j j

j j j j

a b j m b a j m

a b j m b a j m

ψ ⊥ = ≤ ≤ ∪ ≤ ≤

≤ ≤ ≤ ≤

Thus the sequence ()mψ ⊥ is indeed an increasing
sequence and we have the

0
() ((),{ | 1},{ | 1})m j j j j

m
L G a b j b a jψ

≥
∨ ⊥ = ≥ ≥ (here

L(G) means the language generated by the grammar
G).
We notice here that L(G) is the first component of
the least fix point of ψ . More generally speaking,
for 1,2,3,...k = the k-th component of

0
()m

m
ψ

≥
∨ ⊥ is

*
*{ | }kw w X and v w∈ ⇒ , where { , , }kv S A B∈ .

A closer look on the above relations will reveal

some other information too. Let
j
⇒ denote the

power j of the relation ⇒ , i.e. '
j

w w⇒ means that w
derives (generates) 'w in j steps if there exists a
sequence 1 2, ,..., jw w w such that

1 2 1... 'j jw w w w w w−= ⇒ ⇒ ⇒ ⇒ = , and
0

'w w⇒
means that 'w w= .
Hence, the k-th element of ()mψ ⊥ is

*{ | ', }
j

kw w X and v w for j m∈ ⇒ ≤ .
However, this representation is tricky.

3 Context free algebras and algebraic
models

3.1. Context free algebras
We’ll specify heterogeneous operations (ω) by
mean of operation schemes (σ).
Definition 3.1.1. Operations schemes are triplets of
the form 0 1 1 2= , ... , ... ,n nn s s s b b b bσ < > where:
n – is the operation’s arity

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 276

0 1... ns s s ω= – is the symbol of heterogeneous
operation specified by σ distributed on the
operands, which is also named state’s word of
operation.

- 1 2... nb b b – is operation’s domain
- b – is operation’s range.
- 0 1 1 2... n nb s b s b s b=

Definition 3.1.2. In a HAS hierarchy the algebraic
structure of level i, HAS(i) is called a base relatively
to the structure of level i+1, HAS(i+1) from the
same hierarchy.
Denote the structure HAS(i) by B =<B,ΩB>, where:
B – support set
ΩB – the set of operations that define the structure B
Then the structure HAS(i+1) in the same hierarchy
is specified as follows:
A= () , () ,

Bb b BA A Fω ω∈ ∈Ω< = Σ = Σ > , where
()b b BA A ∈= – is a family of sets, indexed by the

support of base B (B). That means, for every
element b∈B consider a set in the family that forms
the support of the structure A.

()
Bω ω∈ΩΣ = Σ is a family of operations schemes,

each operation schemes specifies an operation from
the base.
Each n-ary operation Bω∈Ω induces in the
structure A a set of operations schemes defined by
the relation:

1 2 1 2{ , , ... , | (, ,...,)}n nn b b b b b b b bωΣ = < > =
F – is the symbol of a function that associates to
each scheme operation ωσ ∈Σ , Bω∈Ω a
heterogeneous operation specific to HAS(i+1)
So the operation schemes are inherited from the
base, but the action of the operations is specific to
the new defined structure, so it can’t be inherited
from the base.

1 2
() : ...

nb b b bF A A A Aσ × × × →
Notice that HAS(i) behaves at the support’s level as
a factor structure of HAS(i+1).
A HAS hierarchy begins always with an
homogenous (universal) algebra as a level base
(HAS(0)).
Any homogenous algebraic structure is a 0-level
HAS.
We will now focus on the 2nd level of HAS
hierarchy, corresponding to context free algebras.

HAS(2) – Free context algebras
A

2

1 1() , ,b b BA A S F∈=< = Σ > , where 1SΣ is given as
follows:

5

1 0
1 2 1 2 1 2{ , , | | | | | 1 }, (,)S n w w w w n w w FσΣ = < > = = + ∈

So if
1

0 1 1 2, ... , ... ,n nn s s s i i i i Sσ =< >∈Σ
then σ specifies a heterogeneous operation of the
form

1 1 2

0 : ...
ni i i iF A A A Aσ × × × →

If , 1,
kk ia A k n∈ = , then

1

0
1 2 0 1 1 2 -1(, ,...,) ...n n n nF a a a s a s a s a sσ =

Example 3.1.3. Consider a context free grammar
(, , ,) N TG V V S P= that has the productions of the

form
0 1 1 2 -1... n n nA s A s A s A s→ ,

*
0 1 -1, ,... ,n n Ts s s s V∈ , 1 2, ,..., n NA A A V∈

A base given by G is BG , ,T NV V S=< Σ > , where

0 1 1 2

0 1 1 2 -1

{ , , ,..., , ... |
 ... }

n n

n n n

S n s s s A A A A
A s A s A s A s P
σΣ = =< >
→ ∈

and the context free algebra derived from grammar
G and specified by the base BG can be written as a
triplet.
AG= 1(,) (,) , ,

NT A T A VW V S W V S S F∈=< Σ >= Σ Σ > ,

where: *(,) [] { | }A T TW V S A x V A x
∗

Σ = = ∈ ⇒
If 0 1 1 2, , ,..., , ...n nn s s s A A A Aσ =< > ,

1

0
1 2 0 1 1 2 -1

1 2 1 2

(...) ... (,)

 =(...) (...)
n n n n A T

n n

F w w w s w s w s w s W V S

w w w A A A
σ = ∈ Σ =

∈ × × ×

So, the context free language
*() { | , }T TL G w V A V A w

∗
= ∈ ∃ ∈ ⇒ coincides with the

support of context free algebra AG specified by BG
derived from the grammar G.

3.2. Algebraic model of an abstract
computing system
The context free algebras offer a general framework
which is ideal to build a model of the abstract
computing system. The recursive specification built
above will be very useful; those specifications,
according to Kleene’s theorem, will give the
semantic constructions of the types of computing or
of abstract dates.
Consider the base , ,B S I λ+ +=< > where S+ şi I+
are free monoids (semigroups) generated by the
symbols concatenation operation in the symbols of
S and I, and S Iλ + +⊆ × is a finite relation between
the elements of structures S+ and I+ ,

{(,) * * | () ()}.x y S I x yλ λ λ= ∈ × =

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 277

This base gives the operation structure:
0 1 1 2 0 1 1 2{ (, ... , ... ,) | (... , ... ,) }n n n nS n s s s i i i i s s s i i i iτ λΣ = = ∈

The context free algebra is A () , ,i i IA A S F∈=< = Σ > .
In order that this algebra has the role of a
mechanism for the specification of a real computing
system, the operations schemes set ΣS has to be
provided with an operation of composing types
i I∈ , so that I is an extensible set by mean of such
an operation.
This extensibility has to be regarded as a free
generation of I, over a given set, by mean of that
operation.
So, I has to be seen in regard to λ as a finite
sequence of levels 0 1 ... tI I I I⊆ ⊆ ⊆ = . Each Ij is a
generators system for Ij+1 in regard to composing
operation. I0 will be named the level of primitive (or
pre-defined) types of the algebra A and Ij is the level
of types defined in the terms of types from Ij-1.
The levels of types 0 1, ,..., tI I I are called internal
hierarchy levels of the set I, and m is called the
hierarchic order.
Definition 3.2.1. If , ,B S I λ+ +=< > is the base that
specifies the context free algebra
A () , ,i i IA A S F∈=< = Σ > and has the property that
the set of types, I, satisfies the classification on
levels relation specified above, we say that B is a
base with internal hierarchy.
The classification relation of set I will be also
inherited by context free algebra of type A specified
by B, that’s why this algebra will be called internal
classified algebra. its order of internal classification
coincides with base B order.
Let be , ,B S I λ+ +=< > and

0 1 1 2 0 1 1 2{ (, ... , ... ,) | (... , ... ,) }n n n nS n s s s i i i i s s s i i i iτ λΣ = = ∈
 the set of operations defined above. In practice we
have a finite set of operations SΣ ⊆ Σ ,

0 1 1 2 0 1

1 2

{ , ... , ... | ... ,

 ... }
n n n

n

n s s s i i i i s s s S

i i i i I

σ +

+

Σ = =< > ∈

∈

We denote
by 1 2() { , ,..., }nd i i iσ = – the selector of the
domain of operation σ ,
by () { } t jσ = – the selector of the range of
operation σ ,
by 0 1() , ,..., no s s sσ = – the symbol of
operation specified
by σ distributed on operators and called
the state word of that operation,
and by n(σ)=n – the arity of the operation.

First we’ll build the hierarchy of the sets of types
defined by the operations from Σ as follows:

0
0 1 1 2{ | , ... , ... and

() }
n nI i I n s s s i i i i

d
σ

σ
= ∈ =< >∈Σ

=∅

1
0 1 1 2{ | , ... , ... and

() }

n n
n n

i

I I i I n s s s i i i i

d I

σ

σ

+ = ∪ ∈ =< >∈Σ

∈

This hierarchy of sets can be computed by the
following algorithm:

Algorithm 3.2.1
Given a set of operations Σ⊆ΣS

0 1 1 2 0 1

1 2

{ , ... , ... | ... and

 ... }
n n n

n

n s s s i i i i s s s S

i i i i I

σ +

+

Σ = =< > ∈

∈

we give an algorithm that determines the hierarchy
of types defined by Σ.
Input: The set of operations:

0 1 1 2 0 1

1 2

{ , ... , ... | ... and

 ... }
n n n

n

n s s s i i i i s s s S

i i i i I

σ +

+

Σ = =< > ∈

∈

Output: The sets Ik of different types.
The method consists of building a sequence of sets
{ | }kI k∈ with the property

0 1 1... ...k kI I I I−⊂ ⊂ ⊂ = = .As one can notice, Ik
will contain all the types defined by the operations
set Σ.
Algorithm

0;n ←
0

0 1 1 2{ | , ... , ... and () }n nI i I n s s s i i i i dσ σ= ∈ =< >∈Σ =∅
 DO UNTIL (In= In-1

)
1

0 1 1 2{ | , ... , ...

 and () }

n n
n n

i

I I i I n s s s i i i i

d I

σ

σ

+ = ∪ ∈ =< >

∈Σ ∈
 1;n n← +

ENDDO
STOP
Proposition 3.2.1. For any finite set of operations
Σ⊆ΣS

0 1 1 2 0 1

1 2

{ , ... , ... | ... ,

 ... }
n n n

n

n s s s i i i i s s s S

i i i i I

σ +

+

Σ = =< > ∈

∈

there is a finite number k of levels of hierarchical
types.
The proof is obvious.
We build now an internal hierarchy of operations
from Σ⊆ΣS:

0 0{ | () and () }d t Iσ σ σΣ = ∈Σ =∅ ⊆
1{ | () and () }k k kd I t Iσ σ σ −Σ = ∈Σ ⊆ ⊆

This hierarchy op operation can be determined by
the following algorithm:

Algorithm 3.2.2.
Given a set of operations Σ⊆ΣS

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 278

0 1 1 2 0 1

1 2

{ , ... , ... | ... and

 ... }
n n n

n

n s s s i i i i s s s S

i i i i I

σ +

+

Σ = =< > ∈

∈

we give an algorithm that determines the internal
hierarchy of those.
Input: The set of operations:

0 1 1 2 0 1

1 2

{ , ... , ... | ... and

 ... }
n n n

n

n s s s i i i i s s s S

i i i i I

σ +

+

Σ = =< > ∈

∈

Output: The sets Σk of types.
The method consists of building a sequence of sets
{ | }k kΣ ∈ with property

0 1 1... ...k k−Σ ⊂ Σ ⊂ ⊂ Σ = Σ = .As it can be seen, kΣ
will contain all the operations of Σ .
Algorithm:

0;k ←
0 0{ | () and () }d t Iσ σ σΣ = ∈Σ =∅ ⊆

DO UNTIL (1k k−Σ = Σ)

1

{ | () and

() }

k k

k

d I

t I

σ σ

σ −

Σ = ∈Σ ⊆

⊆

1;k k← +
ENDDO

STOP
Proposition 3.2.2. For any finite set of operations
Σ⊆ΣS

0 1 1 2 0 1

1 2

{ , ... , ... | ... and

 ... }
n n n

n

n s s s i i i i s s s S

i i i i I

σ +

+

Σ = =< > ∈

∈

there is a finite number k of hierarchical levels of
operations 1 2 1... k k−Σ ⊂ Σ ⊂ ⊂ Σ = Σ
The proof is obvious.
Proposition 3.2.3. Let be the set (2 ,)S+

⊆ ; then the

product ((2) ,)S n
n

+

⊆ , where

1 2 1 2

1 2 1 2

(, ,...,) (, ,...,) , 1, ,

(, ,...,), (, ,...,) (2)
n n n i i i

S n
n n

x x x y y y x y i n

x x x y y y
+

⊆ ⇔ ⊆ =

∈

is a domain.
Proof: A partially ordered (regular) set (,)P ≤ is a
domain if it has one smallest element and if any
ascending sequence from P has an upper bound in P.
The set (2 ,)S+

⊆ is partially ordered, has one
smallest element which is the empty set ∅ . Also it
is obvious that any ascending sequence from 2S +

are an upper bound in 2S +

 and so (2 ,)S+

⊆ is a

domain. So the product ((2)S n+

,⊆ n) is a domain.
For building the hierarchy of types we’ll use
recursive specifications adequate to each
hierarchical level.

For each
1 2

{ , ,..., }
r

k
k k kI i i i= consider the recursive

specification
: (2) (2)S r S r

kψ
+ +

→

1 2 1 2
(, ,...,) ([],[],...,[])

r rk k k k k k ki i i i i iψ = , where we
denoted by

0 1 1 2 1 0 1 1 2[] { ... | , ... , ...

 and () }
j

j

k n n n n n

k

i s i s i s i s n s s s i i i i

d i

α σ

σ
+= Σ = =< >

∈Σ =

Proposition 3.2.4. The application : (2)S r
kψ

+

→

(2)S r+

 is a recursive specification.
Proof: If (,)D ≤ is a domain and : (,) (,)D Dψ ≤ → ≤
is monotone, then Ψ is a recursive specification. So
we have to prove that : (2) (2)S r S r

kψ
+ +

→ is
monotone.
Let be 1 2 1 2(, ,...,) (, ,...,)n n nx x x y y y⊆ ;

1 2 1 2(, ,...,),(, ,...,) (2)S n
n nx x x y y y

+

∈ . We shall prove
that 1 2 1 2(, ,...,) (, ,...,)k n n k nx x x y y yψ ψ⊆
But 1 2 1 2(, ,...,) ([],[],...,[])k n nx x x x x xψ = , where we
denoted by

0 1 1 2 1 0 1 1 2[] { ... | , ... , ...

 and () }
j n n n n n

j

x s x s x s x s n s s s i i i i

d i

α σ

σ
+= Σ = =< >

∈Σ =

and 1 2 1 2(, ,...,) ([],[],...,[])k n ny y y y y yψ = , where we
denoted by

0 1 1 2 1 0 1 1 2[] { ... | , ... , ...

 and () }
j n n n n n

j

y s y s y s y s n s s s i i i i

d i

α σ

σ
+= Σ = =< >

∈Σ =
Considering the fact that if we have the sets A, B, C,
then:

i)A⊆B⇒A.C⊆B.C;
ii) A⊆B⇒C.A⊆C.B;
iii) A⊆B⇒A∪C⊆B∪C;
iv) A⊆B⇒C∪ A⊆C∪ B;

it results immediately that
1 2 1 2(, ,...,) (, ,...,)k n n k nx x x y y yψ ψ⊆

According to the Kleene’s fixed point theorem, it
results that the Kleene semantic

1
(, ,...,)

k

l
kl

f ψ
∞

Ψ =
= ∨ ⊥ ⊥ ⊥ is the smallest fixed point

of Ψ .
If we denote by

1 2
(, ,...,) (, ,...,)

r

l l l l
k k k kL L LΨ ⊥ ⊥ ⊥ =

and by 1 2(, ,...,)
k k k k

rf f f fψ ψ ψ ψ= , then each

1
, for 1, 2,..., .k m

m l
kl

f L k rψ

∞

=
= ∨ =

Denote by
k

m m
kA fΨ= and define for each k the

following heterogeneous algebra

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 279

Ak 1,2,...,(() , ,)m k
k k m r kA A F== = Σ

The process of internal inheritance of the base B in
the algebra A is:
1. The set of primitive types of algebra A0 is defined
by mean of null-ary operations:

0 { | () }dτ τΣ = ∈Σ =∅
 In other words, each scheme of null-ary operation
from Σ, , , o s iτ =< > specifies a type of
computing object or a primitive data type in the set

0
mA , m I∈ , specified by that scheme as follows:

if , , o s iτ =< > , then 0
ms A∈ is a constant of type

m, and 0
mA is the set of all computing objects or

data of type m, or, in other words, 0
mA is the type of

primitive data in A.
2. Σ1 is the set of schemes of operations defined in
the terms of the schemes of operations from Σ0. That
means, if 1τ ∈Σ then ()d τ selects as a domain only
primitive types, the type defined by τ is a new type
which we’ll call the compose type of the types from

()d τ , the composing operator is given by ()o τ and
the n-arity is ()n τ .
The operation of composing primitive types defined
by Σ1 can be seen under two aspects, which are:
construction operations which represent the
construction of some static structures and operations
of constructing action types, or dynamical.
If 0 1 1 2, ... , ... ,n nn s s s i i i jτ =< > , then 1 2... ni i i have to
be seen as types of operators or null-ary computing
processes, and j is the type of n-ary operation’s
result. The meaning of each operation τ in Ak is
given by Fk .
Internal levels of algebra A are formed by the sub-
types that can be specified using A0, A1, …,At and
which have the following properties:

0 1 ... tA A A⊂ ⊂ ⊂

tA A=

1iA − has the role of generating the sub-type iA .

4 Conclusion
Algebraic modeling allows developing some
computing models faithful and efficient from user’s
point of view. It allows computing models
modularization, ensuring their reliability. Algebraic
modeling offers mechanisms for generating syntax
naturally associated to a semantic given by a model.
Algebraic modeling offers schemes for evaluating
that are linked to the communicators for which the
language program is specified.

Algebraic modeling that satisfies best the
characteristics above is the one given by
heterogeneous algebraic structures HAS. This
concept appeared, on one hand, independently from
the need of faithful modeling of programming
languages, i.e. from demand of generalizing the
concepts of universal algebras. On the other hand,
HAS concept was introduced from necessity of
associating a structure adequate to formal languages
used traditionally in specifying conventional
programming languages. Anyway, HAS proved to
be a strong instrument, able to resolve many of the
difficult problems of programming languages.
The relations of internal hierarchy offered a natural
framework for developing universal algorithms
mechanism of implementing programming
languages specified as mentioned.

References:
[1] Dorin Andrica, Dorel I. Duca, Ioan Purdea,

Ioana Pop, Matematica de baza, Ed.
STUDIUM, Cluj-Napoca 2002.

[2] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman,
Compilers: Principles, Techniques, and Tools,
Addison Wesley, 2001.

[3] Crăciunean V., Translatoare şi compilatoare,
Ed. Alma Mater, Sibiu, 2002.

[4] Ralf Fabian, Limbaje formale Teorie. Exemple.
Probleme, Lucian Blaga University Publishing,
Sibiu, 2006.

[5] Emil M. Popa, Generative Mechanisms for
Economic Processes, „Alma Mater” Printing
House Sibiu, Romania 2003, vol.I, vol.II.

[6] Emil M. Popa, Formal Syntax and Semantics of
Programming Language, „Alma Mater”
Printing House Sibiu, Romania, 2004.

[7] Emil M. Popa, Regular Expressions of
Conditions for Processing Language
Modelling, Proceedings of the WSEAS
International Conference MMACTEE ’06,
October 16-18 Bucharest, 2006.

[8] Gh. Păun, G. Rozenberg, A. Salomaa, Current
Trends in Theoretical Computer Science. The
Challenge of the New Century, Vol. I:
Algorithms and Complexity, Vol. II: Formal
Models and Semantics, World Scientific,
Singapore, 2004.

[9] Gh. Păun, C. Martin-Vide, V. Mitrana, Formal
Language Theory and Applications, Springer-
Verlag, Berlin, 2004.

[10] Rajesh Kumar Gupta, Formal Methods and
Models for System Design, Springer Publishing
2004.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 280

