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Abstract: - The support for the material presented in this paper was waved around two fundamental concepts: 
on one hand, the programming language concept regarded as an object that should be formally specified, and 
on the other hand, the concept of heterogeneous algebraic structure HAS, regarded as a specification 
mechanism. Also programming languages are probably one of the most studied objectives of computing 
techniques; they raise problems for computers designers and users, as the concept of programming language 
has not reached yet the maturity necessary to a mathematical object. Its different aspects constitute a study 
objective since the beginning of computers age. But the study method is more engineering, without a 
mathematical base. 
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1 Introduction 
At the beginning we recall some basic concepts 
regarding sets and posets (partial ordered set: it is 
reflexive, anti-symmetric and transitive). 

 y is an upper bound of a subset Z of a poset 
( , )P ≤  iff y P∈  and, for all z Z∈ , z y≤ ; 

 y is the least element of Z iff y Z∈  and, for all 
z Z∈ , y z≤ ; 

 y is a maximal element of Z iff y Z∈  and 
there is no z Z∈  such that z y≠  and y z≤ . 

The notion of lower bound, greatest element, and 
minimal element receive dual definitions (i.e. 
definitions obtained by replacing “≤ ” by “≥ ”). 
Also 

 y is the supremum / infimum, denoted by Z∨ / 
Z∧ , of Z iff y is an upper / lower bound of Z 

and y is the least / greatest of the upper / lower 
bounds of Z, and 

Definition 1.1. A partial ordered set ( , )P ≤  is called 
domain if it has one least element and if any 
ascending sequence over P has an upper bound in P. 
Definition 1.2. Let 1 1( , ),..., ( , )n nD D≤ ≤ , 0n >  be 
domains. Then the product domain of n domains is a 
domain ( , )D ≤ , where: 

1 ... nD D D= × ×  and 

1 2 1 2( , ,..., ) ( , ,..., )n nx x x y y y≤  iff  i i ix y≤ , 1,i n= , 
while 1 2 1 2 1( , ,..., ), ( , ,..., ) ...n n nx x x y y y D D∈ × × . 

Definition 1.3. Let D be a domain. A recursive 
specification over D is a total function : D Dψ →  

such that 2 3( ) ( ) ( ) ...ψ ψ ψ⊥ ≤ ⊥ ≤ ⊥ ≤ . 
The sequence 2 3( ) ( ) ( ) ...ψ ψ ψ⊥ ≤ ⊥ ≤ ⊥ ≤  is called 
Kleene sequence for ψ . 
Lemma 1.1. If ( , )D ≤  is a domain and 

: ( , ) ( , )D Dψ ≤ → ≤  is monotone then ψ  is a 
recursive specification. 
Definition 1.4. Let ( , )P ≤  be a partial ordered set 
and : P Pψ →  a total function. A fixed point of ψ  
is an element f P∈  that verifies ( )f fψ = .  The 
least fix point of ψ  (if it exists) is the least element 
from the set of fix points. 
Theorem 1.1. Let ( , )P ≤  be a poset, and 

: ( , )Pψ ≤ →  ( , )P ≤  a monotone function. If there 
exists { | ( )}f h h hψ= ∨ ≤ , then it is a fix point of 
ψ . 

 
 

2   Fix points 
2.1 Kleen’s fix point theorem 
Theorem 2.1.1. (Kleene’s fix point theorem) 
Let (D,≤) be a domain and : ( , ) ( , )D Dψ ≤ → ≤  a 
continuous function. Then Kleen’s semantic 

1
( )k

k
fψ ψ

∞

=
= ∨ ⊥  is the least fix point of ψ . 
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Example 2.1.1. 
We denote ( , )Pfn X Y  the set of all partial functions 

:f X Y→ . Then ( ( , ), )Pfn X Y ≤  is a domain, where 
the relation ≤  is defined as follows: 

( ) ( )f g DD f DD g≤ ⇔ ⊆  and 
( ) ( )g x f x= , ( ) ( )x DD f∀ ∈ . 

Thus, if 1 2 ... ...jf f f≤ ≤ ≤ ≤  we define if∨  as 

0
( ) ( )i ii

DD f DD f
∞

=
∨ = ∪  

( )( ) ( )i kf x f x∨ = , ( )∀  k such that ( )kx DD f∈ . 
The function if∨  is well defined because if 

( ) ( )j kx DD f DD f∈ ∩ , then ( ) ( )j kf x f x= . 
In this circumstances it can easily been seen that the 
Kleene sequence 2 3( ) ( ) ( ) ...ψ ψ ψ⊥ ≤ ⊥ ≤ ⊥ ≤  is 
indeed an increasing sequence in ( , )Pfn X Y , and 
Kleene’s semantic 

1
( ) ( ( ))k

k
DD f DDψ ψ

∞

=
∨ = ∪ ⊥ , 

( ) ( )( )kf x xψ ψ= ⊥ , ( )∀  k such that ( ( ))kx DD ψ∈ ⊥  

satisfies the relation ( )ifψ ψ= ∨ ⊥ . 
Remark: The relation f g≤  shows as that g offers 
at least as much information than f does. 
 
2.2 Fix point and formal languages 
In this part we focus on context free grammars (type 
2 grammars in Chomsky’s classification). 
We’ll show, using an example, that the language 
generated by a context free grammar (CFG) can be 
obtained from the smallest fix point of a well chosen 
recursive specification. 
Example 2.2.1. 
Suppose the following simple CFG: 

( , , , )N TG V V S P=  where 
P= { S→A 
 S→B 
 A→aAb 
 A→ab 
 B→bBa 
 B→ba 
       } 

{ , , }NV S A B=  
{ , }TV a b=  

and S is the grammar axiom (starting symbol). 
First we rewrite the production rules in the 
following way: 
S→A+B 
A→aAb+ab 
B→bBa+ba 
where “+” denotes the union. 

We define the recursive specification: 
* *3 3: (2 ) (2 )T TV Vψ →  

ψ(S, A, B)=(A+B, aAb+ab, bBa+ba) 
Now we apply Kleene’s theorem to determine the 
leases fix point for the above chosen ψ . Computing 
the Kleene sequence we have: 

0 ( , , ) ( , , )ψ ⊥ ⊥ ⊥ = ∅ ∅ ∅  
1( , , ) ( , , ) { , , )}ab baψ ψ⊥ ⊥ ⊥ = ∅ ∅ ∅ = ∅
2 2 2

2 2

( , , ) ( , , ) { , ,

                                                 }

ab ba ab ba a b ab

b a ba

ψ ψ⊥ ⊥ ⊥ = ∅ = + +

+
 

It can be easily seen that an induction over m proofs 

that 
( ) ({ |1 } { |1 },

                { |1 },{ |1 })

m j j j j

j j j j

a b j m b a j m

a b j m b a j m

ψ ⊥ = ≤ ≤ ∪ ≤ ≤

≤ ≤ ≤ ≤
 

Thus the sequence ( )mψ ⊥  is indeed an increasing 
sequence and we have the  

0
( ) ( ( ),{ | 1},{ | 1})m j j j j

m
L G a b j b a jψ

≥
∨ ⊥ = ≥ ≥  (here 

L(G) means the language generated by the grammar 
G). 
We notice here that L(G) is the first component of 
the least fix point of ψ . More generally speaking, 
for 1,2,3,...k =  the k-th component of 

0
( )m

m
ψ

≥
∨ ⊥  is 

*
*{ | }kw w X and v w∈ ⇒ , where { , , }kv S A B∈ . 

A closer look on the above relations will reveal 

some other information too. Let 
j
⇒  denote the 

power j of the relation ⇒ , i.e. '
j

w w⇒  means that w 
derives (generates) 'w  in j steps if there exists a 
sequence 1 2, ,..., jw w w  such that 

1 2 1... 'j jw w w w w w−= ⇒ ⇒ ⇒ ⇒ = , and 
0

'w w⇒  
means that 'w w= . 
Hence, the k-th element of ( )mψ ⊥  is 

*{ | ', }
j

kw w X and v w for j m∈ ⇒ ≤ . 
However, this representation  is tricky. 
 
3   Context free algebras and algebraic 
models 
 
3.1. Context free algebras 
We’ll specify heterogeneous operations (ω) by 
mean of operation schemes (σ). 
Definition 3.1.1. Operations schemes are triplets of 
the form 0 1 1 2= , ... , ... ,n nn s s s b b b bσ < > where: 
n – is the operation’s arity 
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0 1... ns s s ω=  – is the symbol of heterogeneous 
operation specified by σ distributed on  the 
operands, which is also named state’s word of 
operation.  

- 1 2... nb b b  – is operation’s domain 
- b – is operation’s range. 
- 0 1 1 2... n nb s b s b s b=  

Definition 3.1.2. In a HAS hierarchy the algebraic 
structure of level i, HAS(i) is called a base relatively 
to the structure of level i+1, HAS(i+1) from the 
same hierarchy. 
Denote the structure HAS(i) by B =<B,ΩB>, where: 
B – support set  
ΩB – the set of operations that define the structure B 
Then the structure HAS(i+1) in the same hierarchy 
is specified as follows: 
A= ( ) , ( ) ,

Bb b BA A Fω ω∈ ∈Ω< = Σ = Σ > , where 
( )b b BA A ∈= – is a family of sets, indexed by the 

support of base B (B). That means, for every 
element b∈B consider a set in the family that forms 
the support of the structure A. 

( )
Bω ω∈ΩΣ = Σ is a family of operations schemes, 

each operation schemes specifies an operation from 
the base. 
Each n-ary operation Bω∈Ω induces in the 
structure A a set of operations schemes defined by 
the relation: 

1 2 1 2{ ,  , ... ,  |   ( , ,..., )}n nn b b b b b b b bωΣ = < > =  
F – is the symbol of a function that associates to 
each scheme operation ωσ ∈Σ , Bω∈Ω  a 
heterogeneous operation specific to HAS(i+1) 
So the operation schemes are inherited from the 
base, but the action of the operations is specific to 
the new defined structure, so it can’t be inherited 
from the base. 

1 2
(  ) : ...

nb b b bF A A A Aσ × × × →  
Notice that HAS(i) behaves at the support’s level as 
a factor structure of HAS(i+1). 
A HAS hierarchy begins always with an 
homogenous (universal) algebra as a level base 
(HAS(0)). 
Any homogenous algebraic structure  is a 0-level 
HAS. 
We will now focus on the 2nd level of HAS 
hierarchy, corresponding to context free algebras. 
 
HAS(2) – Free context algebras 
A

2

1 1( ) , ,b b BA A S F∈=< = Σ >  , where 1SΣ  is given as 
follows: 

5

1 0
1 2 1 2 1 2{ , , |  | | | | 1 },  ( , )S n w w w w n w w FσΣ = < > = = + ∈

So if 
1

0 1 1 2, ... , ... ,n nn s s s i i i i Sσ =< >∈Σ   
then σ specifies a heterogeneous operation of the 
form 

1 1 2

0 : ...
ni i i iF A A A Aσ × × × →  

If ,  1,
kk ia A k n∈ = , then 

1

0
1 2 0 1 1 2 -1( , ,..., ) ...n n n nF a a a s a s a s a sσ =  

Example 3.1.3. Consider a context free grammar 
( , ,  ,  ) N TG V V S P=  that has the productions of the 

form 
0 1 1 2 -1... n n nA s A s A s A s→ ,  

*
0 1 -1, ,... ,n n Ts s s s V∈ , 1 2, ,..., n NA A A V∈  

A base given by G is BG , ,T NV V S=< Σ > , where 

0 1 1 2

0 1 1 2 -1

{ , , ,..., , ... |
         ...  }

n n

n n n

S n s s s A A A A
A s A s A s A s P
σΣ = =< >
→ ∈

 

and the context free algebra derived from grammar 
G and specified by the base BG can be written as a 
triplet.  
AG= 1( , ) ( , ) , ,

NT A T A VW V S W V S S F∈=< Σ >= Σ Σ > , 

where: *( , ) [ ] { | }A T TW V S A x V A x
∗

Σ = = ∈ ⇒  
If 0 1 1 2, , ,..., , ...n nn s s s A A A Aσ =< > , 

1

0
1 2 0 1 1 2 -1

1 2 1 2

( ... ) ... ( , )

                        =( ... ) ( ... )
n n n n A T

n n

F w w w s w s w s w s W V S

w w w A A A
σ = ∈ Σ =

∈ × × ×
  

So, the context free language 
*( ) { | , }T TL G w V A V A w

∗
= ∈ ∃ ∈ ⇒  coincides with the 

support of context free algebra AG specified by BG 
derived from the grammar G. 
 
3.2. Algebraic model of an abstract 
computing system 
The context free algebras offer a general framework 
which is ideal to build a model of the abstract 
computing system. The recursive specification built 
above will be very useful; those specifications, 
according to Kleene’s theorem, will give the 
semantic constructions of the types of computing or 
of abstract dates.  
Consider the base  , ,B S I λ+ +=< >  where S+ şi I+ 
are free monoids (semigroups) generated by the 
symbols concatenation operation in the symbols of 
S and I, and  S Iλ + +⊆ ×  is a finite relation between 
the elements of structures S+ and I+ , 

{( , ) * * | ( ) ( )}.x y S I x yλ λ λ= ∈ × =  
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This base gives the operation structure: 
0 1 1 2 0 1 1 2{ ( , ... , ... , ) | ( ... , ... , ) }n n n nS n s s s i i i i s s s i i i iτ λΣ = = ∈

The context free algebra is A ( ) , ,i i IA A S F∈=< = Σ > . 
In order that this algebra has the role of a 
mechanism for the specification of a real computing 
system, the operations schemes set ΣS has to be 
provided with an operation of composing types 
i I∈ , so that I is an extensible set by mean of such 
an operation. 
This extensibility has to be regarded as a free 
generation of I, over a given set, by mean of that 
operation. 
So, I has to be seen in regard to λ as a finite 
sequence of levels 0 1 ... tI I I I⊆ ⊆ ⊆ = . Each Ij is a 
generators system for Ij+1 in regard to composing 
operation. I0 will be named the level of primitive (or 
pre-defined) types of the algebra A and Ij is the level 
of types defined in the terms of types from Ij-1. 
The levels of types 0 1, ,..., tI I I  are called internal 
hierarchy levels of the set I, and m is called the 
hierarchic order. 
Definition 3.2.1. If , ,B S I λ+ +=< >  is the base that 
specifies the context free algebra 
A ( ) , ,i i IA A S F∈=< = Σ >  and has the property that 
the set of types, I, satisfies the classification on 
levels relation specified above, we say that B is a 
base with internal hierarchy. 
The classification relation of set I will be also 
inherited by context free algebra of type A specified 
by B, that’s why this algebra will be called internal 
classified algebra. its order of internal classification 
coincides with base B order. 
Let be , ,B S I λ+ +=< >  and  

0 1 1 2 0 1 1 2{ ( , ... , ... , ) | ( ... , ... , ) }n n n nS n s s s i i i i s s s i i i iτ λΣ = = ∈
 the set of operations defined above. In practice we 
have a finite set of operations SΣ ⊆ Σ ,  

0 1 1 2 0 1

1 2

{ , ... , ... | ... ,

        ... }
n n n

n

n s s s i i i i s s s S

i i i i I

σ +

+

Σ = =< > ∈

∈
 

We denote  
by 1 2( ) { , ,..., }nd i i iσ =  – the selector of the 
domain of operation σ  , 
by ( ) { } t jσ =  – the selector of the range of 
operation σ , 
by 0 1( ) , ,..., no s s sσ =  – the symbol of 
operation specified  
by σ  distributed on operators and called 
the state word of that operation, 
and by  n(σ )=n – the arity of the operation. 

First we’ll build the hierarchy of the sets of types 
defined by the operations from Σ as follows: 

0
0 1 1 2{ | , ... , ...  and 

( ) }
n nI i I n s s s i i i i

d
σ

σ
= ∈ =< >∈Σ

=∅
 

1
0 1 1 2{ | , ... , ...  and 

( ) }

n n
n n

i

I I i I n s s s i i i i

d I

σ

σ

+ = ∪ ∈ =< >∈Σ

∈
 

This hierarchy of sets can be computed by the 
following algorithm: 
 
Algorithm 3.2.1 
Given a set of operations Σ⊆ΣS 

0 1 1 2 0 1

1 2

{ , ... , ... | ...  and

        ... }
n n n

n

n s s s i i i i s s s S

i i i i I

σ +

+

Σ = =< > ∈

∈
 

we give an algorithm that determines the hierarchy 
of types defined by Σ. 
Input: The set of operations: 

0 1 1 2 0 1

1 2

{ , ... , ... | ...  and

        ... }
n n n

n

n s s s i i i i s s s S

i i i i I

σ +

+

Σ = =< > ∈

∈
 

Output: The sets Ik of different types. 
The method consists of building a sequence of sets 
{ | }kI k∈  with the property  

0 1 1... ...k kI I I I−⊂ ⊂ ⊂ = = .As one can notice, Ik 
will contain all the types defined by the operations 
set Σ. 
Algorithm 

0;n ←  
0

0 1 1 2{ | , ... , ...  and ( ) }n nI i I n s s s i i i i dσ σ= ∈ =< >∈Σ =∅
 DO UNTIL (In= In-1

 ) 
1

0 1 1 2{ | , ... , ...

 and ( ) }

n n
n n

i

I I i I n s s s i i i i

d I

σ

σ

+ = ∪ ∈ =< >

∈Σ ∈
  1;n n← +  

ENDDO 
STOP 
Proposition 3.2.1. For any finite set of operations 
Σ⊆ΣS 

0 1 1 2 0 1

1 2

{ , ... , ... | ... ,

        ... }
n n n

n

n s s s i i i i s s s S

i i i i I

σ +

+

Σ = =< > ∈

∈
 

there is a finite number k of levels of hierarchical 
types. 
The proof is obvious. 
We build now an internal hierarchy of operations 
from Σ⊆ΣS: 

0 0{ | ( )  and ( ) }d t Iσ σ σΣ = ∈Σ =∅ ⊆  
1{ | ( )  and ( ) }k k kd I t Iσ σ σ −Σ = ∈Σ ⊆ ⊆  

This hierarchy op operation can be determined by 
the following algorithm: 
 
Algorithm 3.2.2. 
Given a set of operations Σ⊆ΣS 
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0 1 1 2 0 1

1 2

{ , ... , ... | ...  and

        ... }
n n n

n

n s s s i i i i s s s S

i i i i I

σ +

+

Σ = =< > ∈

∈
 

we give an algorithm that determines the internal 
hierarchy of those. 
Input: The set of operations: 

0 1 1 2 0 1

1 2

{ , ... , ... | ...  and

        ... }
n n n

n

n s s s i i i i s s s S

i i i i I

σ +

+

Σ = =< > ∈

∈
 

Output: The sets Σk of types. 
The method consists of building a sequence of sets  
{ | }k kΣ ∈  with property 

0 1 1... ...k k−Σ ⊂ Σ ⊂ ⊂ Σ = Σ = .As it can be seen, kΣ  
will contain all the operations of Σ . 
Algorithm: 

0;k ←  
0 0{ | ( )  and ( ) }d t Iσ σ σΣ = ∈Σ =∅ ⊆  

DO UNTIL ( 1k k−Σ = Σ ) 

1

{ | ( )  and 

( ) }

k k

k

d I

t I

σ σ

σ −

Σ = ∈Σ ⊆

⊆
 

1;k k← +  
ENDDO 

STOP 
Proposition 3.2.2. For any finite set of operations 
Σ⊆ΣS 

0 1 1 2 0 1

1 2

{ , ... , ... | ...  and

        ... }
n n n

n

n s s s i i i i s s s S

i i i i I

σ +

+

Σ = =< > ∈

∈
 

there is a finite number k of hierarchical levels of 
operations 1 2 1... k k−Σ ⊂ Σ ⊂ ⊂ Σ = Σ  
The proof is obvious. 
Proposition 3.2.3. Let be the set (2 , )S+

⊆ ; then the 

product ((2 ) , )S n
n

+

⊆ , where 

1 2 1 2

1 2 1 2

( , ,..., ) ( , ,..., )  , 1, ,

( , ,..., ), ( , ,..., ) (2 )
n n n i i i

S n
n n

x x x y y y x y i n

x x x y y y
+

⊆ ⇔ ⊆ =

∈
 

is a domain.  
Proof: A partially ordered (regular) set ( , )P ≤  is a 
domain if it has one smallest element and if any 
ascending sequence from P has an upper bound in P. 
The set (2 , )S+

⊆  is partially ordered, has one 
smallest element which is the empty set ∅ . Also it 
is obvious that any ascending sequence from 2S +

 
are an upper bound in 2S +

 and so (2 , )S+

⊆  is a 

domain. So the product ( (2 )S n+

,⊆ n) is a domain. 
For building the hierarchy of types we’ll use 
recursive specifications adequate to each 
hierarchical level. 

For each 
1 2

{ , ,..., }
r

k
k k kI i i i=  consider the recursive 

specification 
: (2 ) (2 )S r S r

kψ
+ +

→  

1 2 1 2
( , ,..., ) ([ ],[ ],...,[ ])

r rk k k k k k ki i i i i iψ = , where we 
denoted by 

0 1 1 2 1 0 1 1 2[ ] { ... | , ... , ...

 and ( ) }
j

j

k n n n n n

k

i s i s i s i s n s s s i i i i

d i

α σ

σ
+= Σ = =< >

∈Σ =

Proposition 3.2.4. The application : (2 )S r
kψ

+

→  

(2 )S r+

 is a recursive specification. 
Proof: If ( , )D ≤  is a domain and : ( , ) ( , )D Dψ ≤ → ≤  
is monotone, then Ψ  is a recursive specification. So 
we have to prove that : (2 ) (2 )S r S r

kψ
+ +

→ is 
monotone. 
Let be 1 2 1 2( , ,..., ) ( , ,..., )n n nx x x y y y⊆ ; 

1 2 1 2( , ,..., ),( , ,..., ) (2 )S n
n nx x x y y y

+

∈ . We shall prove 
that 1 2 1 2( , ,..., ) ( , ,..., )k n n k nx x x y y yψ ψ⊆   
But 1 2 1 2( , ,..., ) ([ ],[ ],...,[ ])k n nx x x x x xψ = , where we 
denoted by 

0 1 1 2 1 0 1 1 2[ ] { ... | , ... , ...

 and ( ) }
j n n n n n

j

x s x s x s x s n s s s i i i i

d i

α σ

σ
+= Σ = =< >

∈Σ =

and 1 2 1 2( , ,..., ) ([ ],[ ],...,[ ])k n ny y y y y yψ = , where we 
denoted by 

0 1 1 2 1 0 1 1 2[ ] { ... | , ... , ...

 and ( ) }
j n n n n n

j

y s y s y s y s n s s s i i i i

d i

α σ

σ
+= Σ = =< >

∈Σ =
Considering the fact that if we have the sets A, B, C, 
then: 

i)A⊆B⇒A.C⊆B.C; 
ii) A⊆B⇒C.A⊆C.B; 
iii) A⊆B⇒A∪C⊆B∪C; 
iv) A⊆B⇒C∪ A⊆C∪ B; 

it results immediately that 
1 2 1 2( , ,..., ) ( , ,..., )k n n k nx x x y y yψ ψ⊆  

According to the Kleene’s fixed point theorem, it 
results that the Kleene semantic  

1
( , ,..., )

k

l
kl

f ψ
∞

Ψ =
= ∨ ⊥ ⊥ ⊥  is the smallest fixed point 

of Ψ . 
If we denote by 

1 2
( , ,..., ) ( , ,..., )

r

l l l l
k k k kL L LΨ ⊥ ⊥ ⊥ =  

and by 1 2( , ,..., )
k k k k

rf f f fψ ψ ψ ψ= , then each 

1
,  for 1, 2,..., .k m

m l
kl

f L k rψ

∞

=
= ∨ =  

Denote by 
k

m m
kA fΨ=  and define for each k the 

following heterogeneous algebra 
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Ak 1,2,...,( ( ) , , )m k
k k m r kA A F== = Σ  

 
The process of internal inheritance of the base B in 
the algebra A is:  
1. The set of primitive types of algebra A0 is defined 
by mean of null-ary operations: 

0 { | ( ) }dτ τΣ = ∈Σ =∅  
 In other words, each scheme of null-ary operation 
from Σ, ,  ,   o s iτ =< >  specifies a type of 
computing object or a primitive data type in the set 

0
mA , m I∈ , specified by that scheme as follows: 

if  ,  ,   o s iτ =< > , then 0
ms A∈  is a constant of type 

m, and 0
mA  is the set of all computing objects or 

data of type m, or, in other words, 0
mA  is the type of 

primitive data in  A. 
2. Σ1 is the set of schemes of operations defined in 
the terms of the schemes of operations from Σ0. That 
means, if 1τ ∈Σ  then ( )d τ  selects as a domain only 
primitive types, the type defined by τ is a new type 
which we’ll call the compose type of the types from 

( )d τ , the composing operator is given by ( )o τ and 
the n-arity is ( )n τ . 
The operation of composing primitive types defined 
by Σ1 can be seen under two aspects, which are: 
construction operations which represent the 
construction of some static structures and operations 
of constructing action types, or dynamical. 
If 0 1 1 2,  ... ,  ... ,n nn s s s i i i jτ =< > , then 1 2... ni i i  have to 
be seen as types of operators or null-ary computing 
processes, and j is the type of n-ary operation’s 
result. The meaning of each operation τ in Ak is 
given by Fk . 
Internal levels of algebra A are formed by the sub-
types that can be specified using A0, A1, …,At  and 
which have the following properties: 

0 1 ... tA A A⊂ ⊂ ⊂  

tA A=  

1iA −  has the role of generating the sub-type iA . 
 
4   Conclusion 
Algebraic modeling allows developing some 
computing models faithful and efficient from user’s 
point of view. It allows computing models 
modularization, ensuring their reliability. Algebraic 
modeling offers mechanisms for generating syntax 
naturally associated to a semantic given by a model.  
Algebraic modeling offers schemes for evaluating 
that are linked to the communicators for which the 
language program is specified. 

Algebraic modeling that satisfies best the 
characteristics above is the one given by 
heterogeneous algebraic structures HAS. This 
concept appeared, on one hand, independently from 
the need of faithful modeling of programming 
languages, i.e. from demand of generalizing the 
concepts of universal algebras. On the other hand, 
HAS concept was introduced from necessity of 
associating a structure adequate to formal languages 
used traditionally in specifying conventional 
programming languages. Anyway, HAS proved to 
be a strong instrument, able to resolve many of the 
difficult problems of programming languages. 
The relations of internal hierarchy offered a natural 
framework for developing universal algorithms 
mechanism of implementing programming 
languages specified as mentioned. 
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