
OWLET: An Object-Oriented Environment for OWL Ontology
Management

Agostino Poggi

Dipartimento di Ingegneria dell’Informazione
Università degli Studi di Parma

Parco Area delle Scienze 181A, Parma, 43100
ITALY

poggi@ce. http://www.ce.unipr.it/people/poggi

Abstract: - In this paper, an object-oriented model and a software environment for the management of OWL
ontologies is presented. The object-oriented model allows a simple and complete representation of ontologies
defined by using OWL DL profile. The software environment, called OWLET, implements this object-oriented
model and provides a complete set of reasoning functions together with a graphical editor for the creation and
modification of ontologies. OWLET can be very useful for realizing heterogeneous and distributed semantic
systems where nodes differ for their capabilities (i.e., CPU power, memory size, …); in fact, it offers a layered
reasoning API that allows to deploy a system where high power nodes take advantages of all the OWLET
reasoning capabilities, medium power nodes take advantages of a limited set of OWLET reasoning capabilities
(e.g., reasoning about individuals) and low power nodes delegate reasoning tasks to the other nodes of the
system.

Key-Words: - OWL, ontology management, Object-Oriented model, Ontology reasoning, Heterogeneous
distributed systems, Java, …

1 Introduction
The mapping of an OWL ontology [1] into an object-
oriented representation can be very useful for
increasing the diffusion of ontologies and semantic
Web technologies. In fact, the availability of such a
representation can be the basis for the development
of some flexible and efficient software libraries for
the management of ontologies that allow to cope
with the limits of the current software libraries and
tools for the realization of ontology based and
semantic Web applications..
 The main problem of this mapping is that there are
important semantic differences between OWL and an
object-oriented language and so it is difficult to
provide an object-oriented mapping that both
minimizes the need of writing code manually and
full satisfies OWL semantics.
 OWL allows the definition of classes and
properties as specialization of multiple classes and
properties. Therefore, the object-oriented languages
that provide multiple inheritance would seem to be
the most suitable for representing OWL ontologies.
However, the use of multiple inheritance can cause
conflict because a subclass can inherits the same
variable or method from different classes. These
inheritance clashes are usually resolved by the
subclass either redefining the conflicting variable or
method for itself or by specifying which inheritance
is preferred. These inheritance clashes are possible in
representing OWL ontologies (e.g., when an OWL

class can inherits a restriction on the same property
from different classes) and so they must be managed
through the manual or automatic generation of some
additional code.
 OWL ontologies can be represented also by using
object-oriented languages that do not provide
multiple inheritance. For example, some previous
approaches coped with this problem by using Java
interfaces [2],[3]. This solution only partially solves
the problem because interfaces allow the definition
of class variables and methods, while instance
variables and methods code must be provided by the
classes implementing the interfaces. Therefore, the
representation of OWL ontologies requires the
manual or automatic generation of a large amount of
additional code.
 Another problem of representing OWL classes
and properties with classes of an object-oriented
language is the mapping of OWL class and property
names into class names of the object-oriented
language. In fact, the most known object-oriented
languages have restrictions on the syntax of class
names different from the ones imposed by the OWL
language. In this case, the solution is to: i) change
the OWL class and property names on the basis of
the restrictions of the target language (e.g., trading-
price may be changed to trading_price for defining a
Java or C++ class) and ii) avoid the introduction of
name conflicts (e.g., trading-price and trading+price
cannot be both changed into trading_price).

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 44

 A solution for avoiding the previous problems, is
the decomposition of inheritance into the more basic
mechanisms of object composition and message
forwarding [4]. Therefore, for example, an OWL
class contains (the references to) its super classes,
does not inherit their features, but can get/modify
them through the methods provided by the super
classes. Moreover, as done in other approaches, the
problem of representing an OWL ontology is
separated from the problem of acting and reasoning
on it. This solution allows the definition of a very
simple OWL ontology model based on few classes,
that respectively define the variables for maintaining
the components of a particular kind of OWL
resource and implement the methods for getting and
setting their values. Therefore, an OWL ontology is
described by a set of instances of the classes
respectively representing an OWL class, property
and individual.. Moreover, this solution avoids the
problem of mapping OWL resource names in
admissible identifiers of the used object-oriented
language, because the name of an OWL resource
become a value that is stored into the corresponding
variable of the OWLET instance representing such a
resource.

2 OWLET Ontology Model
The OWLET ontology model provides a complete
representation of OWL DL ontologies, is based on
six Java classes: OwlOntology, OwlClass,
OwlDatatype, OwlProperty, OwlRestriction and
OwlIndividual and an OWL ontology is represented
by a set of instances of the previous classes.
Moreover, OWL ontologies and ontology resources
can be identified through a variable of the previous
classes that maintains the ontology/resource full
URI.

Id Uri

Classes C = {c1, …, cn}

equivalentClasses Ce = {c1, …, cn}, Ce ⊆ C

disjointClasses Cd = {c1, …, cdn}, Cd ⊆ C

Datatypes D = {d1, …, dn}

Properties P = {p1, …, pn}

equivalentProperties Pe = {p1, …, pn}, Pe ⊆ P

individuals I = {i1, …, ih}

equivalentIndividuals Ie ={ie1, …, ieh}, Ie ⊆ I

differentIndividuals Id ={Id1, …, Idn}, Id ⊆ I

Table 1. The OwlOntology class variables.

 An OWL ontology is represented by an instance
of the OwlOntology class and contains information
about: i) all the classes, properties and individuals
that are defined or referred in such an ontology, and
ii) the equivalence and difference relationships
among them (see table 1).
 An OWL class is represented by an instance of
the OwlClass class and contains information about:
i) the class name, ii) the inheritance and composition
relationships with some other ontology classes, iii)
the composition relationships with some ontology
individuals, and, finally, iv) the restrictions on
ontology properties (see table 2).

Id Uri

subClassOf Csc = {c1, …, cn}, Csc ⊂ C

unionOf Cuo = {c1, …, cn}, Cuo ⊂ C

complementOf cc, cc ∈ C

one of Ioo ={i1, …, in}, Ioo ⊆ I

Restrictions Ri = {ri, …, rn}

Table 2. The OwlClass class variables.

 An OWL data type is represented through a
subclass of the OwlDatatype class. In particular,
while all the OWL predefined data types (i.e., the
XML Schema data types and the RDF literal data
type) are represented by the instance of a “singleton”
class, the enumerated data types are represented by
instances of the DataRange class.

Id Uri

Type v, v ∈ {Object, Datatype}

Domain Cd = {c1, …, cn}, Cd ⊆ C

Range Tr = {t1, …, tm},
 tr ⊆ D if type = Datatype
 tr ⊆ C if type = Object

subPropertyOf Psp = {p1, … pn}, Psp ⊂ P

Functional b, b ∈ {true, false}

Transitive b, b ∈ {true, false}

Symmetric b, b ∈ {true, false}

inverseOf pj, pj ∈ P

inverseFunctional b, b ∈ {true, false}

Table 3. The OwlProperty class variables.

 All the types of OWL properties (i.e., Annotation,
Datatype, Object and Ontology properties) are
represented by instances of the OwlProperty class.
While annotation and ontology properties only

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 45

contain the information about their type, Datatype
and Object properties also contain information about
the different property facets (see table 3).

classId Uri

propertyId Uri

maxCardinality n, n ≥ 0

minCardinality n, n ≥ 0

allValuesFrom Tavf = {t1, …, tn},
 Tavf ⊆ C if pj.type = Object
 Tavf ⊆ D if pj.type = Datatype

someValuesFrom Tsvf = {t1, …, tn},
 Tsvf ⊆ C if pj.type = Object
 Tsvf ⊆ D if pj.type = Datatype

hasValue Vhv = {v1, …, vn},
 Vhv ⊆ I if pj.type = Object
 Vhv ⊆ D if pj.type = Datatype

Table 4. The OwlRestriction class variables.

 The set of restrictions that must be applied to the
values of a specific property of the individuals
belonging to a specific OWL class are grouped
together and represented by an instance of the
OwlRestriction class. This class maintains the
information about the possible kinds of restriction
that can be applied to a Datatype or Object property
(see table 4).
 An OWL individual is represented by an instance
of the OwlIndividual class and contains information
about: the classes to which the individual belongs
and the property-values pairs describing the
individual (see table 5).

Id Uri

individualOf Cio = {c1, … cn}, Cio ⊆ C

Values V = {V1, … Vn},
 Vj = {v1, … vn},
 vjk ∈ I if pj.type = Object
 vjk ∈ D if pj.type = Datatype

Table 5. The OwlIndividual class variables.

3 OWLET Ontology Representation
Although a large part of the knowledge represented
by OWL constructs can be directly mapped into
equivalent entities of the OWLET classes, some of
such knowledge needs more complex elaborations.
 For example, the OWLET model does not
provide any entity for maintaining the knowledge
represented by the OWL intersection construct. It is
because an OWL class defined as the intersection of

some other classes is equivalent, from the semantic
point of view, to a class defined as the subclass of
these other classes, and because an OWL class
defined as the intersection of a set of property
restrictions can be represented, in the OWLET
model, by a class defined as composition of such a
set of restrictions.
OWLET provides a parser that maps OWL DL
ontologies, represented in the OWL/RDF format,
into an object-oriented representation based on the
OWLET model.
 For example, given the OWL/RDF fragment of
figure 1, describing the WhiteWine class of the Wine
ontology [5], then the OWLET parser creates an
OwlClass instance for representing the WhiteWine
class and adds a reference to the Wine instance to its
subClassOf variable. Moreover, it creates an
OwlRestriction instance for representing the
restriction on the hasColor property and adds it to
the restrictions variable of the WhiteWine instance.

 The restrictions defined inside an OWL subclass
axiom are managed in the same way. For example,
given the OWL/RDF fragment of figure 2,
describing the Wine class of the Wine ontology [5],
then the OWLET parser creates an OwlRestriction
instance for representing the restriction on the
madeFromGrape property and adds it to the
restrictions variable of the Wine instance.

<owl:Class rdf:ID="Wine">
 <rdfs:subClassOf
 rdf:resource="&food;PotableLiquid"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
 rdf:resource="#madeFromGrape"/>
 <owl:minCardinality
 rdf:datatype="&xsd;nonNegativeInteger">
1 </owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 ...
</owl:Class>

Fig. 2. The Wine class definition.

<owl:Class rdf:ID="WhiteWine">
 <owl:intersectionOf
rdf:parseType="Collection">
 <owl:Class rdf:about="#Wine" />
 <owl:Restriction>
 <owl:onProperty
rdf:resource="#hasColor"/>
 <owl:hasValue rdf:resource="#White"/>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 46

 Anonymous classes can be used in an OWL
ontology. For example, given the OWL/RDF
fragment of figure 3, taken from the Wine ontology
[5] and describing the NonFrenchWine class as the
intersection between the class Wine and an
anonymous class, then the OWLET parser creates
two OwlClass instances for representing the two
classes of the intersection and assigns to the second
instance a special identifier having the following
form:

<AnonymousClassID> =
 <OntologyURI> ‘unnamedClass’ <counter>

where <counter> is an integer that is incremented
each time a new anonymous class is found. This
naming solution avoids the conflict between the
names of anonymous classes of different ontologies.

 Anonymous individuals are managed in the same
way. For example, given the OWL/RDF fragment of
figure 4, taken from [1] and describing an individual
as composition of two anonymous individuals
respectively belonging to the Measurement and
Quantity classes, then the OWLET parser creates

two OwlIndividual instances for representing the two
individuals and assigns them an identifier similar to
the one assigned to anonymous classes:

<AnonymousIdividualID> =
 <OntologyURI> ‘unnamedIndividual’ <counter>

where <counter> is an integer that is incremented
each time an anonymous individual is found. Also in
this case, the naming solution avoids the conflict
between the names of anonymous individuals of
different ontologies.

 In some cases, the OWLET parser needs to
introduce some additional anonymous classes to
represent an OWL class defined as composition
among intersections of classes, restrictions and
individuals. For example, given the OWL/RDF
fragment of figure 5, taken from and representing an
anonymous class as union of an enumeration, that
contains the Tosca and Salome Opera individuals,
and of a restriction on the property composed-by,
then the OWLET parser creates two anonymous
OwlClass instances for respectively encapsulating
the enumeration and the restriction.
 Another example of the need of additional
anonymous classes is presented by the OWL/RDF

<owl:Class rdf:ID="NonFrenchWine">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Wine"/>
 <owl:Class>
 <owl:complementOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#locatedIn"/>
 <owl:hasValue rdf:resource="#FrenchRegion"/>
 </owl:Restriction>
 </owl:complementOf>
 </owl:Class>
 </owl:intersectionOf>
</owl:Class>

Fig. 3. The NonFrenchWine class definition.

<owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:about="#Tosca"/>
 <owl:Thing rdf:about="#Salome"/>
 </owl:oneOf>
 <owl:Restriction>
 <owl:onProperty
 rdf:resource=" #composed-by"/>
 <owl:hasValue rdf:resource="#Puccini"/>
 </owl:Restriction>
 </owl:unionOf>
</owl:Class>

Fig. 5. An anonymous class defined as union of an
enumeration and a restriction.

…
<owl:Restriction>
 <owl:onProperty rdf:resource="#hasDrink"/>
 <owl:allValuesFrom>
 <owl:Restriction>
 <owl:onProperty rdf:resource="wine:hasSugar"/>
 <owl:hasValue rdf:resource="#Dry"/>
 </owl:Restriction>
 </owl:allValuesFrom>
</owl:Restriction>
…

Fig. 6. A restriction on the hasDrink property.

<Measurement>
 <observedSubject rdf:resource="#JaneDoe"/>
 <observedPhenomenon rdf:resource="#Weight"/>
 <observedValue>
 <Quantity>
 <quantityValue
rdf:datatype="&xsd;float">59.5</quantityValue>
 <quantityUnit rdf:resource="#Kilogram"/>
 </Quantity>
 </observedValue>
 <timeStamp rdf:datatype="&xsd;dateTime">
 2003-01-24T09:00:08+01:00
 </timeStamp>
</Measurement>

Fig. 4. An anonymous Measurement individual.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 47

fragment of figure 6 that is taken from [6]. This
fragment describes an allValuesFrom restriction that
limits the values of the hasDrink property to the
individuals whose hasSugar property has Dry as a
value. In this case, the OWLET parser creates an
anonymous OwlClass instance for encapsulating the
restriction on the hasSugar property and adds this
OwlClass instance to the allValuesFrom variable.

4 OWLET Reasoning Tools
OWLET provides a set of tools for reasoning on
ontologies. In particular, it implements algorithms
for ontology consistency, class and data type
satisfiability, subsumption, equivalence, individual
instantiation, classification and equivalence, and
property consistency and equivalence.
 Some of the reasoning algorithms (i.e., ontology
consistency and class satisfiability) are not realized
through a direct processing on the OWLET ontology
representation, but are realized through a new OWL
ontology representation obtained from the OWLET
representation by only transforming the OWLET
class representation into a new class representation
that defines an OWL class in a disjunction normal
form on individuals and restrictions involved in its
definition.
 In fact, given an OWL class, described through
the OWLET model and expressed by the form:

(1) cx = Rx ∩ SuperCx ∩ Ux ∩ Ix ∩ ccx

we can apply a recursive expansion to: i) the super
classes (SuperCx), ii) the union classes (Ux), and iii)
the complement class (ccx). Finally, we can combine
all the restrictions (Rx) of the expanded classes
transforming (1) into the equivalent form:

(2) cx ≡ I’x ∪ (R’1 ∩ NI’1) ∪ … ∪ (R’n ∩ NI’n)

where: I’x and R’i are respectively a set of
individuals and a set of restrictions participating in
the definition of cx, and NI’i is a set of individuals
participating in the definition of the complement
class of cx.
 The class representation described by (2) has the
advantage of checking class satisfiability of an OWL
class by simply checking either if the are some
individuals involved in the definition of a class (I’x is
not empty) or if there are at least a term, R’i, that can
be satisfied by at least an ontology individuals that is
not member of the corresponding set of individuals,
NI’i.

5 Conclusion
In this paper, an object-oriented model and a
software environment, called OWLET, for the
management of OWL ontologies has been presented.
 The object-oriented model allows a simple and
complete representation of ontologies defined by
using OWL DL profile. The software environment is
realized by using the Java programming language
and, besides implementing the object-oriented model
and providing an API for the creation and
manipulation of OWL ontologies, offers a complete
set of reasoning functions for ontology consistency,
class and data type satisfiability, subsumption,
equivalence, individual instantiation, classification
and equivalence, and property consistency and
equivalence. Moreover the creation and manipulation
of OWL ontology is simplified thanks to graphical
editor (see figure 7) that allows: the visualization of
the relationships among classes, properties and
individuals, the creation, modification and deletion
of both new classes, properties and individuals, and
of relationships among them.

OWLET can be considered an interesting
environment for the development of ontologies, but,
in particular, it can be very useful for realizing
heterogeneous and distributed semantic systems
where nodes differ for their capabilities (i.e., CPU
power, memory size, …); in fact, it offers a layered
reasoning API that allows to deploy a system where
high power nodes take advantages of all the OWLET
reasoning capabilities, medium power nodes take
advantages of a limited set of OWLET reasoning
capabilities (e.g., reasoning about individuals) and
low power nodes delegate reasoning tasks to the
other nodes of the system..
 Future work on the OWLET system will be related
to: i) the realization of an accurate performance

Fig. 7. A view of the OWLET ontology graphical
editor.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 48

analysis and its comparison with the most known
systems for OWL ontology management and
reasoning (e.g., FACT++ [7] and RACER [8]), ii)
the enhancement of the ontology development tools
(e.g., the introduction of a 2D or 3D visualization of
the graphs representing the relationships among the
different ontology resources), and iii) the
continuation of its use and experimentation for the
realization of systems in both the semantic Web and
in the e-business application fields.

References:
[1] Dean, M., Schreiber, G., OWL Web Ontology

Language Reference, W3C Recommendation,
2004. Available, 10 February 2004. Available at
http://www.w3.org/TR/owl-ref/.

[2] Bergenti, B., Poggi, A., Tomaiuolo, M., Turci.
P. An Ontology Support for Semantic Aware
Agents. In. Proc. Seventh International
Workshop on Agent-Oriented Information
Systems (AOIS-2005), Utrecht, the
Netherlands, 2005.

[3] Kalyanpur, A., Pastor, D., Battle, S., Padget, J.
Automatic mapping of owl ontologies into java.
In Proceedings of Software Engineering. -
Knowledge Engineering. (SEKE) 2004, Banff,
Canada, 2004.

[4] Frohlich, P.H. Inheritance decomposed. In Proc.
of the Inheritance Workshop at ECOOP 2002,
Malaga, Spain, June 2002.

[5] W3C Consortium. The wine OWL ontology,
2004. Available at
http://www.w3.org/TR/2004/REC-owl-guide-
20040210/wine.rdf.

[6] W3C Consortium. The food OWL ontology,
2004. Available at
http://www.w3.org/TR/2004/REC-owl-guide-
20040210/food.rdf.

[7] Tsarkov, D., Horrocks, I. FaCT++ description
logic reasoner: System description. In Proc. of
the Int. Joint Conf. on Automated Reasoning
(IJCAR 2006), Lecture Notes in Artificial
Intelligence, Volume 4130, pp. 292-297.
Springer, 2006.

[8] Haarslev, V. Möller, R. Racer: A Core
Inference Engine for the Semantic Web. In
Proc. 2nd Int. Workshop on Evaluation of
Ontology-based Tools (EON2003), Sanibel
Island, Florida, USA, October 20, pages 27–36,
2003.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 49

