
Parallel Homologous Search with Hirschberg Algorithm: A
Hybrid MPI-Pthreads Solution

NURAINI ABDUL RASHID, ROSNI ABDULLAH & ABDULLAH ZAWAWI HJ. TALIB

School of Computer Sciences,
Universiti Sains Malaysia
11800 USM Pulau Pinang

MALAYSIA
nuraini@cs.usm.my, rosni@cs.usm.my & azht@cs.usm.my

Abstract: - In this paper, we apply two different parallel programming model, the message passing model
using Message Passing Interface (MPI) and the multithreaded model using Pthreads, to protein sequence
homologous search. The protein sequence homologous search uses Hirschberg algorithm for the pair-wise
sequence alignment. The performance of the homologous search using the MPI-Pthread is compared to the
implementation using pure message passing programming model MPI. The evaluation results show that there
is a 50% decrease in computing time when the parallel homologous search is implemented using MPI-Phtreads
compared to when using MPI.

Key-Words: - Parallel Programming Model, MPI, Pthreads, Homologous search, Hirschberg algorithm,
Protein sequence data

1 Introduction
The current technology in parallel computing has
made it possible to achieve better computing time
with less cost. We have take advantage of the
parallel methods in achieving our goal of producing
a fast database sequence homologous search
algorithm.
 Shared Memory Multiprocessors (SMP)
machines are now available to the mass with the
introduction of cheap multiprocessor personal
computers. These low-cost multiprocessors can be
clustered together to create a new parallel
computing platform call CLUMPs (Clusters of
SMPs)[1] which is a hybrid of shared memory and
distributed computing platform. The hybrid
parallel computing platform allows user to
implement data parallelism at large and medium
grain level. The large grain parallelism is
implemented using MPI, a message-passing
interface for communication between processors,
and the medium grain parallelism is implemented
using Phtread/OpenMP, a shared address space
programming model.
 Protein sequence database data are growing
exponentially. This sets the needs for faster tools to
do sequence analysis. This process includes protein
sequence homologous search given a query
sequence. The search process uses the protein
sequence alignment algorithm as its basic
operation. The most optimal protein sequence

alignment algorithm for protein sequence
homologous search uses the dynamic programming
method. One known algorithm is Smith-Waterman
Algorithm which is O(mn) in time and space. The
space saving algorithm for sequence alignment is
Hirschberg Algorithm. We take advantage of the
hybrid parallel computing platform to implement a
protein sequence homologous search algorithm.
 In this paper, we present our work on
parallel Hirschberg on the Hybrid parallel
computing platform using the hybrid parallel
programming model. We show the advantage of
our work compared to pure message passing
programming model. The rest of the paper is
organised as follows. Section 2 briefly describes the
existing parallel programming model and
introduces the hybrid parallel programming model.
Section 3 discusses Hirschberg algorithm and the
methods we use to parallelise the algorithm.
Section 4 shows the experimentation, which
includes the experiment environment, performance
metrics and numerical results of the experiment.
The conclusion and future work are presented in
Section 7.

2 A hybrid Programming Model :
MPI-Pthread
 The hybrid model in this research is
implemented at two levels of parallelism following
closely to the implementation by [3]. The message

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 228

mailto:nuraini@cs.usm.my,%20rosni@cs.usm.my

passing model is used to pass message between the
SMP nodes and the shared memory programming
model is used to create threads in the processors
inside SMP.

3 Protein Sequence Homologous
Search

The advancement in DNA sequencing
technology has produced a large amount of sequence
data. Raw protein sequences data are being
deposited in this databases before being processed to
produce other forms of database such as the domain
or family databases. The growth of protein sequence
data in Swiss-Prot is exponential between 1995 and
2007 .Because of these phenomena, computers have
become indispensable to biological data analysis.
One of the branches in biological data analysis is
protein sequence analysis.

One of the processes in protein sequence

analysis is protein sequence homologous search.
The output of this homologous search, which is
categorised as homologous sequences, is used to
determine the structure and function of a newly
found sequence. Homologous sequences are
sequences that share the same ancestors. Homology
cannot be quantified but it is usually based on
percentage similarity between two sequences but
two similar sequences do not imply that they are
homologous [3]. Protein sequence comparison
algorithms are used to find similar sequences in the
database. Similar sequences are determined by the
number of matching characters between the two
compared sequences divide by the length of the
longer sequence of the two. The most used protein
sequence comparison algorithm for homologous
search is pair-wise protein sequence alignment. The
input to sequence homologous search engine are
sequence database, new protein sequence as query
and scoring matrices. The outputs are sequences that
are similar to the input query sequence above certain
threshold, which is determined by the user. These
sequences are known as homologous sequences to
the input query sequence.

Protein sequence homologous search is a
simple algorithm that employs a pair-wise sequence
alignment algorithm when comparing a sequence to
the database. A flow-chart for protein sequence
homologous search is given in Figure 1[4].

3.1 Protein Sequence Comparison
 Protein Sequence comparison is the most
important basic operation in sequence homologous
search engine. It is defined as the problem of

finding which part of a sequence is similar and
which part is different.

Figure 1: General flow-chart for Protein sequence

Homologous search.

All living organisms are related by the
process of evolution, a fact that motivates computer
scientists to use sequence comparison to search for
similar sequences in the database [5]. This fact
implies that protein sequences of a closely related
species have high similarity in terms of the amino
acids that build up the sequences.
 The most used sequence comparison
algorithm is pair-wise sequence alignment
algorithm. Smith-Waterman algorithm, which is a
dynamic programming based algorithm, is the most
optimal protein sequence alignment algorithm but
the most compute intensive and uses large space to
create a similarity matrix. In this research we
implement Hirschberg algorithm which is the space
saving version of dynamic programming based
sequence alignment.

3.1 Hirschberg Algorithm

Hirschberg algorithm [6] is a recursive
algorithm but still uses the dynamic programming
technique in solving sequence comparison. It
divides the similarity matrix into smaller blocks and
calculates each portion differently. The basic
operations for this algorithm is similar to the Smith
Waterman algorithm [7]. The difference is
Hirschberg uses divide and conquer to calculate the
matrix hence uses less space. The first step in
Hirschberg algorithm is to divide the similarity
matrix into two main parts . After splitting, the
Smith-Waterman algorithm is execution on both
portion of the similarity matrix from two different

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 229

directions. The first half is executed normally from
cell SIM[0,0] to cell SIM[m/2,n]. The second of the
matrix is executed in reverse from cell SIM[m,n] to
cell SIM[m/2+1,0]. The filling of each cell in the
similarity matrix is as follows:

3.2 Parallel Implementation

Parallelizing protein sequence homologous search
can be done at two points
1 The main: at this point, the database is

partitioned and distributed to different
processors and a search algorithm is executed
against this data. This level uses MPI to
distribute the data.

2 At the pair-wise sequence alignment :at this
level, the similarity matrix used in the protein
sequence comparison algorithm is partitioned
and distributed to different threads. This level
uses Pthread which is a shared memory
programming model.

3.2.1 Large Grain Parallelism using MPI

The pseudo-code for the parallel version for the first
implementation using MPI is shown in Algorithm 1
(for master node) and Algorithm 2 (for slave node).
The major changes from the sequential algorithm
shown in Figure 3 is at the main loop . The parallel
version first partitioned the data before the loop for
comparing the protein sequence is executed.

The data parallel method is used in
parallelizing the search algorithm at the database
level. The target database is partitioned using static
partitioning into portions of similar size and
distributed among the processor nodes. Each
processor only has to search its portion of the
database. When the search finishes only one node
will keep the search results and a global sort is done
on this results. This is static load balancing.

The master node has two tasks to handle. At
the initial stage, it will partition the database. The
second task is to calculate the similarity values for
the sequences belong to the master node. At the
same time the master node waits for slaves to send
results and request new workloads. The issue arises
in this implementation is what is the best grain size
to balance between communication time and
computation time.

To overcome the problem of load imbalance
when some workstations have more workload, a
manager-worker approach has been taken. In this
approach, the database is partitioned into smaller
portion (usually the number of blocks is more than
the number of nodes available) and distributed to
workers and when a worker has finish its task it will
signal the manager for more task. In this approach,
the faster processor will have more task than the
slower processor. However, the granularity has to be
taken in consideration, the smaller the granularity
the better compute time but with the increase of
communication time.

Master: Partition_Data(Database,Number of Processors
1 Get database size
2 portion_size = databasesize/numberofprocessor
3 for(i =1 to number of processors)

i. send(startadd[i] to slave[i]);
4 Get query sequence and Broadcast to slaves

5 For all sequence belong to master

i. Hirschberg(querysequence, database
sequence)

ii. Save results where similarity value > threshold

6 Recv(results from other slave)
7 Combine results and output

Algorithm 1 : Master algorithm for Parallel Protein

Sequence Search Algorithm

Slave
1 Receive(start_address, portion_size)
2 Receive querysequence
3 For all sequences belongs to this slave

a. Hirschberg(querysequence,
databasesequene)

4 Send (similarity result) to master

Algorithm 2 : Slaves algorithm for Parallel
Protein Sequence Search Algorithm

In our approach, the database is partitioned

statically at the beginning of the computation with
fixed size according to the number of nodes.
However when the portion involved has a border
line cases then the portion before it will overtake the
computation.

3.2.2 Medium Grain Parallelism using Pthread

The challenge in implementing parallelism at
the similarity matrix is data dependency. After the
first row and first column has been initialized, the
calculation of all other entries in the similarity
matrix is dependent on the previous entries. The

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 230

three previous cells are one from the cell above (
same column but previous row) one from cell on the
right (same row but previous column) and one from
the diagonal cell (previous row and previous
column). Given the data dependency, works has to
be done to parallelized row by row, column by
column and anti-diagonal by anti-diagonal. All the
parallelization methods lead to an expensive
communication overhead [8].

In our solution, we propose a method to divide
the similarity matrix into two blocks which is to be
distributed to two processors on shared memory
multiprocessor. Each block is independent of each
other. The calculation of all cells in the first block is
done from the first row and first column to cell in
the last row and last column. The calculation of the
second block is from the cell in the last row and last
column to the cell in the first row and the first
column. Finally the main thread will merge the the
last row of the first portion and the first row in the
second portion and produce a maximal value.

Figure 2: Distribution of similarity matrix to threads

3.3 Data Distribution

The input database is divided into p-size
portions and the starting address and the size of the
database to be processed is sent to the slaves. MPI
structure is used to keep the information to avoid
multiple send and receive and this will decrease the
communication between master and slaves. This
type of partitioning is appropriate when the load of
each processor is balanced. Though the length of
each protein sequence in each portion is different,
we argue that the load balance is maintained with the
static partitioning. This is at par with the bucket
partitioning[9]. This is possible as the cluster of
SMPs we used is homogenous and all the nodes are
of the same CPU power and the memory are of the
same size. Each static portion has different number
of sequences. When the length of the protein
sequence is long then the number of sequences is in
the portion is less. In Figure 3, we presented of how
we partitioned the database and distributed among
the precessors. The query is first broadcast to all the

processors. Then the starting address of each portion
and size of each portion is distributed to the slaves.

The problem with static partitioning method
is that a protein sequence might be cut in the middle
which makes the alignment of the first sequence
produces false result. To overcome this problem,
each individual processor checks for this border case
and skips this sequence if the sequence is not a full
protein sequence. This problem also occurs at the
end of the portion. To solve this problem, the
processor will keep accessing the protein sequence
until the end which is beyond its end address. The
processor (n- 1) handles the borderline case. The
load imbalance occurs only when the border string
is very long.

The communication overhead at this level is
very minimal. The communication is at two points,
when sending the data to be processed by slaves and
when receiving the results from slaves. The first
communication is the point of sending the data to all
processor as shown at point a in Figure 4. The
second point is at point b in Figure 4 when the
slaves send the result back to the master processor.

 Figure 3: Parallel Protein Sequence Search
Algorithm using Static Database Partitioning.

Homologous search algorithm is an

embarrassingly parallel computation algorithm. The
algorithm exploits the MIMD architecture by
distributing the search algorithms among the nodes (
processor) in the clusters. Each of the nodes in the
clusters of SMPs independently processes the query
against a portion of the database. There is no
communication involve except at the initial level and
final stage. The master slave model of parallel
computation is used at this stage.

At the initial stage, a master process will
enquire the size of the database to be queried and the

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 231

number of processor involved in the processing.
Then the master process statically partitioned the
database into portions of equal size. This is static
partitioning as in [12]. The size is strictly on the byte
size. When the partitioning is done, there will be
cases when the partitioning begins at the middle of
the protein sequence and there will be cases when
the partitioning ends at the middle of the protein
sequences. These cases are handled individually
during the processing each individual portion.

Figure 4 : Communication between Master and

Slaves
4 Experimentation

4.1 Experimentation Environment
The experiments were executed on the Sun Fire
cluster system available at the Parallel and
Distributed System Lab at the School of Computer
Sciences, Universiti Sains Malaysia. The Sun Fire
Cluster consist of five machines where one machine
is the server node and the other four are child nodes.
Each machine is a SMP machines with two
multiprocessors. The cluster is interconnected using
the Ethernet. The limitation of Sun Fire cluster is
that it is shared by many users around the campus,
so the result is unstable when the load of the
machine is high. To get a stable results, we tested the
algorithms during midnight and set a priorities to the
algorithm manually and run a few times and the
results are then averaged out.

We downloaded a version of Swiss-Prot and
keep it on the server to avoid using the Internet to
access public databases,. The largest database we
downloaded is Swiss-Prot version 54, which is
downloaded in 2006 that consists of 280,000 protein
sequences. All the input data are selected randomly
from this database.

4.2 Performance Metrics

The study of the performance of parallel
algorithms involved one performance metric.
Execution time of a sequential algorithm T1 is
defined as the elapsed time between the beginning
and end of running program on a single processor.
The execution time of a parallel program Tp is the
elapsed time between the beginning of a parallel
execution and the moment the last processor stops
processing. The elapsed time of the process is the
time to do protein sequence comparison between the
query sequence and the sequences in the database.

Performance Gain
Performance gain(PG) of an algorithm (called
algorithm2) from another algorithm (called
algorithm1) is a measure of percentage of
performance difference in terms of computing time
when running the algorithm1 and algorithm2 . It is
calculated by getting the difference between
computing time of algorithm1, Talgorithm1 and
computing time of algorithm2, Talgorithm2. This
difference is divided by the computing time of
algorithm1 mathematically,

 PG(Algorithm2) =

4.3 Numerical Results

Figure 5 shows the compute time of MPITH and
MPIH for query length of 200 and 1000. The
compute time improvement when query length is
1000 is much better than the query time
improvement when the query length is 200.

Figure 5: Compute time for query length of 200 and
1000 for MPI and MPI+Pthread implementation

We compare the performance gain for querying the
database with varying length. The comparison is
made with the following condition:
When MPI is running on two processors(p), we run
MPI+Pthreads on one node(n). Mathematically

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 232

MPI: MPI+Pthreads is 2p: n.

Table 1: Performance gain of MPIMTH over
MPIH

The reason is that the SMP nodes has two
processors for each node. Table 2 shows the
performance gains of MPI+Pthread over MPI. From
the results, there is over 50% gain in performance
when using the hybrid implementation. Although
the percentage gain decreases as the number of
nodes /processors increases, there is still a
performance gain. This is due to the portion size
gets smaller that fits into the cache of each node and
can lead to linear speed up even by using MPI alone.

5 Conclusion
Base on our experimental results, we can conclude
that for the dynamic programming based Hirschberg
algorithm, the hybrid implementation give a better
performance over the MPI solution. We obtain these
results using MPI and Pthread on a cluster of SMPs
to take advantage of the share memory architecture
of Sun SMP machines. With the coming trends in
Personal Computer with multiprocessors, this
provides a cheap solution to the scientist
community.
 Currently we have managed to secure a
grant that would allow us to buy low cost server
with 2 X quadcore processors. We plan to extend
this work to Smith-Waterman algorithm that is the
most used sequence alignment algorithm with
optimum solution but the most compute intensive.

6 Acknowledgements

This research is funded by E-Science titled “ Parallel
Sequence Alignment and Clustering Algorithms for
Sequence Analysis of Fish Species” account number
01-01-05-SF0052 granted by the Ministry of
Science, Technology and Innovation, Malaysia.

References:
[1] Frank Cappello and Olivier Richard, Intra node

parallelization of MPI programs with OpenMP,
Report TRCAP, http: // citeseer.ist.edu
/cappello98intrahtml , 1998.

 [2] Holger Brunst and Bernd Mohr, Performance
Analysis of Large Scale OpenMP and Hybrid
MPI/OpenMP Applications with VampirNG, In
Proc. For IWOMP, 2005

 [3] Lisa Holm and Chris Sander, Removing near-
neighbour redundancy from large protein
sequence collections, Bioinformatics, Vol14,
1998, pp 423-429.

[4] Vipin Chaudary,Feng Lui,Vijay Matta, and
Lawrence T. Yang, Parallel Implementation of
Local Sequence Alignment:Hardware and
Software in Parallel Computing for
Bioinfomatics and Computational Biology edited
by Albert Y. Zomaya, Wiley Series on Paralle
and Distributed Computing 2006.

[5] J. Cohen, Molecular Biology Viewed from A
Computer Scientist Perspective, ACM
computing Survey, 1999,pp 122-158

 [6] D.S. Hirschbegr, A linear Space Algorithms for
Computing Maximal Common Sub-Sequences,
Communication of the ACM, Vol 18, No.6,
1975,pp 341-343.

[7]T.F. Smith and M. Waterman, Identification of
common moolecular subsequences, Journal of
Molecular Biology,147,1981,pp1950197

[8] W.S. Martin, J.B. del Cuvillo, F.J. Useche, K.B.
Theobald, and G.R. Gao, A Multithreaded
Parallel Implementation of a dynamic
programming algorithm for sequence
comparison, Pasific Symposium on
Biocomputing, 2001.

[9] T.K. Yap,O. Frieder and R.L. martino,Parallel
Computation in Bio Sequence Analysis,IEEE
Transaction on Parallel and Distributed
Computing, 9(3), 1998, 283-294.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 233

http://citeseer.ist.edu/cappello98intrahtml
http://citeseer.ist.edu/cappello98intrahtml

	3.1 Protein Sequence Comparison

