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An interpolation problem in generalized degree polynomial spaces
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Abstract: The aim of this paper is to study many interpolation problems in the space of polynomialdegreen.

In order to do this, some new results concerning the polynomial spaceslefreen are given. We consider only

the case of functions in two variables, but all the results obtained can be easily extended to many variables. We
found a set of conditions for whicl],, ,,, the space of polynomials aef-degree is an interpolation space. More
details are obtained for the weight= (1, ws2).
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1 Introduction with
The processes modeling, often requires the ap- Hy = span{d”; X € A} (2)
proximation of some unknown multivariate functions. and)\” being the generating function of the func-

In many cases we know only some information about tional \.
these functions. Usually these information is repre-
sented by means of the values of some linear func- e We studied in [11] an interpolation scheme

tionals applied to the unknown function. When it is which use as set of conditions the values of the
necessary to approximate the functions, matching the homogeneous parts of the function, that is, we
known information, the interpolation is used. By com- used the conditions
putational reasons, polynomial interpolation is pre-
ferred an more, one looks for minimal interpolation dj0, + Ao — R;
spaces.

Various interpolation scheme were studied, con- (3i.0,) (f) = f9(6y), 6, € © C R?,

nected to various modeling problems: 4
with fl/!, the homogeneous part of degrefeom

e Lagrange interpolation, with the set of conditions Taylor series off.

A =A{d(f) = f(0)6 € O} : N
There are many others particular schemes investi-
(see [1], [2], [3], [4], [6], [8], etc). gated and applied in practical studies.

The aim of this article is to study a particular in-
terpolation scheme, using a generalized degree for the
polynomials it works with.

In 1994, T. Sauer proposed, in [10], a generaliza-
tion of the degree, using a weightc N¢.

e Hermite interpolation, defined in many ways
and involving certain derivatives of the unknown
function. A general way of describing the Her-
mite conditions is given in [5]

A={X0 |\ = (¢(D)p) (0)},
PasAao(p) = (a(Dp) (B)} Definition 1 ([10]) The w-degree of the monomial*

qEPg;QE@;PQCH. is

Other definition can be found in [9] and uses d

chains of derivatives, organized in a tree. Sw(z®) =w-a=> wi-a (3
=1

e An interpolation scheme, for a set of general J J p
functionals,A, is given in [3]. A minimal inter- Vae N w=(wi,...,wg) € N?, x € R

olation space foA is
P P We will denote b1, ., the vector space of all polyno-

Hpl= span{gl;g € Hp} (1) mials ofw- degree less than or equahiand we will
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denote byi1? , the vector space of all homogeneous 2 Some results concerning the space

polynomials of totake- degree exactly::

Iy = { Z cax® | ca ER, v € Nd}(4)
w-aln
M = { Y cax®|ca€R, ac€ Nd}(S)

We will use the notations from [12]:
A%w:{aeNd, w-a=n}, (6)
we (N4 ne Nand

rw(n) = #(A5.4) (7)

The polynomial homogeneous subspacasefiegree
n can be rewritten as:

H%,w: Z cat® | co € R, a € N?
acAf ,

We observe that,(n) is the dimension of thev-
homogeneous subspaldé ,,.

Thew-degree is &1 -grading in the sense of [10],
be cause it satisfy the property:
5o (7HP) = 6,y (2Y) + 64 (27)

and those
HTL,U} = @ H27w ’
kEM,,

with M,, = {k € N | ry,(k) > 0 andk < n}.
We denote by

D*f)(0)x®
3 (Df)(0)

ol

f[j}w _

)
aw=j

thew-homogeneous part gfand byf|,,, thew-least
term of f, that is the term wit the lest-degree in Tay-
lor series off.

The interpolation conditions for the problem we con-

sider are of the following type:

Ak = (0,4, (8)

0;r €O C R je{l,...,n}

This type of conditions appears when the coordinates
of points are one spatial coordinate and one temporal

coordinate. Our problem can be easily extend for
d > 2 coordinates. We considered the case- 2,
only for computational reasons.

of polynomials of w - degree

The dimensions of the homogeneous space,

rw(n) and the setd) , depend of the weighty =
(w1, ws) C Z%. In [12], we found a general expres-

sion for r,,(n) and A°

for arbitrary wy, we and

n,w’

implemented two variants of algorithms based on this
expression. These results are given in theorem 1.

Theorem 1 ([12]) Let w = (w1, w2) € (N*)? and
let consider the functions:

r:{0,...,w; —1} = {0,...,w; — 1};

r(i) = (twz) mod wq

7:{0,...,wa— 1} = {0,...,wy — 1};
7(i') = (i'wy1) mod woy
Then
1. 7,(0) = 1and(0,0) € Af .
2. 1f j = cwy, thenry,(j) = [C] +1, and
w2
(a1, 0) € Ag{w are given by
. &
s = kwy, with0 < k < |::| ;
W
J — waa
o] = ———=.
wy
3. 1f j = cwsy, thenry(j) = [C] +1, and
w1
(a1,a9) € Ag?’w are given by
a1 = kws, with0 < k < |:c:| ;
wy
J—wiag
g = ———.
wa
4. Foranyj, 0 < j < min(wi,ws), ry(j) = 0.
5. If j ;/wy andyj /ws, with 7 > min(w;, wse), then

rw(j) = #(My) with

= ([Tl

— ’iwg

> 0, where[-] is the integer part func-

tion, i = r~1(s), with s =
(a1,2) € AY,, are given by

j mod wy, and

_J— (w1 +9)ws
a1 = )
w1
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with ¢; € M7 and

i—w1a1
g = ——.
w2

6. If j ;/wy andj /ws, with 7 > min(w;, ws), then
rw(j) = #(Ms) with

!

. j—tw , ,

if =—— >0, where[] is the integer part
w1wW2

function,i’ = #1(p), with p = j mod w-, and

(a1, a9) € A?,w are given by

_ Jj — (qaws + i")wy

(0%)] 3
w2
with ¢5 € M> and
1 — Wolg
o] = —=.
w1

7. If j /wi andj /wea, with j > min(w;, we) and
min{j — iwy,j — ws} < 0, 4, ¢’ defined in the
previous statements of theorem, thgnj) = 0.

The following theorem proves that for obtaining
the values ofr,(n) it is sufficient to apply theorem
1 only for the caser < wywsy and then a recursive
calculus can be performed.

Theorem 2 With the notations from theorem 1,
if n > wyws, then

rw(n) = ry(n mod wiws) + n div wiwse,  (9)

with n div wiwy = { n

wm} and [-] the integer part
function.

Proof: Let ben = wy - wo - ¢ + p, that is
g = n div wy - we andp = n mod wy - wy < w1 - wo.

1. If n =c¢-wy, thenp = wy - c1, thatis
¢ = wi(wg - q+ c1). From theorem 1 we obtain :

rw(n) =q+ (1 + [SLD =q+rw(p)

2. If n=c-wsy, thenp = wsy - ¢,
that isc = wa(wy - ¢ + ¢2). From theorem 1 we
obtain :

ru(n) = ¢ + (1 + {”D — g+ ru(p)

w1

3. If n {/wy andn Ywe, than let ben = jwiws + 14,
i < wiws. and letben = (j + 1)wiws + . We
will use induction onn and the following result
proved in [12]:

rw(m) =ry(n) +1 (10)

O
Three particular different cases can be distinguish
from these general results:

1. wiy=1,0rwy =1
2. (wl,’wg):1
3. (wl,w2)=p>1

The case 3 can be expressed using the case 2 and the

following proposition:

Proposition 1 ([12]) Let bew = (wy,ws) € (N*)?
aweight andwy, w2) = p,p € N, then
O (%) = Oy (z*P), withw' = (w], wh) and

! __ w; -
wi—?l,z—l,Q.

In practical problems, we are first interested in the
case 1, be cause we will give the weidHbr one axis
(the temporal one or for the space ones). That is way
we will present some results related to this case.

Theorem 3 If w = (1,w2) € Z2, wy > 1, then the
dimension of thev - homogeneous polynomial space
of degreen and the exponents of the monomials which
generate this space, are given by

Tw (n) =1+ q (11)
A?L,w = {(]7 0)7 (] — w2, 1)7 A (] - qw?)Q)}a (12)
with ¢ = [wi]
If w= (wl, 1) S Z_2,'_, wy > 1, then
rw(n) =14¢q
A?L,'w = {(Oa])v (L] _w1)7 R (qaj _qwl)}' (13)
Proof: Letw = (wy, ws), with wy = 1.
Thenn = n - wy, and according theorem 1,

ru(n) = m Flogil,

ag € {0,...,q}, a1 =n — waas.
A similar proof can be made fap, = 1. a

Theorem 4 If w = (1,ws) € Z2, wy > 1, then the
dimension of thev - polynomial space of degreeis

q+ 1)(waq + 2r)
2 b

dwn = dim(Il,, ) = ( (14)

with g = [w%} andr = n mod wo.
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Proof: dim(I1

Z dim(11

From (12) we observe thaszm(H?wa) =
im0, 1y, ) = o =AM 1y, ) =
1+1,Vi>0. Thereforad, = 1-ws+...+¢q-wo+

(g+1) r=wy- L2 4 (g41).r O

3 The interpolation problems

We consider, in the space of polynomial of
degree, many interpolation problems having the con-
ditions of type given in (8).

First, we consider the interpolation problem with
the conditions:

Ao,w = {Aj(f) =

j € {0,...,n}. We want to find an interpolation
polynomial with minimumw- degree. In order to do
this we generalize least interpolation ( see [3]) for the
space of polynomials witlhr-degree.

We introduce the following notation:

fmw(ej)’ej €O C R2}a (15)

D%p(0)D*f(0
<fp>=@o)nHo = Y, ZrOZI0,
aEN?2 ’
(16)
The generating function of; is:
Aj(z) =< Aj,ez = el (9;) =
= Z emy, (17)
aw=j
The spaces from (1)-(2) become
9;‘ - x®
Hp,, = span{pj(x)= Y 18)
aw=j
Hp,lw = span{p;l |pj(z) € Hy,,}  (19)
j €10,...,n}. ObviouslyHy,, = Hj,,, |, be

cause it is generated hy- homogeneous polynomi-
als.
Foranyf € Ay, we have,

Ai(f) = fUh(0;) =< f,pj >= (p;(D)£)(0) (20)
Let Ly, be the interpolation operator for the condi-
tions (15).

Theorem 5 The operatorL,,, ,, has the expression:

Zp;

7=0

<pg,f>

21
<Ppj,Pj > ( )

La,., =

with p; given in (18).

370

Proof: We have thak p;,p; ># 0 <= j =i. The

following equality holds, for allj € {0,...,n} and
fe Ap:
< Lng s pi >=< [f,pi > (22)
By a simple computation, we obtain:
Nj(La,(f)) =< La,.,pj >=< fipi >=
F91(8;). O

Theorem 6 The fundamental interpolation polyno-
mials, ¢;, i € {0,...,n}, for the interpolation
schemeA, ., Hy, ) are given by

Dbi

= 23
T > (23)
Proof: )\j(QOi) = <pj, pz> = (51'7]', Whereém
. < Dpi,Di >
is the Kronecker symbol. O
Next, we will considerate the case;, = 1 or
wo = 1.

Proposition 2 If in the interpolation problem with
conditions (15w, = 1 or wy = 1, then the maximum
degree of the interpolation polynomi@lL,, ,)(f) is
n.

Proof: The degree of the interpolation polynomial is
given by the maximum degree pjf,. Taking into ac-
count the theorem 3, is a linear combination of the
monomials which exponents are given in (12) or (13).
The maximum degree of these monomialais 0O

Let observe thatlmw # n. So the interpolation
space falls to b&l®

We want to flnd a set of conditions for whiéh, ,,
is an interpolation space. A necessary condition for
this is thatd,, ., = #(A). We consider the set of con-
dition:

Awo = {Njk(f) = P (0;4)}, (24)
withj € {0,....n=q- w2+ 71}, k € {1,...d?7w},
© = {6;} C R? asetof points having the following
properties:

2,
Ay = |ogi] # o,
nhoke{l,...d%,}, ac A, =

0,...,q},

Theorem 7 The interpolation problem with condi-
tions A, given in (24), has an unique solution in
the space of polynomials af-degreen, with w
(1,w2), wo > 1.

(25)

jeAo,...,
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Proof: Let bep = Z cox® the interpolation poly-

OzEAn.w

nomial. We look for its coefficients;,. The inter-
polation conditions leads ta + 1 Cramer systems,
having d?,w equations and the determinafit; # 0,

j €10,...,n}. Hence, all of these systems have an
unigue solution. O
4 Conclusion

The new results on the polynomial spacesuof
degree, obtained in section 2 allow us to define many
interpolation problems in these spaces. These inter-

polation problems arise from the practical problem in
which both spatial and temporal conditions are im-
posed.

We find a set of conditions for which the inter-

polation problem has unique solution in the space of
polynomials ofw-degreen. This is important in order
to use finite element methods on these spaces.

The results obtained can be generalized and deve-

loped in many directions:

1.

3.

For sets of points iR?, with d > 2. Even though
the theoretical results we obtained can be easily
extended fokl > 2, it is interesting to get nume-
rical and computational details far> 2 (espe-
cially for d = 3 andd = 4, cases which appear
in practical problems).

By using other generalized degree for the poly-
nomials.

By implemented the theoretical results.

These will be our further directions of study.
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