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Abstract: - In this paper we show how the multiplication or division of two single-precision floating-point
operands can be solved faster and more accurately than in previous works that used logarithmic arithmetic. The
logarithm calculation and ALU operation are fused in order to perform one single non-redundant addition in the
critical path for finding the logarithm of the result. A second non-redundant addition is used to produce the
result in floating-point format. Using Matlab analysis, the conversion error was also diminished by using

correction values in the look-up tables content.
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1 Introduction

From the beginning, the floating-point (FP) units
offered sufficient advantages for being significantly
developed and widespread in time, and thus their
performance has been continuously improved.
However, compared to fixed-point arithmetic, the FP
operations are more complex and imply more stages.

The increase of integration density has permitted
the development, as an alternative, of the logarithmic
number system (LNS) processors out of which we
mention [4], [5] and [8], but in these the main
difficulty is to implement the addition and
subtraction operations.

Avoiding these disadvantages and at the same
time keeping the qualities of both FP and LNS can be
achieved through the design of a hybrid unit which
combines the attributes of the FP processor with
logarithmic arithmetic. Very interesting and
attractive solutions in this direction were offered by
Laiin [1], [2] and [3], where addition and subtraction
were performed in FP and multiplication, division,
square root and all the other operations in LNS. For
the format conversions, a linear-interpolation
algorithm was implemented by using multipliers and
non-redundant adders. This algorithm will be
presented in section 2 of the paper.

However the redundant adders are useful when a
series of additions occur in sequence, as happens in
this case. The method of redundant summation of
partial products with other inputs has already been
used in [5] and [8] to implement the LNS addition
and subtraction. Applying this method, one single
non-redundant adder is required at the end of the

interpolation. But this idea was never exploited to
improve the data format conversions FP-LNS and
LNS-FP in which special non-monotonic functions
must be interpolated.

Thus, in section 3 we present how we can obtain
the logarithms of the two operands in carry-save
form and the way in which we proceed in the case in
which the second term of the linear interpolation is
subtracted.

In section 4 we present a new ALU organization
which supposes the using of one single non-
redundant addition in the critical path instead of three
as in [1], [2] and [3] for finding the logarithm of the
result of multiplication or division.

In section 5 we describe a method for reducing
the format conversion error to half.

Section 6 will conclude the paper.

2 Data format conversion algorithms
A binary number A in FP system, in single-precision
format is written:

A=(=1P01+0M). 257 (1)
where S represents the sign bit, M represents the
normalized significand with 23 bits and E represents

the biased exponent with 8 bits.
In the LNS a binary number z is represented:

z=(=1)% 2Nz, 2

where S; is the sign bit and N is a fixed-point
number having n bits, out of which i bits (i=8) for
the integer part Iz, and f bits (f=23) for the fractional
part Fz. We have:
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Considering the normalized significand (1+0.M,
including the hidden bit) in the domain [1,2), the
integer part of the logarithm of the number is given
by the value of the unbiased exponent and the
fractional part by the logarithm of the significand.

In [1], [2] and [3] the calculation of logarithm
and anti-logarithm used the partition of the argument
and the memorizing of only certain values for
reducing the amount of memory and, in addition, it
applied a correction method based on the
memorization in the same points of the values of the
function derivative, after which the linear
interpolation was performed. Thus, it was noted y =
0.M and the significand y was partitioned in two
parts: y;, containing the most significant 11 bits and
y,, containing the least significant 12 bits. The values
of the function log(1+y)-y in these 2'' =2048 points
were memorized in internal ROM (ROMA) as
correction values E, provided through the application
of the address y1.

Thus the following approximation was obtained:

10g(1+y);y+EyiAnyy2 (4)

A second look-up table (ROMA’) was needed
for the memorizing of the values of the derivative
function AE,. Adopting for AE, a 12-bit
representation, the complete conversion between the
two formats was made through a reading in the look-
up tables, a 12x12 bit multiplication and two 23-bit
additions.

The calculation of the anti-logarithm was made
in the same way. Considering C the result of finding
the anti-logarithm, then:

where E represents the integer part in LNS format
and M represents the fractional part.

Y is partitioned in the same way and a ROM
(ROMC) was used for memorizing the conversion
error E, in 2048 points, as well as the difference AE,
(ROMC’). The final result of the conversion was:

2V =(1+y)-E, £ AE, xy,. (6)

The correction values E,, for both log(1+y)-y and
(1+y)-2” are represented in Fig.1.

In equation (4) the product AE, x y, must be
added in the cases that correspond to the ascending
portion of the representation log(l+y)-y and
subtracted in the cases that correspond to the
descending portion of the curve, while in equation
(6) this product must be subtracted in the cases that
correspond to the ascending portion of the

representation (1+y)-2° and added in the cases that
correspond to the descending portion of this curve.
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Fig.1 The conversion errors between log(1+y) and y
and respectively (1+y) and 2°.

The circuits for computing logarithms and anti-
logarithms allowed the performing of the
multiplication and division operations of two
operands A and B by means of addition and
subtraction operations:

A xB=anti log(log A +log B), @)
A/B=antilog(log A —logB). (8)

Implementing the equations (4), (6), (7) and (8)
led to a 6-stage pipeline structure [1], [2], which
allowed a 100 MHz clock frequency, in 0.8 pm
CMOS technology. Of course, the signal propagation
speed through this structure depended on this process
too, but, in our paper, we will refer only to the length
of the critical path for the carry propagation. The
critical stages were, on the one hand, those where the
products AE, x y, from (4) and (6) were computed
and, on the other hand, the stage where the final
addition/subtraction from (4) and ALU operation -
addition/subtraction from equations (7)/(8) - were
performed. This happened because the speed
advantage resulted from the vertical carry
propagation in the multiplication area was
diminished by the horizontal carry propagation in
three non-redundant adders. Furthermore, ALU
operated with data of any polarity, which compli-
cated its control logic and led to a further delay.

Later on, the same author presented a new
architecture in which the product E,xAE, was
calculated not with binary multipliers but with PLA
circuits [3], which permitted a saving of area on the
chip, maintaining however the same computation
speed. In all variants the conversion error was
maintained at 3x107 while the LSB in single-
precision format had a weight of 1.19x107.



Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 655

3 New logarithmic unit organization
In order to eliminate the disadvantages mentioned
above we propose a new organization of the
logarithmic unit that keeps in carry-save form the
logarithms of operands A and B and thus, they could
be memorized in the latch of a pipelined structure.

Through this approach, the terms ya, Eya, and
ys, Eyg which are added to the products AEy, % yaa
and AEyg x y,p (see equation 4) will be introduced in
the Wallace tree besides the 12 initial partial
products of each product.

The problem which is still to be solved is that of
the situation where in equation (4), the term AE,xy,
is negative and its two’s complement conversion, i.e.
of all the 12 partial products, would be necessary.
This happens starting from the address 907 to 2047
of ROMA and ROMA’, a situation which
corresponds to the negative slope on the diagram of
the function log(1+y)-y shown in Fig.1. We managed
to avoid this shortcoming through an artifice, which
allows the total elimination of the cases in which the
product AE,xy, must be subtracted. As shown in
Fig.2, we can write the following equation:

EY(n) —AEYm) X Y2 =EYn1) +AEY,) X (v, +1) = 0
=Eyn41) +AEYq) X y; +AEYy.

The implementation of this equation leads to an
arrangement of the partial products as they are
presented in Fig.3. A generic presentation, with “q,”
for the complemented “p,” bits of y», respectively
with “p4” for the bits of AEy, was used.

We can obtain the same result of the logarithm
computation if we implement the right part of
equation (9). Starting from the memory location
corresponding to the address 907 of ROMA, instead
of memorizing the value Ey,), Eyu+1) 1S memorized,
i.e. exactly what should have been found at the next
address. In each location a supplementary bit will be
memorized, called the control bit, which takes the
value 0 for addresses 0...906, and 1 for addresses
907...2047. If this bit is 1, then the generation of
partial products will be done with y, having the bits
reversed, and another pseudo-partial product with a
size equal to that of the least significant partial
product, having the value AEy,, will be added. If the
control bit is O, then the generation of partial
products will be done with y, unreversed, and the
bits “ps” of the first pseudo-partial product from
Fig.3 will all be 0.

As we can see in Fig.4 the Wallace tree for one
operand will have as inputs 15 initial pseudo-partial
products and it will provide two data words: “sum”
and “carry”. If in this stage we did the non-redundant

addition of these, we would obtain the value of the
logarithm of the significand of each operand applied
to the input of the two logarithm computation circuits
working in parallel. Further on, the two fractional
numbers obtained would be concatenated to the
exponents of the two operands, in order to obtain the
logarithms of the operands. Finally, the two
logarithms would be applied to the ALU, in order to
be added or subtracted. However, in this case too, we
would have two consecutive non-redundant
additions, which slows down the process of obtaining
the result.

To avoid this situation, we can also consider the
two pairs of data words “sum” and “carry” as
pseudo-partial products, and thus they are again
introduced in a new reduction block. This will
provide, in the end, two data words, the final “sum”
and “carry”, which will be added then, with the help
of a fast adder. This final reduction block of the last
pseudo-partial products will be included in the ALU
as it should act under a control logic to allow the
implementation of both addition and subtraction.
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Fig.2 Negative slope segment achieved through linear
interpolation between consecutive memorized values E,.
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Fig.3 A section through the multiplication area after the
implementation of equation (9).
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Fig.4 Hardware for computing the logarithm of the
operand in carry-save form.

The implementation of this method leads to the
generating of a big Wallace tree with two branches,
which has 30 pseudo-partial products, 4 levels of
reduction blocks and which has its lower end in the
ALU. We used, as reduction blocks, 4:2 compressor
blocks and one single CSA block of 3:2 full adders
on the first level of each branch of the tree.

For the anti-logarithm computation circuit, the
procedure applied is the same, the data words “sum”
and “carry” being obtained after only 3 levels of
compressors. They are then added with a fast non-
redundant adder in order to obtain the significand of
the final result. In this case too, we will take
measures to avoid the subtraction of the term
AEyxy,, but we also take into consideration the fact
that in equation (6) the term Ey must be subtracted
too. The product AEyxy, is subtracted in the cases
which correspond to the positive slope on the
diagram of the function 1+y-2”, presented in Fig.1,
while it is added in the other cases. As equation (9)
can no longer be used, the sum of the two negative
terms from equation (8) will be written as follows:

—Eym) —AEy) Xy, = _(EY(n) +AEy(p) X Yz):
= [y + ABy(s) ~ ABygy x (3, +D)= (10)
=—EYn41) +AEY(m) X Y2 +AEy ().

Thus, in the ROMC locations from the address 0
to the address 1082 the two’s complement of the
quantities Ey+1), which should have been found at
the next address, as well as the value 1 for the control
bit are memorized; from address 1083 to address

2047 (when AEyxy, is positive) the two’s
complement of the values Ey,), as well as the value 0
for the control bit will be memorized directly.

4 ALU design

In this approach we do not extract the bias value
from the exponents of the two operands. For this we
extend the ALU with one bit to the left, while the
bias value is extracted or added to the resulting
exponent, depending on the performed operation,
multiplication or division. The advantage is that
ALU will operate with positive numbers. Obviously,
the implementation of the square root operation
supposes the extraction of the bias value from input
data.

When ALU performs a subtraction, the
subtractor (the number which is subtracted from the
other term) is represented by two reduced pseudo-
partial products, whose non-redundant addition is no
longer performed. This means that both terms must
be converted into two’s complement code. To avoid
the reconversion from two’s complement in sign-
magnitude code of the result, in the case in which it
is negative, we will use the same method as in [6],
only modified for 4 operands.

We note A, A,, respectively By, B, the four final
reduced pseudo-partial products, and A=A tA,
represents the subtractend, while B=B,+B, represents
the subtractor, in the case in which a subtraction is
performed. Now we can write the two terms which
are simultaneously computed in the adder/subtracter
circuit:

A-B=(A|+A,+B;+B,+1)+1, an

B-A=(A;+A,+B;+B, +1)+0. (12)

Equation (12) can be checked in (13) as follows:

A-B=-(B-A)=B-A+1. (13)

When we replace the term ”B — A ” with the value
given by equation (12), we retrieve equation (11).

As we can see in Fig.5 we maintain the situation
of initial carry-in 1, respectively that of initial carry-
in 0 at the two adders which work in parallel, as in
[6] and a carry-in equal with 1 at the last 4:2
compressor block, in the case of performing a
subtraction. Obviously, this carry-in (bit line Sop)
will be 0 in the case of addition. The carry-in is
applied at the unused input C;, of the least significant
4:2 compressor.

Further on, the length of the last block of the tree,
included in the ALU, will be supplemented with 9
bits to the left, for the concatenation of the positive
exponents (with the bias value of 127 included)



Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 657

which represent the biased integer parts of the
logarithms of the two operands. The concatenation of
the exponents will be done at the terms A, and B,
obtaining the final pseudo-partial products A; and
B,, while in the 9-bit positions of the integer part
corresponding to A, and B, of fractional weight, it
will be completed with zeros, obtaining A, and B,.
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Fig.5 Block diagram of the adder/subtracter circuit.

The three blocks “Inv./Pass” will be transparent
when an addition is performed and they will invert
the bits of the data from the inputs when a
subtraction is performed. The block Selector will
select the result from Adderl unchanged, in the case
of addition, and in the case of subtraction it will
select the result from Adder2 or from Adderl
inverted, depending on the MSB of Adder2.

Adderl and Adder2 are 36-bit adders. The four
least significant bits from the outputs of the two
adders will be lost, and thus, at the output of the
circuit, we will regain the single-precision format
plus one bit in the MSB position, which avoids the
overflow due to the accumulation of bias values in
the case of multiplication. The justification of the 36-
bit length for the adders and the compressor block
will be done in the next section.

In our design and gate level simulation we used
2-level hybrid adders, with seven (1+3x2) 8-b carry
look-ahead adders (CLA) plus in the most significant
position two 4-b CLA on the 1% level (with input

carry 0 and 1 respectively) and a carry select
mechanism on the 2™ level.

Following [7] and the assumptions regarding the
carry propagation time through different logical
gates, we considered the carry propagation time
through an inverter or transmission gate like one unit
(=FO4) and subsequently, 2 units for a 2-input NOR
and NAND gate, 3.5 units for a XOR gate and 11
units for a 4:2 compressor. The propagation time
through the Wallace tree which contains three levels
of 4:2 compressor blocks and a pseudo-partial
product generator in a branch is 40 units. The gate
level simulation of the new ALU in a most
unfavorable case led to a carry propagation time of
40 units also, so this pipeline stage doesn’t slow
down the logarithmic unit computing. In comparison
with [1], [2] and [3] where an additional proper
addition is included in both these stages, we can say
that our variant (keeping the 6-stage pipeline
structure) is at least 1.6+1.7 times faster.

5 Error analysis and correction

Using Matlab analysis to estimate the errors
introduced by implementing the algorithm described
in [1] for the generation of binary logarithm and anti-
logarithm, we had the confirmation of the value of
3x10” mentioned by Lai as the maximum conversion
error. For the further minimization of this error, we
suggest a correction of the look-up tables content,
which will add correction values on certain address
intervals of the ROMA and ROMC. Baring in mind
that the error in floating-point single-precision
format, i.e. the value of the least significant bit
provided by any output of the ROMA or ROMC, is
1.19 x 107, it means that to the calculated values of
Ey we can add corrections of one or two LSB, after
which they are directly memorized (ROMA),
respectively, they are transformed in two’s
complement and then memorized (ROMC). The
correction value “cor” that must be operated in some
memory locations depends on the minimum and
maximum error in each of the 2048 intervals. It is
given by the matlab equation:

Cor=round((max(err)+min(err))/(2*¥1.19*10"-7)).

For example, in Fig.6.a and b we present the error
for the first 40960 values of the logarithm, before
and after the correction is done. A more extended
representation of the error, for the first 3,686,400
values of the total of 8,388,608 possible ones (in
logarithm domain [0, 1)), shows us that the error is
kept under 1.5x10” (Fig.6.c).

As far as the computation of the product AEyxy,
is concerned or, more generally, the interpolators
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using multipliers that truncate lesser-significant
partial-product bits, they have received attention
recently in [9]. We can notice from Fig.3, in which a
section of the multiplication area is presented, that, if
we perform the calculation of the truncation error in
the most disadvantageous case, when all bits of a
smaller or equal weight with “-28” (the bits of the
right side of the vertical line) are equal to 1, we
obtain the value 0.6x10”. This value represents half
of the representation error in single-precision format.
But, because each bit in the multiplication area
represents a logical AND of two bits that can be 0 or
1 with equal probability, the weight of all these bits
is statistically 0.15x107 (i.e. 1LSB/8). According to
[9], the removal of all bits from this area, i.e. the
elimination of the hard structures from the whole
Wallace tree and ALU, can be statistically
compensated by adding a 1 in the column of weight
—26 next to the 11" partial product. As we observe in
Fig.3, we keep 27 bits for the fractional part of the
logarithm (or anti-logarithm) that leads to a 36-b
structure for the final sum.

6 Conclusions

In this paper we describe a new organization of a
logarithmic unit that accepts single-precision
floating-point inputs/output and provides a result in
6x40=240FO4. The algorithm of the data format
conversions FP-LNS and LNS-FP was improved in
comparison with other related works, i.e. it becomes
roughly 1.6 times faster and almost twice as
accurate. In a very recent work, [10], in which a
conventional floating-point approach was used, a
double-precision division lasted 453FO4. We can say
that our proposal is comparable in terms of speed
with this last one but implies less hardware and
latency.
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