
A Tabu Search Based Routing Optimization Algorithm for Packet
Switching Networks

DANIELE CASALI1, GIOVANNI COSTANTINI1,2, MASSIMO CAROTA1

1Department of Electronic Engineering
University of Rome “Tor Vergata”

Via del Politecnico, 1 – 00133 ROMA
ITALY

2Institute of acoustics “O. M. Corbino”
Via del Fosso del Cavaliere, 100 – 00133 ROMA

ITALY

Abstract: - In this paper, we present a tabu-search based algorithm that optimizes routing for packet switching
networks. The problem of routing optimization can be seen as the search of the shortest path in a graph, where
the bandwidths of connections, together with their traffic, can be considered as weights. This kind of
optimization is usually carried out by means of the well-known Dijkstra algorithm or its various
implementations. However, an exhaustive research tends to be very heavy, from a computational point of view,
when the number of nodes gets high. For this reason, we opt for a meta-heuristic algorithm, particularly tabu
search, capable of finding a non-optimal solution, that can be considered quite good, even without the need of
an exhaustive research.

Key-Words: - Tabu search, optimization, routing, communication networks

1 Introduction
The routing problem for packed switching
networks is a crucial problem in
telecommunications, and, as long as Internet is
spreading more and more all over the world, it
involves a number of nodes that is difficult to
manage. The most obvious way to find the optimal
solution is the Dijkstra algorithm [1]: the network
is considered as a graph, whose weights are
bandwidths and traffic. Hence, the routing problem
is simply a shortest path problem. Alternate
approaches, such as neural networks [2,3], have
been studied as well.

The application of a meta-heuristic algorithm
could be a good alternative to the exhaustive
search of Dijkstra algorithm, because it does not
need to explore the whole graph. Hence, it can
afford an improvement in time performances. Ant-
colonization has been adopted in various works
[4,5]. Tabu search [6] is a well-known meta-
heuristic algorithm, and it has been applied by
different authors to the routing problem, coupled
with the wavelength assignment problem [7,8]. In
this paper, we present a tabu search based
algorithm, optimized by means of some variants
that can speed up the search.

The paper is organized as follows: in the second
section, we make a description of the algorithm,
while the third section is dedicated to the study of

the cost function. Section 4 describes our
implementation, with experiments and results.
Finally, conclusions are described in Section 5.

2 Description of the Algorithm

As in the case of Dijkstra algorithm, the
network that we must optimize can be represented
as a graph. As a consequence, the routing problem
can be seen as the search of a path between two
given nodes. The first difference with the Dijkstra
algorithm is that, in our case, we are not going to
find the shortest path, but just a “good” path,
which is not granted to be the optimum. We will
start from a random path, and then we will
transform it, according to the tabu search rules.

The only restriction on the initial path is that it
must start and end on the given nodes, as well as it
cannot contain any closed loop. The path is then
transformed applying iteratively operations taken
from a set of three possible elementary operations,
that we call OP1, OP2, and OP3.

OP1 regards two consecutive nodes in the path,
A and B, connected directly by arc A-B, as well as
indirectly through a third node a and arcs A-α and
B-α (Fig. 1). So, according to rule OP1, we can
exclude arc A-B from the path and include node
α and the two arcs A-α and B-α. This way, we

Proceedings of the 11th WSEAS International Conference on CIRCUITS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 180

transform a set of two nodes and one arc
into a set of three nodes and two arcs.

Figure 1. Operation OP1: A new node (α) is
inserted in the path.

OP2 regards a set of three nodes and is the inverse
operation of OP1. With this operation, shown in
Fig. 2, we exclude a given node a between two
nodes A and B, and include the arc A-B in the path,
provided that this arc already exists in the graph.
As an obvious consequence, if a node is the start
node or the end node of the path, it cannot be
deleted, because it is connected to one node of the
path only.

Figure 2. Operation OP2: node α is deleted from
the path.

Operation OP3 is the last kind of basic
operation, according to which we exclude a node
α from the path and include another node β,
together with arcs A-β and B-β, provided that node
β already exists in the graph and it is connected
with nodes A and B.

Depending on the number of arcs and their
weights, we can define a “cost” of the path, which
will change whenever we apply a basic operation
to the path. Our aim is to minimize this cost by
means of the tabu search based algorithm
described in the following.

Start generating a random path from the start
node to the end node that does not contain loops.

Figure 3. Operation OP3: node α is substituted
with node β.

1. Call N1 , …, Nm the nodes in the path
2. Calculate the cost of the path, according to

a cost function that takes into account the weights
of all arcs in the path.

3. Starting from first node, check all nodes
couples (Ni, Ni+1) to see if OP1 is possible, and
triples (Ni, Ni+1, Ni+2) to see if OP2 or OP3 is
possible. If one of these operation is possible, we
store in a list the path obtained by applying it to the
current path, and continue until i=m. All path in
this list are called adjacent paths.

4. Calculate the weight of all adjacent paths
which are not in the tabu list. Tabu list is initially
empty.

5. Insert the current path and all adjacent
paths to the tabu list, and select as new current path
the adjacent path which has the lowest cost.
Classic tabu search would insert only current path
to the tabu list. Anyway, in our application, where
there can be a lot of adjacent paths, increasing the
tabu list with paths that will not be probably useful
will help in lightening and speeding-up the search
for good paths. Finally, if the new path has a cost
lower then the current path, select it as best path.

Repeat steps 1 to 5 for a given number of times.

3 Example
In order to better explain the algorithm, we will
apply it to the simple graph with 7 nodes, shown in
Fig. 4. We want a path from A to D. We start by
simply finding any path from A to D: in this case,
we start from the path ABCD.

Figure 4. Example graph.

First execution of the loop
The cost of the path is 6, which is the sum of

the weight of arcs A-B, B-C, and C-D. We start
checking if OP1 is applicable on nodes (A,B): OP1
cannot be used, because no arc in the graph is
connected with both A and B. Then we check for
the applicability of OP2 or OP3 on nodes (A,B,C):

B

A

B

A

α

B

A

B

A

α

B

A

α

B

A

β

2

1

1

2

2

4

4

3

6

5

3

A

B C

D E

F

G

Proceedings of the 11th WSEAS International Conference on CIRCUITS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 181

OP2 doesn’t fit, because A and C are not
connected, while OP3 cannot be used, because no
node is connected with both A and C.

Next couple is (B,C). We see that OP1 is
applicable, because node G is connected with both
B and C. This operation yields to path A-B-G-C-D,
which is added to the adjacent paths list. Now we
continue the search for adjacent paths, by checking
for OP2 and OP3 on the triple (B,C,D): OP2 can be
used, while OP3 can’t, because node G is
connected both with B and C. So we obtain another
adjacent path: A-B-G-D.

Finally, the last couple in the path is (C,D):
OP1 is applicable, because node G is connected
with both C and D. This operation yields to the
path A-B-C-G-D.

The list of adjacent path is:
· A-B-G-C-D, whose weight is 13.
· A-B-G-D, whose weight is 10.
· A-B-C-G-D, whose weight is 11.
The adjacent path with lower cost is A-B-G-D.

So, it will be the next path. Anyway its cost is 10,
greater than 6. So, the current path A-B-C-D is
stored as best path. Path A-B-C-D, together with A-
B-G-C-D, A-B-G-D and A-B-C-G-D, are stored in
the tabu list. We are now ready for step two.

Second execution of the loop
First couple is (A,B), and OP1 is not applicable.

First triple is (A,B,G) and OP2 is applicable. So,
we can substitute node B with F, yielding to path
A-F-G-D, which is not in the tabu list. Next couple
is (B,C) and OP1 is applicable, yielding to path A-
B-C-G-D. Being this path already in the tabu list, it
will not be considered. Next triple is (B,G,D) and
OP2 is not applicable, while OP3 yields to A-B-C-
D which is in the tabu list. Last couple is (G,D),
and two different OP1s can be applied. In fact,
both F and C are connected with G and D. So, two
more paths can be generated: A-B-G-F-D and A-B-
G-C-D, but A-B-G-C-D is in the tabu list. The list
of adjacent paths, excluding the paths already
present in the tabu list, is:

· A-F-G-D, whose weight is 10
· A-B-G-F-D, whose weight is 13
The adjacent path with lower cost is A-F-G-D,

so we select this path as next path, and add A-F-G-
D and A-B-G-F-D to the tabu list. Best path is still
A-B-C-D.

Third execution of the loop
Current path is A-F-G-D. First couple is (A,F)

and OP1 is not applicable, while OP2 is not
applicable on triple (A,F,G). On the contrary, OP3
generates path A-B-G-D, which is in the tabu list.
Second couple is (F,G) and OP1 is not applicable,

because the only node connected to F and G is D,
that is the end node. Last triple is (F,G,D), where
we can apply OP2, yielding to path A-F-D, and
OP3, yielding to path A-F-E-D. Finally, last couple
is (G,D): OP1 is applicable, yielding to path A-F-
G-C-D. The list of adjacent paths, excluding paths
already in the tabu list is:

· A-F-D, whose weight is 3
· A-F-E-D, whose weight is 8
· A-F-G-C-D, whose weight is 13
The selected path is A-F-D, which is also stored

as best path. Tabu list is incremented with A-F-D,
A-F-E-D, and A-F-G-C-D.

Fourth execution of the loop
Current path is A-F-D, but none of the possible

operations on any couple yields to a path that is not
present in the tabu list. Hence, the loop is halted,
resulting that best path is A-F-D, which in this case
is exactly the shortest path.

4 Cost function
Let’s consider a telecommunication network
represented by a graph, in which every connection
is represented by an arc. The weight of every arc
depends on the bandwidth and saturation of the
connection.

Every time a new request is associated with a
path on the graph, the weight of every arc in the
path is increased according to its traffic and the
data flux that we want to route on it. If we assign
paths without any rule, after having complied with
a lot of requests, we can cause the saturation of
some arcs, which will be unavailable for
subsequent requests.

For any couple of nodes, there can be many
possible paths, and we must define a rule to decide
which is the best path to choose. Moreover, it is
important for the solution of the problem to avoid
saturating arcs with an excessive number of
requests. Therefore, the choice for an arc that is in
danger of saturation must be very costly. Hence,
we can think to the problem in terms of the
minimization of a cost function: we must define a
function that increases when the residual capacity
of the arc is decreasing. The residual capacity is
defined as the difference between the bandwidth of
the arc and the data flux that is currently present in
the connection.

Another parameter must be taken into account
in the cost function: consider, for example, graph
in Fig. 4. Suppose that we must choose arc C-G or
arc C-B and that they have the same residual
capacity: the two choices would have the same
cost. But, actually, the choice of C-B is better,

Proceedings of the 11th WSEAS International Conference on CIRCUITS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 182

because if we choose B, then we will have only
two arcs that start from it, while if we choose G we
will have more arcs, with more available paths. If
we define the degree of a node as the number of
arcs connected to a given node, the cost function
will depend on three parameters:

- f : data flux (bit/s)
- C: capacity of the connection
- GN: degree of the destination node
The cost function of an arc i is Fi (fi,Ci,GNm),

where m is the destination node of arc I.
We take as cost function the product of two

functions, which take into account, separately, the
node degree, and the residual capacity:
Fi(fi,Ci,GNm) = Fi1 (fi,Ci) Fi2(GNm).

Fi1 is defined as:

2

1

1),(⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=
ii

iii fCK
CfF

while Fi2 is defined as:

2

2)(⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i
ii GN

KGNF

with K1 in [0,1] and K2 > 1.
In Fig. 9 we show the graph of this function,

when Ci = 3, K1 = 0.2 and K2= 5.
Obviously, given the cost of every arc in a path,

the cost of the latter equals the sum of the cost of
its arcs.

Figure 5. Graph of the cost function with three
values of GN.

5 Experimental Results
We implemented the algorithm in Matlab, with a
number of iteration fixed to 300 and a length of the
tabu list fixed to 40. We performed two kinds of
tests: in the first test, we generated a set of 1200
graphs with the same number of nodes N=50, and
a number of arcs from 200 to 700, with random
weights uniformly distributed from 0 to 100. For
every graph, we calculated the path by means of
our algorithm and the optimum path by means of
the Dijkstra algorithm. Results are shown in Fig. 6,
in terms of cost versus number of arcs.

Figure 6. Graph of minimum path average cost
versus number of arcs.

We can see that the performance of the

algorithm tends to be nearer to the perfect one,
when the number of arcs gets high: more
specifically, when the number of arcs is greater
than approximately 400, which is 8N, the cost
remains about 1.3 times the optimal cost. In the
second test, we used a variable number of nodes
from 19 to 90, and 8N arcs. Results are shown in
Fig. 6, where we report the cost of the minimum
path versus the number of nodes N: we can see
that, if the number of links increases linearly with
the number of nodes, the average cost of the real
minimum path, calculated by Dijkstra algorithm,
tends to be constant. On the other hand, the paths
obtained by the algorithm tend to have a higher
cost than the optimum, when N increases. The
cause is arguably due to the fact that the number of
iterations is fixed to 300.

Total cost vs. number of arcs

0

50

100

150

200

250

200 300 400 500 600

Number of arcs

C
os

t

Dijkstra

Tabu search

Proceedings of the 11th WSEAS International Conference on CIRCUITS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 183

Figure 7. Graph of minimum path average cost
versus number of nodes.

6 Conclusion
We designed and implemented an algorithm that,
by means of a tabu-search, carries out a non-
exhaustive search of best path on a given graph.
Since there is no need to explore all paths, there
could be a great saving of time. Of course, the
found path is not granted to be always the shortest
path, but the obtained results show that, if the
graph is not very sparse, the probability that the
result is one of the shortest paths is very high.
Advantages in adopting our algorithm become
evident, especially when the number of arcs is
high. One way to improve the performances of the
algorithm could consist in finding a better method
to fix both the maximum number of iterations
allowed, and the length of the tabu list, as
functions of the parameters of the graph, namely
the number of arcs and the number of nodes.

References:
[1] E. W. Dijkstra, “A note on two problems in

connexion with graphs”, Numerische
Mathematik, pp. 269-271, 1959.

[2] N. Shaikh-Husin, M. K. Hani, Teoh Giap
Seng, “Implementation of recurrent neural
network algorithm for shortest path
calculation in network routing”, Parallel
Architectures, Algorithms and Networks, I-
SPAN '02. Proceedings. International
Symposium on, pp. 313 – 317, 22-24 May
2002.

[3] Liu Rong, Liu Ze-Min, Zhou Zheng, “Neural
network approach for communication network
routing problem”, TENCON '93. Proceedings.
Computer, Communication, Control and

Power Engineering, Issue 0, Part 30000, pp.
649 - 652 vol.3, 19-21 Oct. 1993.

[4] R. .Schoonderwoerd,, O. Holland, J. Bruten
and L. Rothkrantz “Ant-based Load Balancing
in Telecommunications Networks”, Adaptive
Behavior, 5(2), pp. 169-207, 1997.

[5] G. Di Caro G. and M. Dorigo, “AntNet: A
Mobile Agents Approach to Adaptive
Routing”, Tech. Rep. IRIDIA/97-12,
Université Libre de Bruxelles, Belgium, 1997.

[6] F. Glover, “Future Paths for Integer
Programming and Links to Artificial
Intelligence”, Computers and Operations
Research, 13, pp. 533-549, 1986.

[7] C. Dzongang, P. Galinier, S. Pierre, “A tabu
search heuristic for the routing and
wavelength assignment problem in optical
networks”, Communications Letters, IEEE,
Volume 9, Issue 5, pp. 426 – 428, May 2005.

[8] Ying Wang, Tee Hiang Cheng, Meng Hiot
Lim, “A Tabu search algorithm for static
routing and wavelength assignment problem”,
Communications Letters, IEEE, Volume 9,
Issue 9, pp. 841 – 843, Sep 2005.

Total cost vs. number of nodes

0

50

100

150

200

19 39 59 79

Number of nodes

C
os

t

Dijkstra

Tabu search

Proceedings of the 11th WSEAS International Conference on CIRCUITS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 184

