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Abstract: - In this paper, we present a tabu-search based algorithm that optimizes routing for packet switching 
networks. The problem of routing optimization can be seen as the search of the shortest path in a graph, where 
the bandwidths of connections, together with their traffic, can be considered as weights. This kind of 
optimization is usually carried out by means of the well-known Dijkstra algorithm or its various 
implementations. However, an exhaustive research tends to be very heavy, from a computational point of view, 
when the number of nodes gets high. For this reason, we opt for a meta-heuristic algorithm, particularly tabu 
search, capable of finding a non-optimal solution, that can be considered quite good, even without the need of 
an exhaustive research. 
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1   Introduction 
The routing problem for packed switching 
networks is a crucial problem in 
telecommunications, and, as long as Internet is 
spreading more and more all over the world, it 
involves a number of nodes that is difficult to 
manage. The most obvious way to find the optimal 
solution is the Dijkstra algorithm [1]: the network 
is considered as a graph, whose weights are 
bandwidths and traffic. Hence, the routing problem 
is simply a shortest path problem. Alternate 
approaches, such as neural networks [2,3], have 
been studied as well.  

The application of a meta-heuristic algorithm 
could be a good alternative to the exhaustive 
search of Dijkstra algorithm, because it does not 
need to explore the whole graph. Hence, it can 
afford an improvement in time performances. Ant-
colonization has been adopted in various works 
[4,5]. Tabu search [6] is a well-known meta-
heuristic algorithm, and it has been applied by 
different authors to the routing problem, coupled 
with the wavelength assignment problem [7,8]. In 
this paper, we present a tabu search based 
algorithm, optimized by means of some variants 
that can speed up the search. 

The paper is organized as follows: in the second 
section, we make a description of the algorithm, 
while the third section is dedicated to the study of 

the cost function. Section 4 describes our 
implementation, with experiments and results. 
Finally, conclusions are described in Section 5. 
 
 
2   Description of the Algorithm 

As in the case of Dijkstra algorithm, the 
network that we must optimize can be represented 
as a graph. As a consequence, the routing problem 
can be seen as the search of a path between two 
given nodes. The first difference with the Dijkstra 
algorithm is that, in our case, we are not going to 
find the shortest path, but just a “good” path, 
which is not granted to be the optimum. We will 
start from a random path, and then we will 
transform it, according to the tabu search rules.  

The only restriction on the initial path is that it 
must start and end on the given nodes, as well as it 
cannot contain any closed loop. The path is then 
transformed applying iteratively operations taken 
from a set of three possible elementary operations, 
that we call OP1, OP2, and OP3. 

OP1 regards two consecutive nodes in the path, 
A and B, connected directly by arc A-B, as well as 
indirectly through a third node a and arcs A-α and 
B-α (Fig. 1). So, according to rule OP1, we can 
exclude arc A-B from the path and include node 
α and the two arcs A-α and B-α. This way, we 
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transform a set of two nodes and one arc 
into a set of three nodes and two arcs. 

 
Figure 1. Operation OP1: A new node (α) is 
inserted in the path. 
 
OP2 regards a set of three nodes and is the inverse 
operation of OP1. With this operation, shown in 
Fig. 2, we exclude a given node a between two 
nodes A and B, and include the arc A-B in the path, 
provided that this arc already exists in the graph. 
As an obvious consequence, if a node is the start 
node or the end node of the path, it cannot be 
deleted, because it is connected to one node of the 
path only. 

Figure 2. Operation OP2: node α is deleted from 
the path. 

Operation OP3 is the last kind of basic 
operation, according to which we exclude a node 
α from the path and include another node β, 
together with arcs A-β and B-β, provided that node 
β already exists in the graph and it is connected 
with nodes A and B.  

Depending on the number of arcs and their 
weights, we can define a “cost” of the path, which 
will change whenever we apply a basic operation 
to the path. Our aim is to minimize this cost by 
means of the tabu search based algorithm 
described in the following. 

Start generating a random path from the start 
node to the end node that does not contain loops. 

Figure 3. Operation OP3: node α is substituted 
with node β. 

 

1. Call N1 , …, Nm the nodes in the path 
2. Calculate the cost of the path, according to 

a cost function that takes into account the weights 
of all arcs in the path. 

3. Starting from first node, check all nodes 
couples (Ni, Ni+1 ) to see if OP1 is possible, and 
triples (Ni, Ni+1, Ni+2) to see if OP2 or OP3 is 
possible. If one of these operation is possible, we 
store in a list the path obtained by applying it to the 
current path, and continue until i=m.  All path in 
this list are called adjacent paths. 

4. Calculate the weight of all adjacent paths 
which are not in the tabu list. Tabu list is initially 
empty. 

5. Insert the current path and all adjacent 
paths to the tabu list, and select as new current path 
the adjacent path which has the lowest cost. 
Classic tabu search would insert only current path 
to the tabu list. Anyway, in our application, where 
there can be a lot of adjacent paths, increasing the 
tabu list with paths that will not be probably useful 
will help in lightening and speeding-up the search 
for good paths. Finally, if the new path has a cost 
lower then the current path, select it as best path. 

Repeat steps 1 to 5 for a given number of times.  
 
 
3   Example 
In order to better explain the algorithm, we will 
apply it to the simple graph with 7 nodes, shown in 
Fig. 4. We want a path from A to D. We start by 
simply finding any path from A to D: in this case, 
we start from the path ABCD. 

 
Figure 4. Example graph. 
 

First execution of the loop  
The cost of the path is 6, which is the sum of 

the weight of arcs A-B, B-C, and C-D. We start 
checking if OP1 is applicable on nodes (A,B): OP1 
cannot be used, because no arc in the graph is 
connected with both A and B. Then we check for 
the applicability of OP2 or OP3 on nodes (A,B,C): 
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OP2 doesn’t fit, because A and C are not 
connected, while OP3 cannot be used, because no 
node is connected with both A and C.  

Next couple is (B,C). We see that OP1 is 
applicable, because node G is connected with both 
B and C. This operation yields to path A-B-G-C-D, 
which is added to the adjacent paths list. Now we 
continue the search for adjacent paths, by checking 
for OP2 and OP3 on the triple (B,C,D): OP2 can be 
used, while OP3 can’t, because node G is 
connected both with B and C. So we obtain another 
adjacent path: A-B-G-D.  

Finally, the last couple in the path is (C,D): 
OP1 is applicable, because node G is connected 
with both C and D. This operation yields to the 
path A-B-C-G-D. 

The list of adjacent path is: 
· A-B-G-C-D, whose weight is 13. 
· A-B-G-D, whose weight is 10. 
· A-B-C-G-D, whose weight is 11. 
The adjacent path with lower cost is A-B-G-D. 

So, it will be the next path. Anyway its cost is 10, 
greater than 6. So, the current path A-B-C-D is 
stored as best path. Path A-B-C-D, together with A-
B-G-C-D, A-B-G-D and A-B-C-G-D, are stored in 
the tabu list. We are now ready for step two. 

 
Second execution of the loop 
First couple is (A,B), and OP1 is not applicable. 

First triple is (A,B,G) and OP2 is applicable. So, 
we can substitute node B with F, yielding to path 
A-F-G-D, which is not in the tabu list. Next couple 
is (B,C) and OP1 is applicable, yielding to path A-
B-C-G-D. Being this path already in the tabu list, it 
will not be considered. Next triple is (B,G,D) and 
OP2 is not applicable, while OP3 yields to A-B-C-
D which is in the tabu list. Last couple is (G,D), 
and two different OP1s can be applied. In fact, 
both F and C are connected with G and D. So, two 
more paths can be generated: A-B-G-F-D and A-B-
G-C-D, but A-B-G-C-D is in the tabu list. The list 
of adjacent paths, excluding the paths already 
present in the tabu list, is: 

· A-F-G-D, whose weight is 10 
· A-B-G-F-D, whose weight is 13 
The adjacent path with lower cost is A-F-G-D, 

so we select this path as next path, and add A-F-G-
D and A-B-G-F-D to the tabu list. Best path is still 
A-B-C-D. 

 
Third execution of the loop 
Current path is A-F-G-D. First couple is (A,F) 

and OP1 is not applicable, while OP2 is not 
applicable on triple (A,F,G). On the contrary, OP3 
generates path A-B-G-D, which is in the tabu list. 
Second couple is (F,G) and OP1 is not applicable, 

because the only node connected to F and G is D, 
that is the end node. Last triple is (F,G,D), where 
we can apply OP2, yielding to path A-F-D, and 
OP3, yielding to path A-F-E-D. Finally, last couple 
is (G,D): OP1 is applicable, yielding to path A-F-
G-C-D. The list of adjacent paths, excluding paths 
already in the tabu list is: 

· A-F-D, whose weight is 3 
· A-F-E-D, whose weight is 8 
· A-F-G-C-D, whose weight is 13 
The selected path is A-F-D, which is also stored 

as best path. Tabu list is incremented with A-F-D, 
A-F-E-D, and A-F-G-C-D. 

 
Fourth execution of the loop 
Current path is A-F-D, but none of the possible 

operations on any couple yields to a path that is not 
present in the tabu list. Hence, the loop is halted, 
resulting that best path is A-F-D, which in this case 
is exactly the shortest path. 
 

 
4   Cost function 
Let’s consider a telecommunication network 
represented by a graph, in which every connection 
is represented by an arc. The weight of every arc 
depends on the bandwidth and saturation of the 
connection.  

Every time a new request is associated with a 
path on the graph, the weight of every arc in the 
path is increased according to its traffic and the 
data flux that we want to route on it. If we assign 
paths without any rule, after having complied with 
a lot of requests, we can cause the saturation of 
some arcs, which will be unavailable for 
subsequent requests. 

For any couple of nodes, there can be many 
possible paths, and we must define a rule to decide 
which is the best path to choose. Moreover, it is 
important for the solution of the problem to avoid 
saturating arcs with an excessive number of 
requests. Therefore, the choice for an arc that is in 
danger of saturation must be very costly. Hence, 
we can think to the problem in terms of the 
minimization of a cost function: we must define a 
function that increases when the residual capacity 
of the arc is decreasing. The residual capacity is 
defined as the difference between the bandwidth of 
the arc and the data flux that is currently present in 
the connection.  

Another parameter must be taken into account 
in the cost function: consider, for example, graph 
in Fig. 4. Suppose that we must choose arc C-G or 
arc C-B and that they have the same residual 
capacity: the two choices would have the same 
cost. But, actually, the choice of C-B is better, 
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because if we choose B, then we will have only 
two arcs that start from it, while if we choose G we 
will have more arcs, with more available paths. If 
we define the degree of a node as the number of 
arcs connected to a given node, the cost function 
will depend on three parameters: 

- f : data flux (bit/s) 
- C: capacity of the connection 
- GN: degree of the destination node 
The cost function of an arc i is Fi (fi,Ci,GNm), 

where m is the destination node of arc I. 
We take as cost function the product of two 

functions, which take into account, separately, the 
node degree, and the residual capacity: 
Fi(fi,Ci,GNm) = Fi1 (fi,Ci) Fi2(GNm). 

Fi1  is defined as: 
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with K1 in [0,1] and K2 > 1. 
In Fig. 9 we show the graph of this function, 

when Ci = 3, K1 = 0.2 and K2= 5. 
Obviously, given the cost of every arc in a path, 

the cost of the latter equals the sum of the cost of 
its arcs. 

 
 

Figure 5. Graph of the cost function with three 
values of GN. 

 

 
5   Experimental Results 
We implemented the algorithm in Matlab, with a 
number of iteration fixed to 300 and a length of the 
tabu list fixed to 40. We performed two kinds of 
tests: in the first test, we generated a set of 1200 
graphs with the same number of nodes N=50, and 
a number of arcs from 200 to 700, with random 
weights uniformly distributed from 0 to 100. For 
every graph, we calculated the path by means of 
our algorithm and the optimum path by means of 
the Dijkstra algorithm. Results are shown in Fig. 6, 
in terms of cost versus number of arcs.  

Figure 6. Graph of minimum path average cost 
versus number of arcs. 

 
We can see that the performance of the 

algorithm tends to be nearer to the perfect one, 
when the number of arcs gets high: more 
specifically, when the number of arcs is greater 
than approximately 400, which is 8N, the cost 
remains about 1.3 times the optimal cost. In the 
second test, we used a variable number of nodes 
from 19 to 90, and 8N arcs. Results are shown in 
Fig. 6, where we report the cost of the minimum 
path versus the number of nodes N:  we can see 
that, if the number of links increases linearly with 
the number of nodes, the average cost of the real 
minimum path, calculated by Dijkstra algorithm, 
tends to be constant. On the other hand, the paths 
obtained by the algorithm tend to have a higher 
cost than the optimum, when N increases. The 
cause is arguably due to the fact that the number of 
iterations is fixed to 300. 
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Figure 7. Graph of minimum path average cost 
versus number of nodes. 

 
 

6   Conclusion 
We designed and implemented an algorithm that, 
by means of a tabu-search, carries out a non-
exhaustive search of best path on a given graph. 
Since there is no need to explore all paths, there 
could be a great saving of time. Of course, the 
found path is not granted to be always the shortest 
path, but the obtained results show that, if the 
graph is not very sparse, the probability that the 
result is one of the shortest paths is very high. 
Advantages in adopting our algorithm become 
evident, especially when the number of arcs is 
high. One way to improve the performances of the 
algorithm could consist in finding a better method 
to fix both the maximum number of iterations 
allowed, and the length of the tabu list, as 
functions of the parameters of the graph, namely 
the number of arcs and the number of nodes. 
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