
Dependable Data Aggregation on Cluster-based Wireless Sensor
Networks

YUE-SHAN CHANG1, JIUN-HUA HUANG2, TONG-YING JUANG1

1Department of Computer Science and Information Engineering
National Taipei University

151, University Road, Sanhsia, Taipei County,
237 TAIWAN, R.O.C.

http://web.ntpu.edu.tw/~ysc/
2Institute of Communication Engineering

National Taipei University
151, University Road, Sanhsia, Taipei County,

237 TAIWAN, R.O.C.

Abstract: In the paper we propose a dependable and efficient data aggregation scheme based on fault map that is
constructed by estimated fault probability using Bayesian Belief Network (BBN). Cluster head will forward
aggregated event depend on the total dependability of collected event in which we assign each detecting node a
dependence weight. The dependence weight of sensor node is mapped from its fault probability estimated by
cluster head. We propose a mapping function to map node’s fault probability into a dependence weight. Cluster
head accumulates the dependence weight instead of number of source node and transmits the aggregated event
when the threshold has reached. The simulation result shows that the approach even though take some extra delay
time, it will increase the credibility and dependability of the aggregated event in the naturally unreliable wireless
sensor network.

Keywords: Dependable Data Aggregation, cluster based, Wireless Sensor Networks, Fault Estimation, Fault map

1 Introduction
Data aggregation in cluster based WSN[1] is that

cluster head merges sensed events from multiple
sensors into a single message before forwarding to
next cluster head or sink in order to greatly reduce the
extra energy consumption [4, 5]. These schemes only
took energy efficiency into account without
considering possibly fault occurrence or unusual event
reading of sensor node. In traditional data aggregation,
aggregation quality defines how many number of
source nodes that the cluster head need to transmit the
merged message in a cluster.

In this paper we propose a data aggregation
approach for effectively and efficiently aggregating
event from sensor nodes. We use the fault probability
information of sensor node to adjust the credibility of
an event by varying some parameters. The fault
probability [2] is estimated by using BBN model to
verify the target event and to analyze the possible fault
probabilities of nodes cumulatively. While the
accumulated weight reaches a specific value, the
cluster head would transmit the event to sink or
gateway cluster head without the completely
responses time in the cluster head.

Since the cluster head has the fault probability
information of sensor nodes in the cluster, we expect
to find a mapping function to map the sensor’s fault

probability into dependence weight. The higher fault
probability maps lower weight, and the lower fault
probability maps higher weight. Afterward, cluster
head would accumulate the weight instead of number
of source node and transmit the aggregated event till a
threshold has reached. Thus, we can ensure that the
transmitted event would have certain credibility.

The threshold represents the corresponsive
credibility of event. When the threshold that
calculated by cluster head is high, represents this
aggregated event needs more number of source node
or the source node with higher weight (lower fault
probability) to reach the threshold. In other words,
before the event in a cluster with higher threshold
transmitted to sink by cluster head, it needs more
weight evidence that mapped from fault probability.
Thus, through the raise of threshold, the credibility of
the aggregated event has been corresponsive
improved.

2 Related Works
Data aggregation with cluster architecture or

hierarchical schemes, such as Low Energy Adaptive
Clustering Hierarchy (LEACH) Protocol [3] and [7],
that combines responses from multiple sensors into
single message to transmit to the sink or gateway
cluster head. The LEACH randomly selects a few

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 300

sensor nodes as cluster heads, and the cluster heads
response to collect the sensed data from the
neighboring nodes in their own cluster. The research
in the [7] enhances the Direct Diffusion scheme by a
hierarchical aggregation technique to save the
transmission energy.

The Greedy Aggregation [4] was an approach that
adjusts aggregation points to increase the amount of
path sharing to reduce energy consumption in density
sensor networks. The Greedy Aggregation constructs a
greedy incremental tree, that a shortest path is
established for only the first source to the sink
whereas each of the other sources is incrementally
connected at the closest point on the existing tree.

In [6], the authors construct a game-theoretic model
for reliable path-length and energy-constrained routing
with data aggregation in wireless sensor networks.
They define two benefit functions and show that
computing optimal length-constrained paths is
NP-Hard under both models for arbitrary sensor
networks. They also develop sensor-centric metrics
called path weakness to measure the qualitative
performance of different routing schemes. They
assume that the node have failure probability to
evaluate the reliability of routing path from source
node to the sink. They focus on the payoffs of the
routing path in data aggregation.

Shin et. al. [8] proposed a reliable data aggregation
scheme named RDAP, that performs the routing and
query inserting process at the same time in order to
accomplish the minimum power consumption and
packet loss in sensor networks. RDAP eliminates the
unnecessary routing process which is generated by the
periodic routing and immediately adapts to network
changes between routing intervals.

3 Fault Map based Data Aggregation
3.1 Assumption
A few of assumptions must be made as follows:
(a) We construct the model in immobile wireless

sensor network.
(b) Sink has the global information of fault

probability.
(c) The cluster head knows the information of other

cluster heads via the periodic information
exchange and knows the direction of the sink via
the first initial message.

(d) In the cluster, the normal sensor node knows the
location of the cluster head and would not receive
packet from other cluster heads.

(e) Cluster head can vary transmission direction via
the triangle antenna.

In cluster, the sensor node senses data when event
happened, after that, the sensing node would transmit
the sensed data to the cluster head. Cluster head would
have some behaviors, as follows: We would depict the
algorithm amply in follows.
(a) Calculates the fault probability via these data,

such as temperature or noise reading.
(b) Records the fault probability in the fault rate table.
(c) Waits for some time to accumulate the accuracy of

the event by the different source nodes with the
same event.

(d) Transmits the event to next cluster head.

3.2 Mapping function
Cluster head already has the fault probability of each
node in the cluster. Cluster head can judge the
correctness of the event from the fault probabilities of
source node and bypass nodes. However the greater
volume of node’s fault probability represents the
lower correctness of the node, directly accumulate the
value of the node’s fault probability cannot be done
with the fault map based data aggregation. The
function f has looking for:

where the W is the weight, the P is the fault
probability of node, and the function f is expected. The
mapping function has been separated in two parts.
First, node’s fault probability is mapped into accuracy.
Then, the node’s accuracy is mapped into weight.

3.2.1 Linear mapping function
The linear mapping function is formulated as

follows.
Definition 1: Cj : the accuracy of node j

(1)
where L : the total range that the fault probability

going to map
Pj : the fault probability of node j

The linear mapping maps fault probability into
accuracy of node, that the higher fault probability, the
lower accuracy. The mapped accuracy is symmetric to
zero point and linearly expends the probability into
greater value, which means if the accuracy value is
negative, the fault probability is bigger than 0.5, if the
accuracy value is positive, the fault probability is
smaller than 0.5.

3.2.2 Weighted mapping function
The linear mapping does not fit the human’s
experience in probability. For example, to a human, it
does not make differences if an event with fault
probability 0.9 or 0.95. Human just feels the event
could have much possibility to be wrong. On the other
hand, human feels the event might be right no matter
the fault probability of the event is 0.1, 0.15 or 0.2.
The node’s accuracy, that after the linear mapping
function, can show if the node’s fault probability
larger than 0.5 via the negative or positive sign, but
cannot preserve the human’s experiences in
probability. Consequently, mapping the accuracy of a

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 301

node Cj into the weight using sigmoid function is
necessary, as follows:

Definition 2: Wij is the weight of node j that calculates
by cluster head i. This value is between 0 and 1.

(2)
where a’is a factor to vary the decreasing or

increasing rate of sigmoid function
Cj is accuracy, which is linear mapping from
fault probability

3.3 Node model
In order to easily analyze the data aggregation
algorithms, separating the behaviors of the node in the
summation part and activation part and discuss them
in cluster head and sensor node aspects are helpful.

Fig. 2 node model

3.3.1 Node is cluster head
The Ni in the Fig. 2 represents the reading value from
node i. Cluster head receives the reading value, and
calculates the weight. Wij is the weight of node j. Wi is
the cluster head’s weight.

In the summation part of the cluster head, it collects
the data from the neighboring sensor node in the
cluster, calculates the weight of the event via the
received data, and goes to activation part if the
threshold of weight has been reached. In case, if the
cluster head receive the event from Ni in the Fig. 2,
the accumulated weight as follow:

(3)

3.3.2 Node is sensor node
The Ni represent the reading value from node i. They
might be the temperature or noise reading. In the case,
the sensor node only receives reading value from other
neighboring sensor node in the same cluster, which
means the sensor node is the bypass node of other
source node. Due to the bypass node might have high
fault probability, the bypass node do not calculate the
weight. Both source node and bypass node could
affect the correctness of the event or reading value, the
bypass node puts the sensor ID itself into the set of
sensor ID in the original packet. Sensor node leaves
the weight-computing task to the cluster head.

In the summation part of other sensor node, if the

node is the source node of an event, goes to activation
part directly. What if the node is the bypass node of
the event, it puts the ID itself on the sensor ID in the
packet and goes to the activation part.

The activation part of the sensor node is exact the
sending task but with the next sensor node election.
The next hop node election mechanism does not
discuss in this research.

3.4 Fault map based data aggregation
algorithm

3.4.1 Summation part
The algorithms are shown in Table I:

TABLE I: ALGORITHM OF SUMMATION PART
Summation(SensorID,EventID){ //// aacctt wwhheenn aa nnooddee rreecceeiivvee oorr sseennssee aann
eevveenntt
while (node itself is a cluster-head)
do{

if (event is not from cluster-heads) //// aaggggrreeggaattiioonn iinn cclluusstteerr
{ if (EventID is first received)

{ sum.EventIDj = W; //// ccaallccuullaattee wweeiigghhttiinngg
time.EventIDj start to count down; j+1; //// iinnddeexx ttoo iiddeennttiiffyy

} //ddiiffffeerreenntt eevveenntt
else if (EventID==EventIDj)//// wwhhiicchh hhaavvee bbeeeenn rreecceeiivveedd
{ sum.EventIDj += Wi;//// aaccccuummuullaattee wweeiigghhtt ffoorr tthhee

//// ssaammee eevveenntt bbuutt ffrroomm ddiiffffeerreenntt nnooddeess((ddiiffffeerreedd bbyy iinnddeexx ii))
while (sum.EventIDj>threshold)

Cluster_Act(ClusterID,EventIDj);//// sseenndd iinnffoorrmmaattiioonn
////ffoorrmm cclluusstteerr hheeaadd ttoo cclluusstteerr hheeaadd

}
while (time.EventIDj > waiting_time)
call Adaptive_threshold(sum.EventIDj,EventID) / drop ;

}
else //// iiff eevveenntt iiss ffrroomm cclluusstteerr--hheeaadd
{ while (EventID=S_EventID[] which has been sent)

{ if (the ClusterID =S_ClusterID[] the same source cluster head)
drop;

else
{ call Cluster_Act(ClusterID,EventID)

aadddd CClluusstteerrIIDD iinnttoo SS__CClluusstteerrIIDD[[]];; j+1; ////rreeccoorrdd aa nneeww
} //// ssoouurrccee cclluusstteerr hheeaadd

}
call Cluster_Act (ClusterID,EventID);//// sseenntt eevveenntt ttoo nneexxtt
aadddd CClluusstteerrIIDD iinnttoo SS__CClluusstteerrIIDD[[]];; //// cclluusstteerr--hheeaadd
add EventID into S_EventID[]; j+1;//// rreeccoorrdd aa nneeww eevveenntt

}
}
while (node itself is not a cluster-head)

do{ if (the source Id of the event have not been sent)
{ add the SensorID itself into the SensorID array(SensorID[]);

call Sensor_Act(SensorID[],EventID);
}

}
}

Summation part:
For cluster head: The cluster head would calculate

the threshold with the recorded fault probabilities of
the sensor nodes in the cluster at present. Once the
first event received, the waiting time starts to count
down. If there is no exactly the same event has been
received from other source nodes through the waiting
time in cluster head, this event could be dropped or
calculate a adaptive threshold compare with the
accumulated weight so far again to avoid losing event

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 302

with special case. On the other hand, if the threshold
has been reached among the waiting time, the cluster
head goes to the activation part and the fault
probability of the source node of new event would be
recorded in the cluster head.

For other sensor node: If the sensor node is first
sensing the event, it will go into the activation part.
Otherwise the sensor node (bypass node) will add its
own ID in the sensor ID of the packet and then goes
into the activation part.

3.4.2 Activation part
The activation algorithms are shown in Table II as
follows:

TABLE II ALGORITHM OF ACTIVATION PART
ClusterH_Act(ClusterID,EventID) { ////ttrraannssmmiissssiioonnss bbeettwweeeenn cclluusstteerr
hheeaaddss

N_ClusterID = Lowest _error_of_nei_CH();
// or N_ClusterID = Shortest_path_of_nei _CH();
Forward_to_Sink(SensorID, EventID, ClusterID,N_ClusterID);

}

Sensor_Act(SensorID[],EventID) { //// ttrraannssmmiissssiioonnss iinn cclluusstteerr
DesID = Lowest _error_of_neighbors();
// or DesID = Shortest_path_of_neighbors();

Forward_to_localCH(SensorID[],DesID,EventID);
}

Activation part:
For cluster head (ClusterH_Act): If only the

cluster head goes into the activation part, the cluster
would transmit the event to next cluster head, which
might chosen via the shortest path oriental or the
lowest fault probability oriental, even the cross
consideration of these factors, including the energy
factor. While the cluster head transmit the event to
next one, the packet must have the IDs of source
nodes, event, ID of the source cluster head, and the
information of the cluster head, which including the
bias that used to estimate fault and remaining energy
capacity. This way, the sink would know the
geographic location of the event, update the fault map
of this cluster in the sink, and estimate if the source
cluster head could available to continuously execute
the task. If it could not, the sink may request the
cluster to elect new one. The cluster head election
issue has been accomplished in many literatures. The
election issues are not discussed in this paper.

For other sensor node (Sensor_Act): If only the
sensor node goes into the activation part, it would
send the event to next sensor node, which could be the
cluster head or normal sensor node. The next node
might be chosen via different mechanisms.

3.5 Aggregation threshold
3.5.1 Threshold formulation
The weight, calculated by mapping function, can be
treated like a correct probability of a sensor node, and
the accumulated weight value can be treated like the
correctness of the event. The definition and

formulation of the threshold are followed.

Definition 3: Weight Threshold, Th, is a value that
compared with the accumulated weight calculated by
cluster head. If the accumulated weight greater than
the threshold, cluster head transmits the event to sink.
Since the threshold is compared with the weight of an
event in cluster, formulating the average threshold via
the average weight in cluster, average number of node
that would sense the event, and the average hop counts
in a cluster, as follows.

(4)
where : Wa is the average weight in the cluster

Nc would be the number of sensor nodes
that would sense the event, in average
Ns : there are Ns nodes sensed event when
an event happened in average.
h is the average hop counts in the cluster

3.5.2 Adaptive threshold
In real case, both the cluster size and the size of event
region would affect the number of sensor node that
senses the event in the cluster. Due to the uncertainty,
the cluster head might lose some events that only
sensed by few sensor nodes that are with low fault
probability (high weight). Consequently we need an
adaptive threshold to deal with these special cases.
The equation, Ns/Nc, represents the average number of
sensor node that would sense the event in a cluster. In
the adaptive threshold mechanism, the cluster head
evaluate this number. Before the cluster head drop the
event that the accumulated weight is still not equal or
greater than the threshold, the cluster head would
exchange the average number, Ns/Nc, into the number
of source node that the cluster head received so far to
lower the threshold.

3.5.3 Threshold variation
The cluster head uses the error probability of all
sensor nodes in the cluster to evaluate the 100%
threshold, which means the average threshold in the
cluster. This threshold is easier to reach but it still has
some kind of dependence. If the threshold is advanced,
represent the event that sent by the cluster head is
more dependable. If the 50% threshold is used,
represent the threshold is calculated via the front half
number of sensor node that with the lower error
probability, which means the higher threshold would
be generated. Thus, the cluster head would need either
the source node that with the lower error probability or
more source node to increase the volume of weight to
reach the 50% threshold. The 50% threshold could
probably arise the delay time, but the dependability of
the event would increase oppositely.

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 303

3.6 Waiting time
To avoid the extra memory storage in the cluster head
due to the fault information, setting up a waiting time
is necessary. Since the factor a discussed in the
mapping function has the attribute to vary the volume
of the weight in the same accuracy (input), the factor
could control the waiting time of the event.

Definition 4: The Waiting time, Tw, is just a bound in
cluster to avoid the extra storage. The waiting time for
one single node that sense event is formulated simply
via the maximum hop counts in cluster, average
computing time, average sensing time, and average
transmission time, as follows.

where Ts is the sensing time of the sensor node
hc is the maximum hop counts in the cluster
Tt is the average transmission time including

the idle and collision time
Tc is the average computing time
T_CHc is the computing time of the cluster

head

4 Simulation Results

4.1 Delay time vary average hop counts and
threshold
In this simulation, the delay time caused by the
average hop counts and varied threshold is shown in
Fig. 3(a). In this model, factor a =1, one cluster head
handles 10 nodes, because the average hop counts can
be easily controlled. We can see that as the average
hop counts larger, the delay time is longer. From the
threshold aspect, as the percentage of threshold lower,
the delay time is longer. As discuss about, the 100%
threshold represents the average threshold in a whole
cluster. The 50% threshold represents the front half
number of sensor node with the lower error
probability that means when the percentage is lower,
the calculated threshold is higher. It is more difficult
to reach the lower percentage threshold, thus the delay
time is getting longer. The threshold can be varying by
the cluster head, what if the 100% threshold value in
the cluster head is below 0.5, which means the whole
cluster could possibly in an abominable situation, such
as the humidity is high, represents the error
probabilities of the nodes in the cluster are high.

The Fig. 3(b) represents the same situation as Fig
3(a) but factor a =2. Compare the Fig. 3(a) and Fig.
3(b), the delay time can be different via the adjustment
of factor a. While the factor a is greater, the delay is
shorter. The Fig. 3(c) with factor a =3 has the same
trend as Fig. 3(a) and Fig. 3(b). It proves that the
factor a, in range 1~3, can decrease the delay
efficiently. The factor a can be varied by the cluster
head, under some emergent case.

The delay time is small due to the simulated

model. Since the cluster head handles 10 nodes, the
distribution of the fault probability could not expend
between value 0~1. Consequently the difference of the
50%, 60%, 70%, 80%, 90% and 100% is small.

4.2 Delay time vary cluster size and threshold
In the section, we discuss the delay time caused by the
cluster size and varied threshold when factor a =1 is
shown in Fig. 4(a). The lower percentage threshold
accompanies the longer delay time especially in the
larger number of cluster size. This could possibly
cause by the distribution of the error probability. The
distribution is more normal when in large cluster size,
so the 50%, 60% even 70% could make the threshold
more differ. Thus the delay time would be increased in
the large size of cluster.

The Fig. 4(b) shows the same situation when factor
a = 2. Although the cluster size increase, the delay
time still decrease comparing with the Fig 4(a). The
factor a =3 in Fig. 4(c). Delay time could still
decrease when factor a increase.

4.3 Delay time comparing with fully
aggregation
Fully aggregation represents the all of the sensor
nodes in a cluster, transmit the sensed event when an
event happened. This simulation result is shown in Fig.
5:

We simply compare the fully aggregation delay time
with the fault map based data aggregation delay time.
In the fault map based data aggregation, the factor a
=1, and varying the cluster size when the threshold are
100% and 50%. We can observe that the huge
difference between them. The result represent that the
fault map based data aggregation can transmit the
aggregated event before the unbalance response time
of all the sensor nodes in cluster. The huge delay time
is due to the unbalance response time of sensor node
in cluster.

The delay time of fault map based data aggregation
scheme greatly decrease comparing with the full
aggregation time. Due to the uncertain response time
of sensor nodes, it would affect delay time of the fully
aggregation. This data aggregation scheme can reach
comparative credibility via adjusting the threshold
value, but without the fully aggregation response time.

5 Conclusions
We have shown the performance of the fault map
based data aggregation on cluster based wireless
sensor networks. By modeling the cluster head and
other sensor nodes with the algorithms, we can
enhance the comparative credibility of the aggregated
event via varying the threshold.
Although there could be some extra delay time
comparing with the cluster architecture wireless
sensor networks without aggregation mechanism, it is
worth to increase the credibility of the aggregated

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 304

event in the unreliable and resource constraint wireless
sensor networks. Besides, the parameter, factor a,
could decrease the delay time. When an emergent

event happened, we can increase the factor a to
decrease delay time.

(a) (b) (c)
Fig. 3. Delay time varying average hop counts. (a) a =1 (b) a =2 (c) a =3

(a) (b) (c)
Fig. 4 delay time varying cluster size (a) a =1 (b) a =2 (c) a =3

Fig. 5: Delay time comparing with fully aggregation

References:
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E.

Cayirci,“Wireless sensor networks: a survey,”
Elsevier Computer Networks 38 (2002) 393-422.

[2] Y.S. Chang, T.Y. Juang, C. J. Lo, M.T.Hsu, and J.
H. Huang, “Fault Estimation and Fault Map
Construction on Cluster-Based Wireless Sensor
Networks,” in Proc. of IEEE International
Workshop on AHUC 2006, Taichung, Taiwan,
Jun. 2006, pp. 14-19.

[3] W. Heinzelman, A. Chandrakasan, and H.
Balakrishnan, “Energy-Efficient Communication
Protocol for Wireless Microsensor Networks,”
HICSS 2000, pp. 4-7, January 2000.

[4] C. Intannagonwiwat, D. Estrin, R. Govindan, and J.
Heidemann, “Impact of Network Density on Data
aggregation in Wireless Sensor Networks.”IEEE

International Conference on Distributed
Computing System, 2002

[5] Fei Hu, Xiaojun Cao, and Carter May,“Optimized
Scheduling for Data Aggregation in Wireless
Sensor Networks,”IEEE International Conference
on Networking, Sensing and Control, April 2005.

[6] Rajgopal Kannan and S. Sitharama Iyengar,
“Game-Theoretic Models for Reliable
Path-Length and Energy-Constrained Routing
With Data Aggregation in Wireless Sensor
Networks,”IEEE Journal on Selected Areas in
Communication,”vol. 22, no 6, pp. 1141-1150,
August, 2004.

[7] Bin Zhou, Lek Heng NGOH, Bu Sung Lee, Cheng
Peng Fu, “A Hierarchical Scheme for Data
Aggregation in Sensor Network.”2004. (ICON
2004). IEEE International Conference. pp.525 –
529.

[8] Sang-ryul Shin, Jong-il Lee, Jang-woon Baek,
Dae-wha Seo, “Reliable Data Aggregation
Protocol for Ad-hoc Sensor Network
Environments,”Proc. on ICACT 2006, Feb 20-22
2006, pp.531-534.

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 305

