
Why Use Case Driven Approach?

JULIJANA LINIĆ
Department of Software Development

Financial Agency
Vranovina 30, 10000 ZAGREB

CROATIA

Abstract: - Inadequate requirements specifications not understandable to users are one of the predominant
causes of failure in the development of software systems today. The aim is to find a technique understandable
to users in order for them to be able to validate these requirements and verify whether these requirements are
really what they need. Further, this manner of presenting requirements must be familiar to developers and must
facilitate development of software systems. On the other hand, the aim is finding the way of specifying
requirements that would be in accordance with modern techniques of developing software systems such as
traceability and iterative and incremental development. Use cases are a reliable technique of resolving the
problems mentioned.

Key-Words: - Use cases, Use-case model, Requirements, Requirements specification, Requirements techniques,
Traceability, Iterative, Software development, Methodologies

1 Introduction
The term use case was introduced in software
engineering by Ivar Jacobson. In fact, Jacobson is
often thought of as being the father of the use case
and the father of Unified Process (UP, USDP) - one
of the most widespread world’s methodologies for
developing software systems. According to his
paper presented in OOPSLA ’87’ “a use case is a
special sequence of transactions performed by a user
and a system in a dialogue”. This is quite similar to
our current (informal) definition. He developed a
separate model for describing an outside perspective
of a system and he called it a use-case model. By
‘outside’, he meant a black-box view of the system.
The internal structure of the system was of no
interest in this model. The use-case model was a
model of the functional requirements of the system.
In 1994 he added the requirement that a use case
must give a “measurable value” to a “particular
actor”. Over the years the use case has matured.
Jacobson included use cases as part of an overall
system development lifecycle methodology called
Objectory, which he marketed as a product and built
a company around. Later, Jacobson’s Objectory and
his methodology were purchased by Rational
Software, and in 1997 use cases became part of the
Unified Modeling Language (UML) – a general-
purpose visual modeling language for systems. At
the same time, Objectory became part of the Unified
Process. Today, Unified Process is developed as a
commercial methodology called Rational Unified

Process (RUP) and since 2003 its owner has been
IBM. Rational Unified Process is today one of the
well-known world’s commercial methodologies for
the development of software systems.

In UML the use cases are diagrams. But it is
important to say that the use cases are primarily
textual documents in form of specification which
contains the description of the use case. There are
many use-case formats in use in various projects.
There are also many different popular styles of use
case. Generally, a use-case specification may have a
formal and an informal form. However, each use-
case description contains a brief description, a flow
of control, a base flow and alternative flows,
subflows (reusable at many places within the same
use-case description), preconditions and
postconditions.

Use cases are created for expressing functional
requirements of a system, but they are more than a
requirements technique. Use cases are traceable to
analysis, to design, to implementation and to test.
For each use case in the use-case model we create
the collaboration (a view of participating classes) in
analysis and design. Each use case results in a set of
test cases. Use cases are important for designing
user interfaces and for structuring the user manual.
Use cases also perfectly match business processes.
This approach to software development, which
starts with identifying all use cases and specifying
each one of them in requirements, analyzing and
designing each one of them in analysis and design

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 475

respectively, and finally testing each and every one
of them in test, is called use-case driven
development.

2 Problem Formulation
Many studies show that one of the primary
challenges of vital importance to any information
system development is the ability to elicit the
correct and necessary system requirements and
specify them in a manner that is understandable to
users in order for those requirements to be verified
and validated. The information technology
community has always had problems trying to
specify requirements, especially functional
requirements, to users. There were tendencies to
produce diagrams and specifications that were
loaded with terminology and notation resembling a
computer code. The traditional ways of expressing
functionality to users are requirements
specifications, functional decompositions, data-flow
diagrams (DFDs), entity-relationship diagrams
(ERDs), prototypes, etc. These modes of expressing
functionality of a system are not understandable to
users.

Traditionally, requirements are specified in lists
and expressed in terms of ‘’the system shall’’. The
requirements lists provide a comprehensive catalog
of every function that the system should perform. In
most cases these lists contain duplicate or
conflicting requirements.

Another attempt to describe functionality of the
system is functional decomposition. This method
takes the major function of the system, the highest
level function and breaks it down to subprocesses,
and sub-subprocesses, and so on. When the
processes are small enough, they become a program.
Functional decomposition is a remnant of the older
analysis and design approaches. It is tightly linked
to structured systems development, meaning
COBOL and mainframes. It is not usable for an
application that is Web-based or object-oriented.

The world-famous methodologies, like structured
techniques and information engineering, have a
traditional approach to software development. Their
main artifacts for developing systems are data-flow
diagrams and entity-relationship diagrams. In the
design phase data-flow diagrams are sometimes
called flowcharts. These methodologies are similar
because there exist two parallel separated ways of
developing software system. These are the process
model and the data model. The main difference
between the two types of methodologies is that the
structured techniques are based on processes, i.e. the
process model is their primary artifact, while
information engineering is based on data, and in this

approach the data model is the primary artifact. Data
flow diagrams help to show a system as a set of
groups of interacting processes. They represent the
dynamic view of the system and focus on what
happens inside the system. The data flows from one
process to another, and then stops in a data store.
Entity-relationship diagrams show how the data is
stored in an application. They show details of
entities, attributes, and relationships. Also, this
diagram is used to present a logical data model and
dictate the structure of a relational database. Both of
the artifacts can be useful in the design phase
primarily for non-objected software development,
but they are not requirements artifacts and they are
confusing for users.

Prototypes were long considered as a good
requirement tool. They give users a realistic
demonstration of what a system will be able to do
when it is completed. But when using prototypes,
users are concentrating on the details of user
interface and not on the requirements of the system.
Prototypes also encourage users to think that the
prototype is the system. This approach leads to the
misperception and quick-and-dirty coding because
users are impatient to develop a real system.

Therefore, there is a need for a different
technique to describe the user’s requirements. This
new technique must allow users to verify whether
these requirements are really what they need.

3 Problem Solution
The use-case modeling is one of the techniques that
resolve the problems with requirements mentioned
above. The strength of this modeling is that it
facilitates usage-centered development. The usage-
centered approach is a new approach in software
development. It requires concentrating on users’
needs and on the reasons why the system should be
developed in order to successfully plan, analyze,
design, construct and deploy an information system.

3.1 Functional and Nonfunctional
requirements
There are two basic categories of requirements:
functional and nonfunctional requirements.

Functional requirements are those actions that a
system must be able to perform, without taking
physical constraints into consideration. The
functional requirements specify the input and output
behavior of a system. Nonfunctional requirements
specify other qualities that the system must have,

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 476

such as those related to the usability, reliability,
performance, and supportability of the system [3].

Use cases describe functionality of the system.
This technique cannot be used to describe
nonfunctional requirements. For describing such
requirements there are the supplementary
specifications that are delivered together with a use-
case model.

3.2 The Basic Concepts of Use-Case
modeling
A use case specifies sequences of actions, including
variant sequences and error sequences, that a
system, subsystem, or class can perform by
interacting with outside actors [9].

Use cases are presented formally or informally in
text form or in a graphically high-level view by
UML use case diagrams.

We often start modeling with a use case diagram.
The use case diagram shows three aspects of the
system – actors, use cases and the system boundary.

In UML 2, the system boundary is referred to as
the subject. The subject is defined by who or what
uses the system (i.e., the actors) and what specific
benefits the system offers to those actors (i.e., use
cases). The subject is drawn as a box with the actors
presented outside this box and the use cases inside.
Actors represent the roles that some external entities
(people, other systems or devices) take on when
communicating with the particular use cases in the
system. Actors are drawn as a stick figure or as a
class icon stereotyped «actor». A use case describes
the behavior that the system exhibits to benefit one
or more actors. A good way to find use cases is by
asking the questions like: “How does each actor use
the system?” and “What does the system do for each
actor?”

The use case diagram helps to identify use cases.
However, use cases must be specified in the textual
form. The document which specifies use cases is
known as a use case specification. There are many
forms of use case specifications. A template for this
specification must be known within each
organization or project.

The simple template for a use case specification
generally contains:

1. a use case name
2. a unique identifier
3. a brief description
4. actors (there are primary actors who trigger

the use case and the secondary actors who
interact with the use cases after it has been
triggered)

5. preconditions (system constraints that affect
the execution of a use case)

6. postconditions (system constrains arising out
of the execution of a use case)

7. main flow (the sequence of declarative, time-
ordered steps in the use case)

8. alternative flows (the list of alternatives to
the main flow which we can present within a
use case or as a separate use case)

Apart from these a template may also include
some extra information.

3.3 Advanced Use-Case Modeling
There are several advanced techniques for use-case
modeling:

1. actor generalization
2. use case generalization
3. «include» relationship
4. «extend» relationship
Actor generalization allows to factor out into a

parent actor behavior that is common to two or more
actors. There is a substitutability principle – a child
actor may be substituted anywhere a parent actor is
expected. The parent actor often specifies an
abstract role, i.e. it is an abstract actor.

The use case generalization allows to factor out
features that are common to two or more use cases
into a parent use case. The child use cases inherit all
the features of their parent use case. Also, the child
use cases may add new features or they may
override parent features.

The relationship «include» allows to factor out
steps repeated in several use case flows into a
separate use case. The including use case is the base
use case and the included use case is the inclusion
use case. The base use case is not complete without
its inclusion use cases and it cannot exist without
them. An inclusion use case may exist without its
base use case - it may be complete or incomplete.

The relationship «extend» adds a new behavior
for the existing use case. There is a principle similar
to the one in the relationship «include». The base
use case has extension points which may occur
between the steps in the flow of events. The
difference between the «include» and the «extend»
is that the base use case is complete without its
extension use cases and it does not know anything
about possible insertion segments, it just provides
hooks for them. Therefore, the extension use cases
are added to an overlay on top of the flow of events.
The extension use case is generally not complete. It
may also be a complete use case, but this is rare.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 477

3.4 The Rules of Writing Good Use Cases
The main rules of writing use cases are:

1. keep use cases short and simple – include
only enough detail to capture the
requirements

2. focus on the what, not the how – when
writing use case we must concentrate on what
the actors need the system to do, and not on
how the system should do it

3. avoid functional decomposition – the use case
model is not used for structuring requirements
and we cannot create a set of “high level” use
cases and then break these down into a set of
lower-level use cases and so on, until we end
up with “primitive” use cases

4. consider not using advanced techniques - use
them only where they simplify the use case
model

3.5 The Styles and Formats of Use Cases
Use cases are a very flexible and extendable
software development technique. There are many
styles and formats of use cases.

Generally, there exist two basic flavors of use
case models: essential use case models and system
use case models. An essential use case model is
technology-independent view of behavioral
requirements. It is also known as a task case model
or an abstract use case model. An approach to
software development with the essential use case is
presented in the book Software for Use (Constantine
and Lockwood 1999). Essential modeling is a
fundamental aspect of usage-centered designs and it
captures the essence of problems through
technology-free, idealized, and abstract descriptions.
A system use case model describes in detail how
users will work with the system, including
references to user-interface aspects. However, a
system use case considers technical considerations,
and it is also known as a concrete use case model or
a detailed use case model. System use cases are the
primary requirements artifact for the Rational
Unified Process (RUP).

Regardless of this classification, use cases may
describe requirements in a formal or an informal
way. In the formal approach, the use case model is
large, comprehensive and detailed. In the informal
approach, the use case model is high level and omits
cursory details. There were projects which
successfully implemented systems using each one of
these approaches. Also, there were projects which
failed with each of these approaches. The basic
difference between these successful and
unsuccessful projects was the planning. The

developers of a successful project understand the
strengths and the weaknesses of each approach and
plan accordingly. If a large project creates a high-
level, informal use case model, requirements will be
missing, incomplete and ambiguous. On the other
hand, very detailed, comprehensive model with lots
of use cases, and with lots of logic and business
rules in the flow of events can be unsuccessful
because such amount of details creates the danger of
losing the thread of the development.

There are also many different use-case formats in
use in various different projects and texts:

1. brief descriptions – a short paragraph that
describes something that the system does

2. outlines – a numbered or bulleted list of
events and responses

3. table formats – form of table of actors’
actions and system’s responses

4. “black box” – a view focusing on the actions
taken by the actor and the system’s response

5. structured English forms – sequential
paragraphs of the text or narrative form

Different use-case formats are often associated
with different points in the evolution of a use-case
model. We often say that use cases have a complex
life cycle. They mature through a number of
development stages, from discovery to
implementation, and eventually to user acceptance.
The life cycle of the use case continues beyond its
authoring to cover activities such as analysis,
design, implementation, and testing. We say that the
process employs a “use-case driven approach” e.g.
the uses cases defined for a system are the basis of
the entire development process. The use-case model
is the result of the requirements discipline. Use
cases are realized in analysis and design models.
They are implemented in terms of design classes.
When the code has been written, it enables a use
case to be executed; now, the use case is in the
implemented state. Also, the use cases are the basis
for identifying test cases and test procedures. In this
phase of software development, the system is
verified by performing each use case. When the use
cases pass an independent user-acceptance testing,
the system is in the accepted state. Use cases can
also help with the supporting disciplines. In the
project management discipline use cases are used as
a basis for planning and tracking the progress of the
development system. This has the primary affect on
iterative development where use cases are the basic
planning mechanism. In the deployment discipline
use cases represent the base for writing user’s
manuals.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 478

3.6 The Main Properties of Use Cases
Significant for Developing Modern Software
Systems
The main properties of use cases as a requirements
artifact for developing software system are their
traceability and the ability of using them for
iterative and incremental development of the
software system.

3.6.1 Traceability
Experience has shown that the ability to trace
requirements artifact through the stages of
specification, architecture, design, implementation,
and testing is a significant factor in assuring a
quality software implementation. As mentioned in
the previous section, use cases encourage
traceability. The use case model may be traced to
the use case realization, and the use case realization
to classes (code) that implement the collaboration.
On the other hand, use cases may be traced to test
cases. However, each use case has a variety of
possible scenarios that can be tested, and that is the
first step of traceability from a use case to test cases.
Another step of this traceability is trace from
scenarios to test cases. Also, in an early stage of
software development system stakeholder needs are
traced to product features, and product features.
These product features are then traced either to use
cases or to supplemental requirements, which
depends on whether the requirements are functional
or nonfunctional. This traceability is shown in Fig.
1.

Fig.1: Generalized traceability model

Modern modeling tool such as RequisitePro and
DOORS enable describing traceability. For assuring
traceability, there exists traceability matrix similar
to the one shown in Table 1. The requirements

matrix may be manually created, but it is not
recommended.

Table 1: Traceability Matrix – System Features

to Use Cases

 Use
Case

1

Use
Case

 2

… Use Case

n

Feature
#1

X X

Feature
#2

 X X

… X

Feature
#m

 X X

3.6.2 Iterative and Incremental Development
Incremental development is the development of a
system in a series of versions, or increments. A
subset of functionality is selected, designed,
developed, and then implemented. Additional
increments build on this functionality until the
system is completely developed. Iterative
development is planned rework of existing
functionality. It is common practice to use the term
iterative development to represent both concepts [4].

In the early increments the use cases that contain
basic functionalities for users as well as
architecturally significant use cases are selected. At
the end of each increment each of these selected use
cases is modified according to the lessons learned in
the increment. However, use cases then become
primary planning mechanism for iterative
development.

4 Conclusion
This article is an attempt to show that traditional
techniques of gathering the requirements are not
acceptable to users. They cannot verify whether the
specified requirements meet their needs. On the
other hand, the gathering and specifying
requirements is the key phase in the development of
software systems and many projects were
unsuccessful because there were omissions in this
phase. There is a need for a technique that would be
familiar to users on the one hand and to analysts,

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 479

designers, implementers and testers on the other.
However, this technique must provide requirements
traceability. In addition to that, it must provide
iterative and incremental development because the
waterfall approach is not appropriate for the
development of modern software systems, and most
world-famous methodologists abandoned this
method. The solution of this problem is use cases.
The strength of this technique is their formal and
informal format. It gives a possibility to use one of
the well-known world’s methodologies like a UP,
e.g. RUP, or one of the agile methods for
developing software system. Further, it gives a
possibility of creating a new methodology more or
less similar to these methodologies. The format of
the use case can be chosen according to the needs of
a project.

The weakness of the use case as a requirements
technique is that the nonfunctional requirements
cannot be presented with the use-case model.
Therefore, for presenting overall requirements of the
system, complement specifications, known as
supplementary requirements, must be delivered
together with the use-case model. However, that
should not be a problem. The strength of use cases
surpasses their weaknesses.

References:
[1] J. Arlow and I. Neustadt, UML 2 and the

Unified Process, Practical Object-Oriented
Analysis and Design, 2nd Edition, Addison
Wesley, 2005.

[2] D. Kulak and E. Guiney, Use Cases
Requirements in Context, 2nd Edition,
Addison Wesley, 2003.

[3] F. Armour and G. Miller, Advanced Use Case
Modeling, Addison Wesley, 2001.

[4] K. Bittner and I. Spence, Use Case Modeling,
Addison Wesley, 2002.

[5] D. Leffingwell and D. Widrig, Managing
Software Requirements: A Use Case Approach,
2nd Edition, Addison Wesley, 2003.

[6] L. Whitten, L. D. Bentley, and K. C. Dittman,
System Analysis and Design Methods, 6th
Edition, McGraw-Hill, 2004.

[7] A. Cockburn, Writing Effective Use Case,
Addison Wesley, 2001.

[8] “Rational Unified Process Documentation”,
IBM Corp, http://www-
128.ibm.com/developerworks/rational/

[9] J. Rumbaugh, I. Jacobson, and G. Booch,
Unified Modeling Language Reference Manual,
Addison Wesley, Reading – MA, 1999.

[10] G. Spanoudakis, A. Zisman, E. Perez-Minana,
and P.Krause, Rule-based generation of
requirements traceability relations, The Journal
of Systems and Software, No.72, 2004, pp.
105-127.

[11] S. S. Some, Supporting use case based
requirements engineering, Information and
Software Technology, No.48, 2006, pp. 43-58.

[12] M. Ratcliffe and D. Budgen, The application of
use case definitions in system design
specification, Information and Software
Technology, No.43, 2001, pp. 365-386.

[13] I. Diaz, F. Losavio, A. Matteo, and O. Pastor,
A specification pattern for use cases,
Information & Management, No. 41, 2004, pp.
961-975.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 480

http://www-128.ibm.com/developerworks/rational/
http://www-128.ibm.com/developerworks/rational/

