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Abstract: - An abstract state machine (ASM) is a mathematical model of the system’s evolving, runtime state. ASMs 
can be used to faithfully capture the abstract structure and step-wise behaviour of any discrete systems. An easy way to 
understand ASMs is to see them as defining a succession of states that may follow an initial state. We present a 
machine-executable model for an Intelligent Vehicle Control System, implemented in the specification language 
AsmL. Executable specifications are descriptions of how software components work. AsmL is capable of describing 
the evolving state of asynchronous, concurrent systems, such as agent - based systems. The mathematical background 
for the intelligent control of vehicles is represented by the stochastic automata. A stochastic automaton can perform a 
finite number of actions in a random environment. When a specific action is performed, the environment responds by 
producing an environment output that is stochastically related to the action. This response may be favourable or 
unfavourable. The proposed model is verified through simulation in SpecExplorer tool from Microsoft Research. 
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1   Introduction 
The past and present research on vehicle control 
emphasizes the importance of new methodologies in 
order to obtain stable longitudinal and lateral control.  In 
this paper, we consider stochastic learning automata as 
intelligent controller within our model for an Intelligent 
Vehicle Control System. 
Specification and design in the software process are 
inextricably mixed. Formal specifications are expressed 
in a mathematical notation with precisely defined 
vocabulary, syntax and semantics. To create executable 
specifications, we need an industrial strength language. 
One such language has been developed at Microsoft 
Research. It is called AsmL (ASM Language). AsmL is 
a software specification language based on abstract state 
machines, a mathematical model of the system’s 
evolving, runtime state. AsmL specifications may be run 
as a program, for instance, to simulate how a particular 
system will behave or to check the behavior of an 
implementation against its specification. 
The meaning of these executable specifications comes in 
the form of an abstract state machine (ASM), a 
mathematical model of the discrete system’s evolving, 
runtime state 
 
 
2   Gurevich Abstract State Machines 
Gurevich abstract state machines, formerly known as 
evolving algebras or ealgebras, were introduced in [6]. 
We present here a self-contained introduction to ASMs. 
 

2.1 States 
The notion of ASM state is a variation of the notion of 
(first-order) structure in mathematical logic. 
A vocabulary is a collection of function symbols and 
relation symbols (or predicates) each with a fixed arity. 
Symbols split into dynamic and static. Every vocabulary 
contains (static) logic symbols: nullary function names 
true, false, undef, the equality symbol, and the standard 
propositional connectives. 
A state S of a given vocabulary V is a non-empty set X 
(the superuniverse of S), together with interpretations of 
the function symbols (the basic functions of S) and the 
predicates (the basic relations of S) in V over X. 
A function (respectively relation) symbol of arity r is 
interpreted as a r-ary operation (respectively relation) 
over X. A nullary function symbol is interpreted as an 
element of X. The logic symbols are interpreted in the 
obvious way. 
Let f be a relation symbol of arity r. We require that (the 
interpretation of) f is true or false for every r-tuple of 
elements of S. If f is unary, it can be viewed as a 
universe: the set of elements a for which f(a) evaluates 
to true. 
Let f be an r-ary basic function and U0,…,Ur be 
universes. We say that f has type U1 x…x Ur → U0 in a 
given state if f(x) is in the universe U0 for every x ∈ U1 
x…x Ur, and f(x) has the value undef otherwise. 
 
2.2 Updates 
A state is viewed as a kind of memory. Dynamic 
functions are those that can change during computation. 
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A location of a state S is a pair l = (f, (x1,…, xj)) where f 
is a j-ary dynamic function (or relation) symbol in the 
vocabulary of S and (x1,…, xj) is a j-tuple of elements of 
S. The element y = f(x1,…,xj) is the content of that 
location. 
An update of state S is a pair (l, y'), where l is a location 
(f, (x1,…, xj)) of S and y' is an element of S; of course y' is 
true or false if f is a predicate. To fire the update (l, y'), 
replace the old value y = f(x1,…, xj) at location l with the 
new value y' so that f(x1,…, xj) = y' in the new state.  
A set Upd = {(l1, y'1), ..., (ln, y'n)} of updates is consistent 
if the locations are distinct. In other words, Upd is 
inconsistent if there are i, j such that li = lj but y'i is 
distinct from y'j. (Example: set-valued variables can be 
updated partially by inserting and removing individual 
set members; several such updates are non-conflicting 
partial updates if the set of updates is consistent, i.e. 
don't both insert and remove the same element). 
 
2.3 Transition Rules 
Expressions are defined inductively. If f is a j-ary 
function symbol and e1,...,ej are expressions then 
f(e1,...,ej) is an expression. (The base of induction is 
obtained when j = 0.) If f is a predicate then the 
expression is Boolean. 
An update rule R has the form: 

f(e1,..., ej) := e0  
where f is a j-ary dynamic function symbol and each ei is 
an expression. (If f is a predicate then e0 should be a 
Boolean expression). To execute R, fire the update (l, a0) 
where l = (f, (a1,..., aj)) and each ai is the value of ei. 
A conditional rule R has the form: 

if e then R1 else R2 
where e is a Boolean expression and R1, R2 are rules. To 
execute R, evaluate the guard e. If e is true, then execute 
R1; otherwise execute R2. 
A do-in-parallel rule R has the form: 

do in-parallel 
R1 
R2 

where R1, R2 are rules. To execute R, execute rules R1, R2 
simultaneously. 
A do-forall rule R has the form: 

forall x ∈ set_expr 
R1(x) 

where set_expr is a set expression, R1(x) is a rule and x 
does not occur freely in the expression set_expr. To 
execute R, execute all subrules R1(x) with x in set_expr 
at once. 
A choose rule R has the form: 

choose x ∈ set_expr 
R1(x) 

where R1(x) is a rule and x does not occur freely in the 
set expression set_expr. To execute R, choose any 
element x of set_expr and execute the subrule R1(x). 

The behaviour of a machine (its run) can always be 
depicted as a sequence of states linked by state 
transitions. The run starts form initial state and can be 
seen as what happens when the control logic is applied 
to each state in turn: 

S1 ⇒ S2 ⇒ S3 ⇒ … 
 The machine’s control logic behaves like a fix set of 
transition rules that say how state may evolve. 
 
 
3   Stochastic learning automata 
An automaton is a machine or control mechanism 
designed to automatically follow a predetermined 
sequence of operations or respond to encoded 
instructions. The term stochastic emphasizes the 
adaptive nature of the automaton we describe here. The 
automaton described here do not follow predetermined 
rules, but adapts to changes in its environment. This 
adaptation is the result of the learning process. Learning 
is defined as any permanent change in behavior as a 
result of past experience, and a learning system should 
therefore have the ability to improve its behavior with 
time, toward a final goal. 
The stochastic automaton attempts a solution of the 
problem without any information on the optimal action 
(initially, equal probabilities are attached to all the 
actions). One action is selected at random, the response 
from the environment is observed, action probabilities 
are updated based on that response, and the procedure is 
repeated. A stochastic automaton acting as described to 
improve its performance is called a learning automaton. 
Mathematically, the environment is defined by a triple 

},,{ βα c  where },...,,{ 21 rαααα =  represents a finite 
set of actions being the input to the environment, 

},{ 21 βββ =  represents a binary response set, and 
},...,,{ 21 rcccc =  is a set of penalty probabilities, where 

ic  is the probability that action iα  will result in an 
unfavourable response. Given that 0)( =nβ  is a 
favourable outcome and 1)( =nβ  is an unfavourable 
outcome at time instant ...),2,1,0( =nn , the element ic  
of c  is defined mathematically by: 

rinnPc ii ...,,2,1))(|1)(( ==== ααβ  
The response values are either 0 or 1.  
A learning automaton generates a sequence of actions on 
the basis of its interaction with the environment. If the 
automaton is “learning” in the process, its performance 
must be superior to “intuitive” methods. 
An automaton is absolutely expedient if the expected 
value of the average penalty at one iteration step is less 
than it was at the previous step for all steps. 
The algorithm that guarantees the desired learning 
process is called a reinforcement scheme [7]. The 
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reinforcement scheme is the basis of the learning process 
for learning automata. The general solution for 
absolutely expedient schemes was found by 
Lakshmivarahan and Thathachar [5].  
In order to describe the reinforcement schemes, is 
defined )(np , a vector of action probabilities:  

rinPnp ii ,1),)(()( === αα  
Updating action probabilities can be represented as 
follows:  

)](),(),([)1( nnnpTnp βα=+  
where T is a mapping. This formula says the next action 
probability )1( +np  is updated based on the current 
probability )(np , the input from the environment and the 
resulting action. If )1( +np  is a linear function of )(np , 
the reinforcement scheme is said to be linear; otherwise 
it is termed nonlinear.  
We define a single environment response that is a 
function f . Our proposed reinforcement scheme is: 
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This new reinforcement scheme presented in this paper 
satisfies all necessary and sufficient conditions for 
absolute expediency in a stationary environment [8]. 
 
 
4   Using stochastic learning automata for   
     Intelligent Vehicle Control 
In this section, we present a method for intelligent 
vehicle control, having as theoretical background 
Stochastic Learning Automata. The aim here is to design 
an automata system that can learn the best possible 
action based on the data received from on-board sensors, 
of from roadside-to-vehicle communications. For our 
model, we assume that an intelligent vehicle is capable 
of two sets of lateral and longitudinal actions. Lateral 
actions are LEFT (shift to left lane), RIGHT (shift to 
right lane) and LINE_OK (stay in current lane). 
Longitudinal actions are ACC (accelerate), DEC 
(decelerate) and SPEED_OK (keep current speed). An 

autonomous vehicle must be able to “sense” the 
environment around itself. Therefore, we assume that 
there are four different sensors modules on board the 
vehicle (the headway module, two side modules and a 
speed module), in order to detect the presence of a 
vehicle traveling in front of the vehicle or in the 
immediately adjacent lane and to know the current speed 
of the vehicle. These sensor modules evaluate the 
information received from the on-board sensors or from 
the highway infrastructure in the light of the current 
automata actions, and send a response to the automata.  
The response from physical environment is a 
combination of outputs from the sensor modules. 
Because an input parameter for the decision blocks is the 
action chosen by the stochastic automaton, is necessary 
to use two distinct functions for mapping the outputs of 
decision blocks in inputs for the two learning automata, 
namely the longitudinal automaton and respectively the 
lateral automaton.   
After updating the action probability vectors in both 
learning automata, using the nonlinear reinforcement      
scheme presented in section 3, the outputs from 
stochastic automata are transmitted to the regulation 
layer.  The regulation layer handles the actions received 
from the two automata in a distinct manner, using for 
each of them a regulation buffer. If an action received 
was rewarded, it will be introduced in the regulation 
buffer of the corresponding automaton, else in buffer 
will be introduced a certain value which denotes a 
penalized action by the physical environment. The 
regulation layer does not carry out the action chosen 
immediately; instead, it carries out an action only if it is 
recommended k  times consecutively by the automaton, 
where k  is the length of the regulation buffer. After an 
action is executed, the action probability vector is 

initialized to
r
1

, where r  is the number of actions. When 

an action is executed, regulation buffer is initialized also. 
 
 
5   Sensor modules 
The four teacher modules mentioned above are decision 
blocks that calculate the response (reward/penalty), 
based on the last chosen action of automaton. Table 1 
describes the output of decision blocks for side sensors. 
As seen in table 1, a penalty response is received from 
the left sensor module when the action is LEFT and 
there is a vehicle in the left or the vehicle is already 
traveling on the leftmost lane. There is a similar situation 
for the right sensor module. 
The Headway (Frontal) Module is defined as showed in 
table 2. If there is a vehicle at a close distance (< 
admissible distance), a penalty response is sent to the 
automaton for actions LINE_OK, SPEED_OK and 
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ACC. All other actions (LEFT, RIGHT, DEC) are 
encouraged, because they may serve to avoid a collision. 

 Left/Right Sensor Module  

Actions 
Vehicle in 

sensor range or 
no adjacent lane 

No vehicle in 
sensor range and 

adjacent lane 
exists 

LINE_OK 0/0 0/0 
LEFT 1/0 0/0 

RIGHT 0/1 0/0 
Table 1 Outputs from the Left/Right Sensor Module 
 Headway Sensor Module  

Actions 
Vehicle in range 

(at a close 
frontal distance) 

No vehicle in 
range  

LINE_OK 1 0 
LEFT 0 0 

RIGHT 0 0 
SPEED_OK 1 0 

ACC 1 0 
DEC 0* 0 
Table 2 Outputs from the Headway Module 

The Speed Module compares the actual speed with the 
desired speed, and based on the action chosen send a 
feedback to the longitudinal automaton.  
The reward response indicated by 0* (from the Headway 
Sensor Module) is different than the normal reward 
response, indicated by 0: this reward response has a 
higher priority and must override a possible penalty from 
other modules. 

 Speed Sensor Module  

Actions Speed: 
too slow 

Acceptable 
speed 

Speed: 
too fast 

SPEED_OK 1 0 1 
ACC 0 0 1 
DEC 1 0 0 

Table 3 Outputs from the Speed Module 
 
 
6   An AsmL model for Intelligent Vehicle  
     Control 
In this section is described an AsmL program-model for 
Intelligent Vehicle Control. In figure 1 is showed the 
class diagram of our AsmL model. 
From this model are given detailed descriptions of the 
sensor modules and their outputs, definitions of 
functions for mapping the outputs of decision blocks in 
inputs for the two learning automata, namely the 
longitudinal automaton and respectively the lateral 
automaton, the learning process which are using the 
reinforcement scheme from section 3 and the selection of 
the action to be executed, according to the policy 

imposed through the regulation buffers. 

 
Fig. 1 The class diagram of the AsmL model 

For the longitudinal automaton, the environment 
response has the following form: 
function reward(action as Integer) as Double 
  var combine as Integer 
  step 
     combine :=  (max x | x in  
     {speedModule(action),frontModule(action)}) 
  step 
     if (combine = 2) combine := 0 
  step 
     return combine as Double 
The speed module and the headway (frontal) module are 
specified as follows: 
function frontModule(action as Integer) as Integer 
        match action 
            SPEED_OK: 
                return auto.frontSensor() 
            ACC: 
                return auto.frontSensor() 
            DEC: 
                if (auto.frontSensor()=1) 
                    return 2 
                else 
                    return 0 
            _: 
                return 0 
function speedModule(action as Integer) as Integer 
         match action 
             SPEED_OK: 
                 if (auto.speedSensor() <> 0) 
                     return 1 
                 else 
                     return 0 
             DEC: 
                 if (auto.speedSensor() = -1) 
                     return 1 
                 else 
                     return 0 
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             ACC: 
                 if (auto.speedSensor() = 1) 
                     return 1 
                 else 
                     return 0 
             _: 
                return 0 
The frontSensor() method of the class Automobile are 
using the highway infrastructure in order to obtain the 
current position of headway vehicle, and return 1 
(penalty) if there is such a vehicle at a lower distance 
than the minimum admissible distance, respectively 0 
(reward) in other case. 
function frontSensor() as Integer 
    if (h.inFront(me)) 
        return 1 
    else 
        return 0 
where h is the Highway object which are supervising the 
traffic. The inFront() method of class Highway must 
detect if there is an vehicle in front of the driven vehicle, 
at a distance lower than the minimum admissible 
distance: 
function inFront(auto as Automobile) as Boolean 
        if exists a in cars where  
           (a.getLane() = auto.getLane()) 
           and (a.getX() - auto.getX() < front_dist) 
           and (a.getX() - auto.getX() > 0.0) 
               return true 
        else 
               return false 
where cars represents the set of all vehicles which are 
running on the highway.  
The learning process of the longitudinal automaton is 
described by the following method: 
procedure learning() 
        var i as Integer = 0 
        var f as Double = 0.0 
        var h as Double = 0.0 
        var doIt as Boolean = false 
        // choose an action 
        step 
            i := getAction() 
        // compute environment response 
        step 
            f := reward(i) 
        step for k = 1 to HISTORY-1 
            regulation_layer(k-1):=regulation_layer(k) 
        step  
            if (f = 0) 
                regulation_layer(HISTORY-1) := i 
            else 
                // ignore the action 
                regulation_layer(HISTORY-1) := -1 
            doIt:=true 

        step for k = 0 to HISTORY - 1 
            if (regulation_layer(k)<>i) 
                doIt:=false 
        step 
            if (doIt) 
                init() 
                match i 
                    ACC: 
                        auto.setCurrentSpeed( 
                        auto.getCurrentSpeed()+delta) 
                    DEC: 
                        if (auto.getCurrentSpeed() > delta) 
                              auto.setCurrentSpeed( 
                              auto.getCurrentSpeed()-delta) 
        step 
            h := H(i) 
        // update action probabilities 
        // according to the our reinforcement scheme 
        step        
            p(i):=p(i)+f*(-t*h)*(1.0-p(i))- 
                     (1.0-f)*(-t)*(1.0-p(i)) 
        step for j=0 to ACTIONS-1 
            if (j <> i) 
                p(j):=p(j)-f*(-t*h)*p(j)+(1.0-f)*(-t)*p(j) 
The function H of the nonlinear reinforcement scheme is 
specified as follows:  
function H(i as Integer) as Double 
    var h as Double = 0.0 
    step 
            h := p(i)/(t*(1.0-p(i)))-eps 
    step for j=0 to ACTIONS-1 
            if (j <> i) 
                h := (min x | x in {h, (1.0-p(j))/(t*p(j))-eps }) 
    step 
            h := (max x | x in {h, 0.0}) 
    step 
            h := (min x | x in {h, 1.0}) 
    step 
            return h 
 
 
7   Simulation using scenarios 
Spec Explorer is a software development tool for model-
based specification and testing.  Spec Explorer can help 
software development teams detect errors in the design, 
specification and implementation of their systems.  
The core idea behind Spec Explorer is to encode a 
system's intended behavior (its specification) in 
machine-executable form (as an AsmL "model 
program") which  capture the relevant states of the 
system and show the constraints that a correct 
implementation must follow. The goal is to specify from 
a chosen viewpoint what the system must do, what it 
may do and what it must not do. 
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Also, Spec Explorer is used to explore the possible runs 
of the specification-program to validate designs, in other 
words, to see that no incorrect scenarios arise as a 
consequence of the design and that required scenarios 
are possible. 
Discrepancies between actual and expected results are 
called conformance failures and may indicate any of the 
following: implementation bug, modeling error, 
specification error or design error. 
The output of the exploration feature consists of possible 
runs of the model program that it discovers. Spec 
Explorer represents this data as a finite-state machine 
(FSM). The nodes of the FSM are the states of the model 
program before and after the invocation of a top-level 
method (an action). Actions are the top-level methods 
that cause transition of the system from one state to 
another. Scenario actions represent sequences of 
subactions given programmatically. In the typical case, 
we use a scenario action to drive the system into a 
desired initial state. 
In our model, there is a scenario action Main(): 
[Action(Kind=ActionAttributeKind.Scenario)] 
Main() 
  require init = false 
  step 
      h := new Highway()  
  step 
      a1 := new Automobile(“auto1”, 0, 95, 100, h) 
      a2 := new Automobile(“auto2”, 0, 110, 80, h) 
      // …       
step 
      // partial update 
      h.addCar(a1) 
      h.addCar(a2) 
      // … 
  step 
      init := true 
The object Highway represents the highway 
infrastructure, namely the localization system of the 
vehicles. After objects instantiations, the AsmL model is 
simulated in SpecExplorer through the execution of the 
Run() action, within all vehicles included in the scenario 
are driving in parallel, in an intelligent fashion. 
[Action] 
procedure Run() 
    require init = true  
    step forall a in h.cars 
            a.Driving() 
Using SpecExplorer, we can detect error states (having 
the red color in the FSM generated by the exploration 
algorithm), and then, using the information provided by 
the SpecExplorer related to the error discovered, we can 
correct our model or design.  
By example, an error can occur from a precondition 
violation (in method setLane()). 

 
Fig. 2 An error state in SpecExplorer 

procedure setLane(lane as Integer) 
    step 
        me.lane := lane 
        me.y := lane * Highway.laneWidth +  
                Highway.laneWidth/2 
    step 
        require not (exists a in h.cars  
        where lane = a.getLane()  
        and (a.getX()-me.getX()) <   
        h.front_dist and 
        (a.getX()-me.getX()) >  
        -h.front_dist) 
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