
An AsmL model for an Intelligent Vehicle Control System

FLORIN STOICA
Computer Science Department

University “Lucian Blaga” Sibiu
Str. Dr. Ion Ratiu 5-7, 550012, Sibiu

ROMANIA

Abstract: - An abstract state machine (ASM) is a mathematical model of the system’s evolving, runtime state. ASMs
can be used to faithfully capture the abstract structure and step-wise behaviour of any discrete systems. An easy way to
understand ASMs is to see them as defining a succession of states that may follow an initial state. We present a
machine-executable model for an Intelligent Vehicle Control System, implemented in the specification language
AsmL. Executable specifications are descriptions of how software components work. AsmL is capable of describing
the evolving state of asynchronous, concurrent systems, such as agent - based systems. The mathematical background
for the intelligent control of vehicles is represented by the stochastic automata. A stochastic automaton can perform a
finite number of actions in a random environment. When a specific action is performed, the environment responds by
producing an environment output that is stochastically related to the action. This response may be favourable or
unfavourable. The proposed model is verified through simulation in SpecExplorer tool from Microsoft Research.

Key-Words: - Stochastic Learning Automata, Reinforcement Learning, ASMs, systems modeling

1 Introduction
The past and present research on vehicle control
emphasizes the importance of new methodologies in
order to obtain stable longitudinal and lateral control. In
this paper, we consider stochastic learning automata as
intelligent controller within our model for an Intelligent
Vehicle Control System.
Specification and design in the software process are
inextricably mixed. Formal specifications are expressed
in a mathematical notation with precisely defined
vocabulary, syntax and semantics. To create executable
specifications, we need an industrial strength language.
One such language has been developed at Microsoft
Research. It is called AsmL (ASM Language). AsmL is
a software specification language based on abstract state
machines, a mathematical model of the system’s
evolving, runtime state. AsmL specifications may be run
as a program, for instance, to simulate how a particular
system will behave or to check the behavior of an
implementation against its specification.
The meaning of these executable specifications comes in
the form of an abstract state machine (ASM), a
mathematical model of the discrete system’s evolving,
runtime state

2 Gurevich Abstract State Machines
Gurevich abstract state machines, formerly known as
evolving algebras or ealgebras, were introduced in [6].
We present here a self-contained introduction to ASMs.

2.1 States
The notion of ASM state is a variation of the notion of
(first-order) structure in mathematical logic.
A vocabulary is a collection of function symbols and
relation symbols (or predicates) each with a fixed arity.
Symbols split into dynamic and static. Every vocabulary
contains (static) logic symbols: nullary function names
true, false, undef, the equality symbol, and the standard
propositional connectives.
A state S of a given vocabulary V is a non-empty set X
(the superuniverse of S), together with interpretations of
the function symbols (the basic functions of S) and the
predicates (the basic relations of S) in V over X.
A function (respectively relation) symbol of arity r is
interpreted as a r-ary operation (respectively relation)
over X. A nullary function symbol is interpreted as an
element of X. The logic symbols are interpreted in the
obvious way.
Let f be a relation symbol of arity r. We require that (the
interpretation of) f is true or false for every r-tuple of
elements of S. If f is unary, it can be viewed as a
universe: the set of elements a for which f(a) evaluates
to true.
Let f be an r-ary basic function and U0,…,Ur be
universes. We say that f has type U1 x…x Ur → U0 in a
given state if f(x) is in the universe U0 for every x ∈ U1
x…x Ur, and f(x) has the value undef otherwise.

2.2 Updates
A state is viewed as a kind of memory. Dynamic
functions are those that can change during computation.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 323

A location of a state S is a pair l = (f, (x1,…, xj)) where f
is a j-ary dynamic function (or relation) symbol in the
vocabulary of S and (x1,…, xj) is a j-tuple of elements of
S. The element y = f(x1,…,xj) is the content of that
location.
An update of state S is a pair (l, y'), where l is a location
(f, (x1,…, xj)) of S and y' is an element of S; of course y' is
true or false if f is a predicate. To fire the update (l, y'),
replace the old value y = f(x1,…, xj) at location l with the
new value y' so that f(x1,…, xj) = y' in the new state.
A set Upd = {(l1, y'1), ..., (ln, y'n)} of updates is consistent
if the locations are distinct. In other words, Upd is
inconsistent if there are i, j such that li = lj but y'i is
distinct from y'j. (Example: set-valued variables can be
updated partially by inserting and removing individual
set members; several such updates are non-conflicting
partial updates if the set of updates is consistent, i.e.
don't both insert and remove the same element).

2.3 Transition Rules
Expressions are defined inductively. If f is a j-ary
function symbol and e1,...,ej are expressions then
f(e1,...,ej) is an expression. (The base of induction is
obtained when j = 0.) If f is a predicate then the
expression is Boolean.
An update rule R has the form:

f(e1,..., ej) := e0
where f is a j-ary dynamic function symbol and each ei is
an expression. (If f is a predicate then e0 should be a
Boolean expression). To execute R, fire the update (l, a0)
where l = (f, (a1,..., aj)) and each ai is the value of ei.
A conditional rule R has the form:

if e then R1 else R2
where e is a Boolean expression and R1, R2 are rules. To
execute R, evaluate the guard e. If e is true, then execute
R1; otherwise execute R2.
A do-in-parallel rule R has the form:

do in-parallel
R1
R2

where R1, R2 are rules. To execute R, execute rules R1, R2
simultaneously.
A do-forall rule R has the form:

forall x ∈ set_expr
R1(x)

where set_expr is a set expression, R1(x) is a rule and x
does not occur freely in the expression set_expr. To
execute R, execute all subrules R1(x) with x in set_expr
at once.
A choose rule R has the form:

choose x ∈ set_expr
R1(x)

where R1(x) is a rule and x does not occur freely in the
set expression set_expr. To execute R, choose any
element x of set_expr and execute the subrule R1(x).

The behaviour of a machine (its run) can always be
depicted as a sequence of states linked by state
transitions. The run starts form initial state and can be
seen as what happens when the control logic is applied
to each state in turn:

S1 ⇒ S2 ⇒ S3 ⇒ …
 The machine’s control logic behaves like a fix set of
transition rules that say how state may evolve.

3 Stochastic learning automata
An automaton is a machine or control mechanism
designed to automatically follow a predetermined
sequence of operations or respond to encoded
instructions. The term stochastic emphasizes the
adaptive nature of the automaton we describe here. The
automaton described here do not follow predetermined
rules, but adapts to changes in its environment. This
adaptation is the result of the learning process. Learning
is defined as any permanent change in behavior as a
result of past experience, and a learning system should
therefore have the ability to improve its behavior with
time, toward a final goal.
The stochastic automaton attempts a solution of the
problem without any information on the optimal action
(initially, equal probabilities are attached to all the
actions). One action is selected at random, the response
from the environment is observed, action probabilities
are updated based on that response, and the procedure is
repeated. A stochastic automaton acting as described to
improve its performance is called a learning automaton.
Mathematically, the environment is defined by a triple

},,{ βα c where },...,,{ 21 rαααα = represents a finite
set of actions being the input to the environment,

},{ 21 βββ = represents a binary response set, and
},...,,{ 21 rcccc = is a set of penalty probabilities, where

ic is the probability that action iα will result in an
unfavourable response. Given that 0)(=nβ is a
favourable outcome and 1)(=nβ is an unfavourable
outcome at time instant ...),2,1,0(=nn , the element ic
of c is defined mathematically by:

rinnPc ii ...,,2,1))(|1)((==== ααβ
The response values are either 0 or 1.
A learning automaton generates a sequence of actions on
the basis of its interaction with the environment. If the
automaton is “learning” in the process, its performance
must be superior to “intuitive” methods.
An automaton is absolutely expedient if the expected
value of the average penalty at one iteration step is less
than it was at the previous step for all steps.
The algorithm that guarantees the desired learning
process is called a reinforcement scheme [7]. The

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 324

reinforcement scheme is the basis of the learning process
for learning automata. The general solution for
absolutely expedient schemes was found by
Lakshmivarahan and Thathachar [5].
In order to describe the reinforcement schemes, is
defined)(np , a vector of action probabilities:

rinPnp ii ,1),)(()(=== αα
Updating action probabilities can be represented as
follows:

)](),(),([)1(nnnpTnp βα=+
where T is a mapping. This formula says the next action
probability)1(+np is updated based on the current
probability)(np , the input from the environment and the
resulting action. If)1(+np is a linear function of)(np ,
the reinforcement scheme is said to be linear; otherwise
it is termed nonlinear.
We define a single environment response that is a
function f . Our proposed reinforcement scheme is:

)](1[)()1(
)](1[))(()()1(

npf
npnHfnpnp

i

iii

−∗−∗−−
−−∗∗−∗+=+

θ
θ

)()()1(

)())(()()1(

npf

npnHfnpnp

j

jjj

∗−∗−+

+∗∗−∗−=+

θ

θ

for all ij ≠ , where the learning parameter θ is a real
value which satisfy: 10 <<θ .
The function H is defined as:

{{
⎩
⎨
⎧

−
−

= ,
))(1(

)(
minmax;1min)(ε

θ np
np

nH
i

i

}}0;
)(
)(1

,1 ⎪
⎭

⎪
⎬

⎫

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∗

−

≠
=

ij
rjj

j

np
np

ε
θ

This new reinforcement scheme presented in this paper
satisfies all necessary and sufficient conditions for
absolute expediency in a stationary environment [8].

4 Using stochastic learning automata for
 Intelligent Vehicle Control
In this section, we present a method for intelligent
vehicle control, having as theoretical background
Stochastic Learning Automata. The aim here is to design
an automata system that can learn the best possible
action based on the data received from on-board sensors,
of from roadside-to-vehicle communications. For our
model, we assume that an intelligent vehicle is capable
of two sets of lateral and longitudinal actions. Lateral
actions are LEFT (shift to left lane), RIGHT (shift to
right lane) and LINE_OK (stay in current lane).
Longitudinal actions are ACC (accelerate), DEC
(decelerate) and SPEED_OK (keep current speed). An

autonomous vehicle must be able to “sense” the
environment around itself. Therefore, we assume that
there are four different sensors modules on board the
vehicle (the headway module, two side modules and a
speed module), in order to detect the presence of a
vehicle traveling in front of the vehicle or in the
immediately adjacent lane and to know the current speed
of the vehicle. These sensor modules evaluate the
information received from the on-board sensors or from
the highway infrastructure in the light of the current
automata actions, and send a response to the automata.
The response from physical environment is a
combination of outputs from the sensor modules.
Because an input parameter for the decision blocks is the
action chosen by the stochastic automaton, is necessary
to use two distinct functions for mapping the outputs of
decision blocks in inputs for the two learning automata,
namely the longitudinal automaton and respectively the
lateral automaton.
After updating the action probability vectors in both
learning automata, using the nonlinear reinforcement
scheme presented in section 3, the outputs from
stochastic automata are transmitted to the regulation
layer. The regulation layer handles the actions received
from the two automata in a distinct manner, using for
each of them a regulation buffer. If an action received
was rewarded, it will be introduced in the regulation
buffer of the corresponding automaton, else in buffer
will be introduced a certain value which denotes a
penalized action by the physical environment. The
regulation layer does not carry out the action chosen
immediately; instead, it carries out an action only if it is
recommended k times consecutively by the automaton,
where k is the length of the regulation buffer. After an
action is executed, the action probability vector is

initialized to
r
1

, where r is the number of actions. When

an action is executed, regulation buffer is initialized also.

5 Sensor modules
The four teacher modules mentioned above are decision
blocks that calculate the response (reward/penalty),
based on the last chosen action of automaton. Table 1
describes the output of decision blocks for side sensors.
As seen in table 1, a penalty response is received from
the left sensor module when the action is LEFT and
there is a vehicle in the left or the vehicle is already
traveling on the leftmost lane. There is a similar situation
for the right sensor module.
The Headway (Frontal) Module is defined as showed in
table 2. If there is a vehicle at a close distance (<
admissible distance), a penalty response is sent to the
automaton for actions LINE_OK, SPEED_OK and

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 325

ACC. All other actions (LEFT, RIGHT, DEC) are
encouraged, because they may serve to avoid a collision.

 Left/Right Sensor Module

Actions
Vehicle in

sensor range or
no adjacent lane

No vehicle in
sensor range and

adjacent lane
exists

LINE_OK 0/0 0/0
LEFT 1/0 0/0

RIGHT 0/1 0/0
Table 1 Outputs from the Left/Right Sensor Module
 Headway Sensor Module

Actions
Vehicle in range

(at a close
frontal distance)

No vehicle in
range

LINE_OK 1 0
LEFT 0 0

RIGHT 0 0
SPEED_OK 1 0

ACC 1 0
DEC 0* 0
Table 2 Outputs from the Headway Module

The Speed Module compares the actual speed with the
desired speed, and based on the action chosen send a
feedback to the longitudinal automaton.
The reward response indicated by 0* (from the Headway
Sensor Module) is different than the normal reward
response, indicated by 0: this reward response has a
higher priority and must override a possible penalty from
other modules.

 Speed Sensor Module

Actions Speed:
too slow

Acceptable
speed

Speed:
too fast

SPEED_OK 1 0 1
ACC 0 0 1
DEC 1 0 0

Table 3 Outputs from the Speed Module

6 An AsmL model for Intelligent Vehicle
 Control
In this section is described an AsmL program-model for
Intelligent Vehicle Control. In figure 1 is showed the
class diagram of our AsmL model.
From this model are given detailed descriptions of the
sensor modules and their outputs, definitions of
functions for mapping the outputs of decision blocks in
inputs for the two learning automata, namely the
longitudinal automaton and respectively the lateral
automaton, the learning process which are using the
reinforcement scheme from section 3 and the selection of
the action to be executed, according to the policy

imposed through the regulation buffers.

Fig. 1 The class diagram of the AsmL model

For the longitudinal automaton, the environment
response has the following form:
function reward(action as Integer) as Double
 var combine as Integer
 step
 combine := (max x | x in
 {speedModule(action),frontModule(action)})
 step
 if (combine = 2) combine := 0
 step
 return combine as Double
The speed module and the headway (frontal) module are
specified as follows:
function frontModule(action as Integer) as Integer
 match action
 SPEED_OK:
 return auto.frontSensor()
 ACC:
 return auto.frontSensor()
 DEC:
 if (auto.frontSensor()=1)
 return 2
 else
 return 0
 _:
 return 0
function speedModule(action as Integer) as Integer
 match action
 SPEED_OK:
 if (auto.speedSensor() <> 0)
 return 1
 else
 return 0
 DEC:
 if (auto.speedSensor() = -1)
 return 1
 else
 return 0

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 326

 ACC:
 if (auto.speedSensor() = 1)
 return 1
 else
 return 0
 _:
 return 0
The frontSensor() method of the class Automobile are
using the highway infrastructure in order to obtain the
current position of headway vehicle, and return 1
(penalty) if there is such a vehicle at a lower distance
than the minimum admissible distance, respectively 0
(reward) in other case.
function frontSensor() as Integer
 if (h.inFront(me))
 return 1
 else
 return 0
where h is the Highway object which are supervising the
traffic. The inFront() method of class Highway must
detect if there is an vehicle in front of the driven vehicle,
at a distance lower than the minimum admissible
distance:
function inFront(auto as Automobile) as Boolean
 if exists a in cars where
 (a.getLane() = auto.getLane())
 and (a.getX() - auto.getX() < front_dist)
 and (a.getX() - auto.getX() > 0.0)
 return true
 else
 return false
where cars represents the set of all vehicles which are
running on the highway.
The learning process of the longitudinal automaton is
described by the following method:
procedure learning()
 var i as Integer = 0
 var f as Double = 0.0
 var h as Double = 0.0
 var doIt as Boolean = false
 // choose an action
 step
 i := getAction()
 // compute environment response
 step
 f := reward(i)
 step for k = 1 to HISTORY-1
 regulation_layer(k-1):=regulation_layer(k)
 step
 if (f = 0)
 regulation_layer(HISTORY-1) := i
 else
 // ignore the action
 regulation_layer(HISTORY-1) := -1
 doIt:=true

 step for k = 0 to HISTORY - 1
 if (regulation_layer(k)<>i)
 doIt:=false
 step
 if (doIt)
 init()
 match i
 ACC:
 auto.setCurrentSpeed(
 auto.getCurrentSpeed()+delta)
 DEC:
 if (auto.getCurrentSpeed() > delta)
 auto.setCurrentSpeed(
 auto.getCurrentSpeed()-delta)
 step
 h := H(i)
 // update action probabilities
 // according to the our reinforcement scheme
 step
 p(i):=p(i)+f*(-t*h)*(1.0-p(i))-
 (1.0-f)*(-t)*(1.0-p(i))
 step for j=0 to ACTIONS-1
 if (j <> i)
 p(j):=p(j)-f*(-t*h)*p(j)+(1.0-f)*(-t)*p(j)
The function H of the nonlinear reinforcement scheme is
specified as follows:
function H(i as Integer) as Double
 var h as Double = 0.0
 step
 h := p(i)/(t*(1.0-p(i)))-eps
 step for j=0 to ACTIONS-1
 if (j <> i)
 h := (min x | x in {h, (1.0-p(j))/(t*p(j))-eps })
 step
 h := (max x | x in {h, 0.0})
 step
 h := (min x | x in {h, 1.0})
 step
 return h

7 Simulation using scenarios
Spec Explorer is a software development tool for model-
based specification and testing. Spec Explorer can help
software development teams detect errors in the design,
specification and implementation of their systems.
The core idea behind Spec Explorer is to encode a
system's intended behavior (its specification) in
machine-executable form (as an AsmL "model
program") which capture the relevant states of the
system and show the constraints that a correct
implementation must follow. The goal is to specify from
a chosen viewpoint what the system must do, what it
may do and what it must not do.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 327

Also, Spec Explorer is used to explore the possible runs
of the specification-program to validate designs, in other
words, to see that no incorrect scenarios arise as a
consequence of the design and that required scenarios
are possible.
Discrepancies between actual and expected results are
called conformance failures and may indicate any of the
following: implementation bug, modeling error,
specification error or design error.
The output of the exploration feature consists of possible
runs of the model program that it discovers. Spec
Explorer represents this data as a finite-state machine
(FSM). The nodes of the FSM are the states of the model
program before and after the invocation of a top-level
method (an action). Actions are the top-level methods
that cause transition of the system from one state to
another. Scenario actions represent sequences of
subactions given programmatically. In the typical case,
we use a scenario action to drive the system into a
desired initial state.
In our model, there is a scenario action Main():
[Action(Kind=ActionAttributeKind.Scenario)]
Main()
 require init = false
 step
 h := new Highway()
 step
 a1 := new Automobile(“auto1”, 0, 95, 100, h)
 a2 := new Automobile(“auto2”, 0, 110, 80, h)
 // …
step
 // partial update
 h.addCar(a1)
 h.addCar(a2)
 // …
 step
 init := true
The object Highway represents the highway
infrastructure, namely the localization system of the
vehicles. After objects instantiations, the AsmL model is
simulated in SpecExplorer through the execution of the
Run() action, within all vehicles included in the scenario
are driving in parallel, in an intelligent fashion.
[Action]
procedure Run()
 require init = true
 step forall a in h.cars
 a.Driving()
Using SpecExplorer, we can detect error states (having
the red color in the FSM generated by the exploration
algorithm), and then, using the information provided by
the SpecExplorer related to the error discovered, we can
correct our model or design.
By example, an error can occur from a precondition
violation (in method setLane()).

Fig. 2 An error state in SpecExplorer

procedure setLane(lane as Integer)
 step
 me.lane := lane
 me.y := lane * Highway.laneWidth +
 Highway.laneWidth/2
 step
 require not (exists a in h.cars
 where lane = a.getLane()
 and (a.getX()-me.getX()) <
 h.front_dist and
 (a.getX()-me.getX()) >
 -h.front_dist)

References:
[1] A. Barto, S. Mahadevan, Recent advances in
hierarchical reinforcement learning, Discrete-Event
Systems journal, Special issue on Reinforcement
Learning, 2003.
[2] R. Sutton, A. Barto, Reinforcement learning: An
introduction, MIT-press, Cambridge, MA, 1998.
[3] O. Buffet, A. Dutech, and F. Charpillet. Incremental
reinforcement learning for designing multi-agent
systems, In J. P. Müller, E. Andre, S. Sen, and C.
Frasson, editors, Proceedings of the Fifth International
Conference onAutonomous Agents, pp. 31–32,Montreal,
Canada, 2001. ACM Press.
[4] J. Moody, Y. Liu, M. Saffell, and K. Youn.
Stochastic direct reinforcement: Application to simple
games with recurrence, In Proceedings of Artificial
Multiagent Learning. Papers from the 2004 AAAI Fall
Symposium,Technical Report FS-04-02, 2004.
[5] S. Lakshmivarahan, M.A.L. Thathachar, Absolutely
Expedient Learning Algorithms for Stochastic
Automata, IEEE Transactions on Systems, Man and
Cybernetics, vol. SMC-6, pp. 281-286, 1973
[6] Gurevich Y., Evolving Algebras 1993: Lipari Guide,
Specification and Validation Methods, ed. E. Börger,
Oxford University Press, 1995, pg. 9-36.
 [7] Cem Ünsal, Pushkin Kachroo, John S. Bay,
Multiple Stochastic Learning Automata for Vehicle Path
Control in an Automated Highway System, IEEE
Transactions on Systems, Man, and Cybernetics -part A:
systems and humans, vol. 29, no. 1, january 1999
[8] Florin Stoica, Emil M. Popa, An Absolutely
Expedient Learning Algorithm for Stochastic Automata,
WSEAS Transactions on Computers, Issue 2, Volume 6,
February 2007, ISSN 1109-2750, pp. 229-235

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 328

