
Application of Stochastic Learning Automata to Intelligent Vehicle Control

FLORIN STOICA, EMIL M. POPA
Computer Science Department

University “Lucian Blaga” Sibiu
Str. Dr. Ion Ratiu 5-7, 550012, Sibiu

ROMANIA

Abstract: - A stochastic automaton can perform a finite number of actions in a random environment. When a specific
action is performed, the environment responds by producing an environment output that is stochastically related to the
action. This response may be favourable or unfavourable. The aim is to design an automaton that can determine the
best action guided by past actions and responses. Using Stochastic Learning Automata techniques, we introduce a
decision/control method for intelligent vehicles, in an infrastructure managed architecture. The aim is to design an
automata system that can learn the best possible action based on the data received from on-board sensors or from the
localization system of highway infrastructure.

Key-Words: - Stochastic Learning Automata, Reinforcement Learning, Intelligent Vehicle Control

1 Introduction
An automaton is a machine or control mechanism
designed to automatically follow a predetermined
sequence of operations or respond to encoded
instructions. The term stochastic emphasizes the
adaptive nature of the automaton we describe here. The
automaton described here does not follow predetermined
rules, but adapts to changes in its environment. This
adaptation is the result of the learning process. Learning
is defined as any permanent change in behavior as a
result of past experience, and a learning system should
therefore have the ability to improve its behavior with
time, toward a final goal.
The stochastic automaton attempts a solution of the
problem without any information on the optimal action
(initially, equal probabilities are attached to all the
actions). One action is selected at random, the response
from the environment is observed, action probabilities
are updated based on that response, and the procedure is
repeated. A stochastic automaton acting as described to
improve its performance is called a learning automaton.
The algorithm that guarantees the desired learning
process is called a reinforcement scheme [5].
Mathematically, the environment is defined by a triple

},,{ βα c where },...,,{ 21 rαααα = represents a finite
set of actions being the input to the environment,

},{ 21 βββ = represents a binary response set, and
},...,,{ 21 rcccc = is a set of penalty probabilities, where

ic is the probability that action iα will result in an
unfavourable response. Given that 0)(=nβ is a
favourable outcome and 1)(=nβ is an unfavourable
outcome at time instant ...),2,1,0(=nn , the element ic

of c is defined mathematically by:
rinnPc ii ...,,2,1))(|1)((==== ααβ

The response values can be represented in three different
models. In the P-model (described above), the response
values are either 0 or 1, in the S-model the response
values is continuous in the range (0, 1) and in the Q-
model the values is in a finite set of discrete values in the
range (0, 1).
The environment can further be split up in two types,
stationary and nonstationary. In a stationary environment
the penalty probabilities will never change. In a
nonstationary environment the penalties will change
over time.

2 Formal definition of a Stochastic
 Learning Automaton
The automaton is defined by a quintuple

)},(),,(,,,{ ••••Φ HFβα .
},...,,{ 21 sΦΦΦ=Φ is the set of internal states of the

automaton. The internal states determine the action to be
produced by the automaton. The state at time instant n
is denoted by)(nΦ and is an element of the finite set
Φ .

}...,,{ ,21 rαααα = denotes the set of actions that can be
produced by the automaton. This is the output set of the
automaton, hence also being the input set to the
environment. The action done at time instant n is
denoted)(nα and is an element of the finite set α .

},...,,{ 21 mββββ = or)},{(ba=β is the input set to the
automaton, that is the set of responses from the

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 241

environment. This set can be either finite or infinite.
)(nβ denotes the input to the automaton at time instant

n .
),(••F is a function that maps the current state and the

response from the environment into the next state, given
mathematically by Φ→×Φ•• β:),(F . This formula is
called the transition function. A similar expression is
showed by the formula)](),([)1(nnFn βΦ=+Φ .
The transition function can be either deterministic or
stochastic. If the function is deterministic the result of
the function is uniquely specified for each state.
If the transition function F is stochastic, the elements

β
ijf of F represent the probability that the automaton

moves from state iΦ to state jΦ given the input β :

))(,)(|)1((βββ =Φ=ΦΦ=+Φ= nnnPf ijij

sji ...,,2,1, = and },...,,{ 21 mββββ ∈
),(••H is the output function and is defined

mathematically by αβ →×Φ•• :),(H . This function
maps the current state and the response from the
environment into the action produced by the automaton.
If the current output depends on only the current state,
the automaton is referred to as state-output automaton.
In this case the function),(••H is replaced by an output
function α→Φ• :)(G which can be either deterministic
or stochastic:)]([)(nGn Φ=α .
If G is stochastic, the elements of this set are denoted

ijg . The value of this element represents the probability
that the action done by the automaton is jα given the
automaton is in state iΦ :

rjsinnPg ijij ,1,1))(|)((==Φ=Φ== αα
In short the automaton takes an input from the
environment and produces an action based on this. The
automaton is showed in figure 1:

Fig. 1 A stochastic automaton

An automaton is called to be fixed structured when the
functions ijf and ijg are having values that do not
change over time. By making them change over time,

one can get a greater flexibility where actions rewarded
will get a higher chance of being chosen again. Such an
automaton is called variable-structure automaton.
Furthermore, in the case of variable-structure automaton,
the above definitions of the transition functions F and
G are not used explicitly. In order to describe the
reinforcement schemes, is defined)(np , a vector of

action probabilities: rinPnp ii ,1),)(()(=== αα
Updating action probabilities can be represented as
follows:

)](),(),([)1(nnnpTnp βα=+
where T is a mapping. This formula says the next action
probability)1(+np is updated based on the current
probability)(np , the input from the environment and
the resulting action. If)1(+np is a linear function of

)(np , the reinforcement scheme is said to be linear;
otherwise it is termed nonlinear.

3 Variable Structure Automaton

3.1 Performance Evaluation
A learning automaton generates a sequence of actions on
the basis of its interaction with the environment. If the
automaton is “learning” in the process, its performance
must be superior to “intuitive” methods. In the following
we will consider the simplest case, the P-model and
stationary random environments.
Consider a stationary random environment with penalty
probabilities

},...,,{ 21 rccc where))(|1)((ii nnPc ααβ === .
We define a quantity)(nM as the average penalty for a
given action probability vector:

∑∑
==

==∗==

===
r

i
ii

r

i
ii npcnPnnP

npnPnM

11

)())(())(|1)((

))(|1)(()(

ααααβ

β

An automaton is absolutely expedient if the expected
value of the average penalty at one iteration step is less
than it was at the previous step for all steps:

)()1(nMnM <+ for all n [8].
Absolutely expedient learning schemes are presently the
only class of schemes for which necessary and sufficient
conditions of design are available. The algorithm we will
present in this paper is derived from a nonlinear
absolutely expedient reinforcement scheme presented by
[7].

3.2 Absolutely expedient reinforcement schemes
The reinforcement scheme is the basis of the learning

Transition function Φ→×Φ β:F
 Automaton
 },...,,{ 21 sΦΦΦ=Φ

 Output
},...,,{ 21 rαααα =

Output function α→Φ:G

Environment

 Penalty probabilities
 },...,,{ 21 rcccc =

 Input
},...,,{ 21 mββββ =

or)},{(ba=β

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 242

process for learning automata. The general solution for
absolutely expedient schemes was found by
Lakshmivarahan and Thathachar [10].
A learning automaton may send its action to multiple
environments at the same time. In that case, the action of
the automaton results in a vector of responses from
environments (or “teachers”). In a stationary N-teacher
P-model environment, if an automaton produced the
action iα and the environment responses are

Njj
i ,...,1=β at time instant n , then the vector of

action probabilities)(np is updated as follows [7]:

∑∑
≠
==

−∗⎥
⎦

⎤
⎢
⎣

⎡
+=+

r

ij
j

j

N

k

k
iii np

N
npnp

11

))((1)()1(φβ

∑∑
≠
==

∗⎥
⎦

⎤
⎢
⎣

⎡
−−

r

ij
j

j

N

k

k
i np

N 11

))((11 ψβ

))((11

))((1)()1(

1

1

np
N

np
N

npnp

j

N

k

k
i

j

N

k

k
ijj

ψβ

φβ

∗⎥
⎦

⎤
⎢
⎣

⎡
−+

+∗⎥
⎦

⎤
⎢
⎣

⎡
−=+

∑

∑

=

=

for all ij ≠ where the functions iφ and iψ satisfy the
following conditions:

))((
)(
))((

...
)(
))((

1

1 np
np
np

np
np

r

r λ
φφ

=== (2)

))((
)(
))((

...
)(
))((

1

1 np
np
np

np
np

r

r µ
ψψ

===

∑
≠
=

>+
r

ij
j

ji npnp
1

0))(()(φ (3)

∑
≠
=

<−
r

ij
j

ji npnp
1

1))(()(ψ (4)

0))(()(>+ npnp jj ψ (5)
1))(()(<− npnp jj φ (6)

for all }{\},...,1{ irj∈
The conditions (3)-(6) ensure that rkpk ,1,10 =<< .

Theorem If the functions))((npλ and))((npµ satisfy
the following conditions:

0))((≤npλ
0))((≤npµ (7)

0))(())((<+ npnp µλ
then the automaton with the reinforcement scheme in (1)
is absolutely expedient in a stationary environment.
The proof of this theorem can be found in [9].

4 A new nonlinear reinforcement
 scheme
Because the above theorem is also valid for a single-
teacher model, we can define a single environment
response that is a function f of many teacher outputs.
Thus, we can update the above algorithm as
follows:

)](1[)()1(
)](1[))(()()1(

npf
npnHfnpnp

i

iii

−∗−∗−−
−−∗∗−∗+=+

θ
θ

)()()1(

)())(()()1(

npf

npnHfnpnp

j

jjj

∗−∗−+

+∗∗−∗−=+

θ

θ
 (8)

for all ij ≠ , i.e.:
)())((npnp kk ∗−= θψ

)()())((npnHnp kk ∗∗−= θφ
where the learning parameter θ is a real value which
satisfy: 10 <<θ .
The function H is defined as:

{{
⎩
⎨
⎧

−
−

= ,
))(1(

)(
minmax;1min)(ε

θ np
np

nH
i

i

 }}0;
)(
)(1

,1 ⎪
⎭

⎪
⎬

⎫

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∗

−

≠
=

ij
rjj

j

np
np

ε
θ

Parameter ε is an arbitrarily small positive real number.
Our reinforcement scheme differs from the one given in
[6], [7] by the definition of these two functions: H and

kφ .
We now show that are satisfied all the conditions of the
reinforcement scheme.
From (2) we have:

))(()(
)(

)()(
)(
))((

npnH
np

npnH
np
np

k

k

k

k λθ
θφ

=∗−=
∗∗−

=

))((
)(

)(
)(
))((

np
np

np
np
np

k

k

k

k µθ
θψ

=−=
∗−

=

The rest of the conditions translate to the following:
Condition (3):

))(1(
)(

)()())(1()(

0))(1()()(

0))(()(
1

np
np

nHnpnpnH

npnHnp

npnp

i

i
ii

ii

r

ij
j

ji

−∗
<⇔<−∗∗

⇔>−∗∗−

⇔>+∑
≠
=

θ
θ

θ

φ

This condition is satisfied by the definition of the
function)(nH .
Condition (4):

1))(1()(1))(()(
1

<−∗+⇔<−∑
≠
=

npnpnpnp ii

r

ij
j

ji θψ

(1)

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 243

But 1)(1)())(1()(=−+<−∗+ npnpnpnp iiii θ since
10 <<θ

Condition (5):
0)()(0))(()(>∗−⇔>+ npnpnpnp jjjj θψ for all

}{\},...,1{ irj∈
But 0)1()()()(>−∗=∗− θθ npnpnp jjj since

10 <<θ and 1)(0 << np j for all }{\},...,1{ irj∈
Condition (6):

1)()()(1))(()(<∗∗+⇔<− npnHnpnpnp jjjj θφ for
all }{\},...,1{ irj∈
We have:

)(
)(1

)(1)()()(
np
np

nHnpnHnp
j

j
jj ∗

−
<⇔<∗∗+
θ

θ for

all }{\},...,1{ irj∈ .
This condition is satisfied by the definition of the
function)(nH .
With all conditions of the equations (1) satisfied, we
conclude that the reinforcement scheme is a candidate
for absolute expediency.
Furthermore, the functions λ and µ for our nonlinear
scheme satisfy the following:

0)())((≤∗−= nHnp θλ
0))((≤−= θµ np

0))(1())(())((<+∗−=+ nHnpnp θµλ
because 10 <<θ and 1)(0 ≤≤ nH
In conclusion, we state the algorithm given in equations
(8) is absolutely expedient in a stationary environment.

5 The model
The task of creating intelligent systems that we can rely
on is not trivial. In this section, we present a method for
intelligent vehicle control, having as theoretical
background Stochastic Learning Automata. We visualize
the planning layer of an intelligent vehicle as an
automaton (or automata group) in a nonstationary
environment. We attempt to find a way to make
intelligent decisions here, having as objectives
conformance with traffic parameters imposed by the
highway infrastructure (management system and global
control), and improved safety by minimizing crash risk.
The aim here is to design an automata system that can
learn the best possible action based on the data received
from on-board sensors, of from roadside-to-vehicle
communications. For our model, we assume that an
intelligent vehicle is capable of two sets of lateral and
longitudinal actions. Lateral actions are LEFT (shift to
left lane), RIGHT (shift to right lane) and LINE_OK
(stay in current lane). Longitudinal actions are ACC
(accelerate), DEC (decelerate) and SPEED_OK (keep

current speed). An autonomous vehicle must be able to
“sense” the environment around itself. Therefore, we
assume that there are four different sensors modules on
board the vehicle (the headway module, two side
modules and a speed module), in order to detect the
presence of a vehicle traveling in front of the vehicle or
in the immediately adjacent lane and to know the current
speed of the vehicle. These sensor modules evaluate the
information received from the on-board sensors or from
the highway infrastructure in the light of the current
automata actions, and send a response to the automata.
Our basic model for planning and coordination of lane
changing and speed control is shown in figure 2.
The response from physical environment is a
combination of outputs from the sensor modules.
Because an input parameter for the decision blocks is the
action chosen by the stochastic automaton, is necessary
to use two distinct functions 1F and 2F for mapping the
outputs of decision blocks in inputs for the two learning
automata, namely the longitudinal automaton and
respectively the lateral automaton.
After updating the action probability vectors in both
learning automata, using the nonlinear reinforcement
scheme presented in section 4, the outputs from
stochastic automata are transmitted to the regulation
layer. The regulation layer handles the actions received
from the two automata in a distinct manner, using for
each of them a regulation buffer. If an action received
was rewarded, it will be introduced in the regulation
buffer of the corresponding automaton, else in buffer
will be introduced a certain value which denotes a
penalized action by the physical environment. The
regulation layer does not carry out the action chosen
immediately; instead, it carries out an action only if it is
recommended k times consecutively by the automaton,
where k is the length of the regulation buffer. After an
action is executed, the action probability vector is

initialized to
r
1

, where r is the number of actions.

When an action is executed, regulation buffer is
initialized also.

6 Sensor modules
The four teacher modules mentioned above are decision
blocks that calculate the response (reward/penalty),
based on the last chosen action of automaton. Table 1
describes the output of decision blocks for side sensors.
As seen in table 1, a penalty response is received from
the left sensor module when the action is LEFT and
there is a vehicle in the left or the vehicle is already
traveling on the leftmost lane. There is a similar situation
for the right sensor module.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 244

Fig. 2 The model of the Intelligent Vehicle Control

System

 Left/Right Sensor Module

Actions
Vehicle in

sensor range or
no adjacent lane

No vehicle in
sensor range and

adjacent lane
exists

LINE_OK 0/0 0/0
LEFT 1/0 0/0

RIGHT 0/1 0/0
Table 1 Outputs from the Left/Right Sensor Module

The Headway (Frontal) Module is defined as shown in
table 2. If there is a vehicle at a close distance (<
admissible distance), a penalty response is sent to the
automaton for actions LINE_OK, SPEED_OK and
ACC. All other actions (LEFT, RIGHT, DEC) are
encouraged, because they may serve to avoid a collision.

 Headway Sensor Module

Actions
Vehicle in range

(at a close
frontal distance)

No vehicle in
range

LINE_OK 1 0
LEFT 0 0

RIGHT 0 0
SPEED_OK 1 0

ACC 1 0
DEC 0* 0
Table 2 Outputs from the Headway Module

The Speed Module compares the actual speed with the
desired speed, and based on the action choosed, send a
feedback to the longitudinal automaton.

 Speed Sensor Module

Actions Speed:
too slow

Acceptable
speed

Speed:
too fast

SPEED_OK 1 0 1
ACC 0 0 1
DEC 1 0 0

Table 3 Outputs from the Speed Module
The reward response indicated by 0* (from the Headway
Sensor Module) is different than the normal reward
response, indicated by 0: this reward response has a
higher priority and must override a possible penalty from
other modules.

7 Implementation of a simulator
In this section is described an implementation of a
simulator for the Intelligent Vehicle Control System.
The entire system was implemented in Java, and is based
on JADE platform.
JADE is a middleware that facilitates the development of
multi-agent systems and applications conforming to
FIPA standards for intelligent agents. In figure 3 is
showed the class diagram of the simulator. Each vehicle
has associated an agent, responsible for the intelligent
control.
The response of the physical environment is a
combination of the outputs of all four sensor modules.
The implementation of this combination for each
automaton (longitudinal respectively lateral) is showed
in figure 4 (the value 0* was substituted by 2).
A snapshot of the running simulator is shown in figure 5.

Physical Environment

 Auto vehicle

Regulation Layer

 SLA
 Environment

 Planning Layer

02 =β

Frontal
detection

Left
Detection

Right
Detection

Speed
Detection

F1

F2

Longitudinal
Automaton

Lateral
Automaton

Regulation
Buffer

Highway

Regulation
Buffer

01 =β

yes

no

yes

no

1β

2β

Localization
System

1α

2α

1α

2α

1α

2α

─

─

ac
tio

n

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 245

Fig. 3 The class diagram of the simulator

// environment response for Longitudinal Automaton
public double reward(int action){
 int combine;
 combine = Math.max(speedModule(action),
 frontModule(action));
 if (combine = = 2) combine = 0;
 return combine;
}
// environment response for Lateral Automaton
public double reward(int action){
 int combine;
 combine = Math.max(leftRightModule(action),
 frontModule(action));
 return combine;
}

Fig. 4 The physical environment response

Fig. 5 A scenario executed in the simulator

8 Conclusion
Reinforcement learning has attracted rapidly increasing
interest in the machine learning and artificial intelligence
communities. Its promise is beguiling - a way of
programming agents by reward and punishment without
needing to specify how the task (i.e., behavior) is to be
achieved. Reinforcement learning allows, at least in
principle, to bypass the problems of building an explicit
model of the behavior to be synthesized and its

counterpart, a meaningful learning base (supervised
learning).
The reinforcement scheme presented in this paper
satisfies all necessary and sufficient conditions for
absolute expediency in a stationary environment. Used
within a simulator of an Intelligent Vehicle Control
System, this new reinforcement scheme has proved its
efficiency.

References:
[1] A. Barto, S. Mahadevan, Recent advances in
hierarchical reinforcement learning, Discrete-Event
Systems journal, Special issue on Reinforcement
Learning, 2003.
[2] R. Sutton, A. Barto, Reinforcement learning: An
introduction, MIT-press, Cambridge, MA, 1998.
[3] O. Buffet, A. Dutech, and F. Charpillet. Incremental
reinforcement learning for designing multi-agent
systems, In J. P. Müller, E. Andre, S. Sen, and C.
Frasson, editors, Proceedings of the Fifth International
Conference onAutonomous Agents, pp. 31–32,Montreal,
Canada, 2001. ACM Press.
[4] J. Moody, Y. Liu, M. Saffell, and K. Youn.
Stochastic direct reinforcement: Application to simple
games with recurrence, In Proceedings of Artificial
Multiagent Learning. Papers from the 2004 AAAI Fall
Symposium,Technical Report FS-04-02, 2004.
[5] Cem Ünsal, Pushkin Kachroo, John S. Bay,
Simulation Study of Learning Automata Games in
Automated Highway Systems, 1st IEEE Conference on
Intelligent Transportation Systems (ITSC’97), Boston,
Massachusetts, Nov. 9-12, 1997
[6] Cem Ünsal, Pushkin Kachroo, John S. Bay,
Simulation Study of Multiple Intelligent Vehicle Control
using Stochastic Learning Automata, TRANSACTIONS,
the Quarterly Archival Journal of the Society for
Computer Simulation International, volume 14, number
4, December 1997.
[7] Cem Ünsal, Pushkin Kachroo, John S. Bay, Multiple
Stochastic Learning Automata for Vehicle Path Control
in an Automated Highway System, IEEE Transactions
on Systems, Man, and Cybernetics -part A: systems and
humans, vol. 29, no. 1, january 1999
[8] K. S. Narendra, M. A. L. Thathachar, Learning
Automata: an introduction, Prentice-Hall, 1989.
[9]N. Baba, New Topics in Learning Automata: Theory
and Applications, Lecture Notes in Control and
Information Sciences Berlin, Germany: Springer-Verlag,
1984.
[10] S. Lakshmivarahan, M.A.L. Thathachar, Absolutely
Expedient Learning Algorithms for Stochastic
Automata, IEEE Transactions on Systems, Man and
Cybernetics, vol. SMC-6, pp. 281-286, 1973

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 246

