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Abstract: - A stochastic automaton can perform a finite number of actions in a random environment. When a specific 
action is performed, the environment responds by producing an environment output that is stochastically related to the 
action. This response may be favourable or unfavourable. The aim is to design an automaton that can determine the 
best action guided by past actions and responses. Using Stochastic Learning Automata techniques, we introduce a 
decision/control method for intelligent vehicles, in an infrastructure managed architecture. The aim is to design an 
automata system that can learn the best possible action based on the data received from on-board sensors or from the 
localization system of highway infrastructure.  
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1   Introduction 
An automaton is a machine or control mechanism 
designed to automatically follow a predetermined 
sequence of operations or respond to encoded 
instructions. The term stochastic emphasizes the 
adaptive nature of the automaton we describe here. The 
automaton described here does not follow predetermined 
rules, but adapts to changes in its environment. This 
adaptation is the result of the learning process. Learning 
is defined as any permanent change in behavior as a 
result of past experience, and a learning system should 
therefore have the ability to improve its behavior with 
time, toward a final goal. 
The stochastic automaton attempts a solution of the 
problem without any information on the optimal action 
(initially, equal probabilities are attached to all the 
actions). One action is selected at random, the response 
from the environment is observed, action probabilities 
are updated based on that response, and the procedure is 
repeated. A stochastic automaton acting as described to 
improve its performance is called a learning automaton. 
The algorithm that guarantees the desired learning 
process is called a reinforcement scheme [5]. 
Mathematically, the environment is defined by a triple 

},,{ βα c  where },...,,{ 21 rαααα =  represents a finite 
set of actions being the input to the environment, 

},{ 21 βββ =  represents a binary response set, and 
},...,,{ 21 rcccc =  is a set of penalty probabilities, where 

ic  is the probability that action iα  will result in an 
unfavourable response. Given that 0)( =nβ  is a 
favourable outcome and 1)( =nβ  is an unfavourable 
outcome at time instant ...),2,1,0( =nn , the element ic  

of c  is defined mathematically by: 
rinnPc ii ...,,2,1))(|1)(( ==== ααβ  

The response values can be represented in three different 
models. In the P-model (described above), the response 
values are either 0 or 1, in the S-model the response 
values is continuous in the range (0, 1) and in the Q-
model the values is in a finite set of discrete values in the 
range (0, 1). 
The environment can further be split up in two types, 
stationary and nonstationary. In a stationary environment 
the penalty probabilities will never change. In a 
nonstationary environment the penalties will change 
over time. 
 
 
2   Formal definition of a Stochastic 
     Learning Automaton 
The automaton is defined by a quintuple 

)},(),,(,,,{ ••••Φ HFβα . 
},...,,{ 21 sΦΦΦ=Φ  is the set of internal states of the 

automaton. The internal states determine the action to be 
produced by the automaton. The state at time instant n  
is denoted by )(nΦ  and is an element of the finite set 
Φ . 

}...,,{ ,21 rαααα =  denotes the set of actions that can be 
produced by the automaton. This is the output set of the 
automaton, hence also being the input set to the 
environment. The action done at time instant n  is 
denoted )(nα  and is an element of the finite set α . 

},...,,{ 21 mββββ =  or )},{( ba=β  is the input set to the 
automaton, that is the set of responses from the 
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environment. This set can be either finite or infinite. 
)(nβ  denotes the input to the automaton at time instant 

n . 
),( ••F  is a function that maps the current state and the 

response from the environment into the next state, given 
mathematically by Φ→×Φ•• β:),(F . This formula is 
called the transition function. A similar expression is 
showed by the formula )](),([)1( nnFn βΦ=+Φ .  
The transition function can be either deterministic or 
stochastic. If the function is deterministic the result of 
the function is uniquely specified for each state.  
If the transition function F  is stochastic, the elements 

β
ijf  of F  represent the probability that the automaton 

moves from state iΦ  to state jΦ  given the input β : 

))(,)(|)1(( βββ =Φ=ΦΦ=+Φ= nnnPf ijij

sji ...,,2,1, =  and },...,,{ 21 mββββ ∈  
),( ••H  is the output function and is defined 

mathematically by αβ →×Φ•• :),(H . This function 
maps the current state and the response from the 
environment into the action produced by the automaton. 
If the current output depends on only the current state, 
the automaton is referred to as state-output automaton. 
In this case the function ),( ••H  is replaced by an output 
function α→Φ• :)(G  which can be either deterministic 
or stochastic: )]([)( nGn Φ=α . 
If G  is stochastic, the elements of this set are denoted 

ijg . The value of this element represents the probability 
that the action done by the automaton is jα  given the 
automaton is in state iΦ : 

rjsinnPg ijij ,1,1))(|)(( ==Φ=Φ== αα  
In short the automaton takes an input from the 
environment and produces an action based on this. The 
automaton is showed in figure 1: 

 
 

Fig. 1 A stochastic automaton 
 
An automaton is called to be fixed structured when the 
functions ijf  and ijg  are having values that do not 
change over time. By making them change over time, 

one can get a greater flexibility where actions rewarded 
will get a higher chance of being chosen again. Such an 
automaton is called variable-structure automaton. 
Furthermore, in the case of variable-structure automaton, 
the above definitions of the transition functions F  and 
G  are not used explicitly. In order to describe the 
reinforcement schemes, is defined )(np , a vector of 

action probabilities: rinPnp ii ,1),)(()( === αα  
Updating action probabilities can be represented as 
follows:  

)](),(),([)1( nnnpTnp βα=+  
where T is a mapping. This formula says the next action 
probability )1( +np  is updated based on the current 
probability )(np , the input from the environment and 
the resulting action. If )1( +np  is a linear function of 

)(np , the reinforcement scheme is said to be linear; 
otherwise it is termed nonlinear.  
 
 
3   Variable Structure Automaton 
 
 
3.1 Performance Evaluation 
A learning automaton generates a sequence of actions on 
the basis of its interaction with the environment. If the 
automaton is “learning” in the process, its performance 
must be superior to “intuitive” methods. In the following 
we will consider the simplest case, the P-model and 
stationary random environments. 
Consider a stationary random environment with penalty 
probabilities  

},...,,{ 21 rccc  where ))(|1)(( ii nnPc ααβ === .  
We define a quantity )(nM  as the average penalty for a 
given action probability vector: 

∑∑
==

==∗==

===
r

i
ii

r

i
ii npcnPnnP

npnPnM

11

)())(())(|1)((

))(|1)(()(

ααααβ

β
  

An automaton is absolutely expedient if the expected 
value of the average penalty at one iteration step is less 
than it was at the previous step for all steps: 

)()1( nMnM <+  for all n  [8]. 
Absolutely expedient learning schemes are presently the 
only class of schemes for which necessary and sufficient 
conditions of design are available. The algorithm we will 
present in this paper is derived from a nonlinear 
absolutely expedient reinforcement scheme presented by 
[7]. 
 
 
3.2 Absolutely expedient reinforcement schemes 
The reinforcement scheme is the basis of the learning 

Transition function Φ→×Φ β:F  
               Automaton 
        },...,,{ 21 sΦΦΦ=Φ  

      Output 
},...,,{ 21 rαααα =  

Output function α→Φ:G  

Environment 

       Penalty probabilities  
           },...,,{ 21 rcccc =  

      Input 
},...,,{ 21 mββββ =  

or )},{( ba=β  
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process for learning automata. The general solution for 
absolutely expedient schemes was found by 
Lakshmivarahan and Thathachar [10].  
A learning automaton may send its action to multiple 
environments at the same time. In that case, the action of 
the automaton results in a vector of responses from 
environments (or “teachers”). In a stationary N-teacher 
P-model environment, if an automaton produced the 
action iα  and the environment responses are 

Njj
i ,...,1=β  at time instant n , then the vector of 

action probabilities )(np  is updated as follows [7]: 

∑∑
≠
==

−∗⎥
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⎤
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for all ij ≠  where the functions iφ  and iψ  satisfy the 
following conditions: 

))((
)(
))((
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)(
))((

1

1 np
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np

np
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r

r λ
φφ

===  (2) 
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1

0))(()( φ  (3) 

∑
≠
=

<−
r

ij
j

ji npnp
1

1))(()( ψ  (4) 

0))(()( >+ npnp jj ψ   (5) 
1))(()( <− npnp jj φ     (6) 

for all }{\},...,1{ irj∈   
The conditions (3)-(6) ensure that rkpk ,1,10 =<< . 
 
Theorem If the functions ))(( npλ  and ))(( npµ  satisfy 
the following conditions: 

0))(( ≤npλ  
0))(( ≤npµ  (7) 

0))(())(( <+ npnp µλ   
then the automaton with the reinforcement scheme in (1) 
is absolutely expedient in a stationary environment.  
The proof of this theorem can be found in [9]. 
 

4   A new nonlinear reinforcement  
     scheme 
Because the above theorem is also valid for a single-
teacher model, we can define a single environment 
response that is a function f  of many teacher outputs. 
Thus, we can update the above algorithm as 
follows:

)](1[)()1(
)](1[))(()()1(

npf
npnHfnpnp

i

iii

−∗−∗−−
−−∗∗−∗+=+

θ
θ

)()()1(

)())(()()1(

npf

npnHfnpnp

j

jjj

∗−∗−+

+∗∗−∗−=+

θ

θ
  (8) 

for all ij ≠ , i.e.: 
)())(( npnp kk ∗−= θψ  

)()())(( npnHnp kk ∗∗−= θφ  
where the learning parameter θ  is a real value which 
satisfy: 10 <<θ . 
The function H  is defined as: 

{{
⎩
⎨
⎧

−
−

= ,
))(1(

)(
minmax;1min)( ε

θ np
np

nH
i

i  

 }}0;
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Parameter ε  is an arbitrarily small positive real number. 
Our reinforcement scheme differs from the one given in 
[6], [7] by the definition of these two functions: H and 

kφ . 
We now show that are satisfied all the conditions of the 
reinforcement scheme. 
From (2) we have: 
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The rest of the conditions translate to the following: 
Condition (3): 
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This condition is satisfied by the definition of the 
function )(nH . 
Condition (4): 

1))(1()(1))(()(
1

<−∗+⇔<−∑
≠
=

npnpnpnp ii

r

ij
j

ji θψ  

(1) 
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But 1)(1)())(1()( =−+<−∗+ npnpnpnp iiii θ  since 
10 <<θ  

Condition (5):  
0)()(0))(()( >∗−⇔>+ npnpnpnp jjjj θψ  for all 

}{\},...,1{ irj∈   
But 0)1()()()( >−∗=∗− θθ npnpnp jjj  since 

10 <<θ  and 1)(0 << np j  for all }{\},...,1{ irj∈  
Condition (6): 

1)()()(1))(()( <∗∗+⇔<− npnHnpnpnp jjjj θφ  for 
all }{\},...,1{ irj∈  
We have: 

)(
)(1

)(1)()()(
np
np

nHnpnHnp
j

j
jj ∗

−
<⇔<∗∗+
θ

θ  for 

all }{\},...,1{ irj∈ . 
This condition is satisfied by the definition of the 
function )(nH . 
With all conditions of the equations (1) satisfied, we 
conclude that the reinforcement scheme is a candidate 
for absolute expediency. 
Furthermore, the functions λ  and µ  for our nonlinear 
scheme satisfy the following: 

0)())(( ≤∗−= nHnp θλ  
0))(( ≤−= θµ np  

0))(1())(())(( <+∗−=+ nHnpnp θµλ  
because 10 <<θ  and 1)(0 ≤≤ nH  
In conclusion, we state the algorithm given in equations 
(8) is absolutely expedient in a stationary environment. 
 
 
5 The model 
The task of creating intelligent systems that we can rely 
on is not trivial. In this section, we present a method for 
intelligent vehicle control, having as theoretical 
background Stochastic Learning Automata. We visualize 
the planning layer of an intelligent vehicle as an 
automaton (or automata group) in a nonstationary 
environment.  We attempt to find a way to make 
intelligent decisions here, having as objectives 
conformance with traffic parameters imposed by the 
highway infrastructure (management system and global 
control), and improved safety by minimizing crash risk. 
The aim here is to design an automata system that can 
learn the best possible action based on the data received 
from on-board sensors, of from roadside-to-vehicle 
communications. For our model, we assume that an 
intelligent vehicle is capable of two sets of lateral and 
longitudinal actions. Lateral actions are LEFT (shift to 
left lane), RIGHT (shift to right lane) and LINE_OK 
(stay in current lane). Longitudinal actions are ACC 
(accelerate), DEC (decelerate) and SPEED_OK (keep 

current speed). An autonomous vehicle must be able to 
“sense” the environment around itself. Therefore, we 
assume that there are four different sensors modules on 
board the vehicle (the headway module, two side 
modules and a speed module), in order to detect the 
presence of a vehicle traveling in front of the vehicle or 
in the immediately adjacent lane and to know the current 
speed of the vehicle. These sensor modules evaluate the 
information received from the on-board sensors or from 
the highway infrastructure in the light of the current 
automata actions, and send a response to the automata. 
Our basic model for planning and coordination of lane 
changing and speed control is shown in figure 2. 
The response from physical environment is a 
combination of outputs from the sensor modules. 
Because an input parameter for the decision blocks is the 
action chosen by the stochastic automaton, is necessary 
to use two distinct functions 1F  and 2F  for mapping the 
outputs of decision blocks in inputs for the two learning 
automata, namely the longitudinal automaton and 
respectively the lateral automaton.   
After updating the action probability vectors in both 
learning automata, using the nonlinear reinforcement 
scheme presented in section 4, the outputs from 
stochastic automata are transmitted to the regulation 
layer.  The regulation layer handles the actions received 
from the two automata in a distinct manner, using for 
each of them a regulation buffer. If an action received 
was rewarded, it will be introduced in the regulation 
buffer of the corresponding automaton, else in buffer 
will be introduced a certain value which denotes a 
penalized action by the physical environment. The 
regulation layer does not carry out the action chosen 
immediately; instead, it carries out an action only if it is 
recommended k  times consecutively by the automaton, 
where k  is the length of the regulation buffer. After an 
action is executed, the action probability vector is 

initialized to 
r
1

, where r  is the number of actions. 

When an action is executed, regulation buffer is 
initialized also. 
 
 
6 Sensor modules 
The four teacher modules mentioned above are decision 
blocks that calculate the response (reward/penalty), 
based on the last chosen action of automaton. Table 1 
describes the output of decision blocks for side sensors. 
As seen in table 1, a penalty response is received from 
the left sensor module when the action is LEFT and 
there is a vehicle in the left or the vehicle is already 
traveling on the leftmost lane. There is a similar situation 
for the right sensor module. 
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Fig. 2 The model of the Intelligent Vehicle Control 

System 
 

 Left/Right Sensor Module  

Actions 
Vehicle in 

sensor range or 
no adjacent lane 

No vehicle in 
sensor range and 

adjacent lane 
exists 

LINE_OK 0/0 0/0 
LEFT 1/0 0/0 

RIGHT 0/1 0/0 
Table 1 Outputs from the Left/Right Sensor Module 

 
The Headway (Frontal) Module is defined as shown in 
table 2. If there is a vehicle at a close distance (< 
admissible distance), a penalty response is sent to the 
automaton for actions LINE_OK, SPEED_OK and 
ACC. All other actions (LEFT, RIGHT, DEC) are 
encouraged, because they may serve to avoid a collision. 

 
 Headway Sensor Module  

Actions 
Vehicle in range 

(at a close 
frontal distance) 

No vehicle in 
range  

LINE_OK 1 0 
LEFT 0 0 

RIGHT 0 0 
SPEED_OK 1 0 

ACC 1 0 
DEC 0* 0 
Table 2 Outputs from the Headway Module 

 
The Speed Module compares the actual speed with the 
desired speed, and based on the action choosed, send a 
feedback to the longitudinal automaton.  
 

 Speed Sensor Module  

Actions Speed: 
too slow 

Acceptable 
speed 

Speed: 
too fast 

SPEED_OK 1 0 1 
ACC 0 0 1 
DEC 1 0 0 

Table 3 Outputs from the Speed Module 
The reward response indicated by 0* (from the Headway 
Sensor Module) is different than the normal reward 
response, indicated by 0: this reward response has a 
higher priority and must override a possible penalty from 
other modules. 
 
 
7 Implementation of a simulator 
In this section is described an implementation of a 
simulator for the Intelligent Vehicle Control System. 
The entire system was implemented in Java, and is based 
on JADE platform. 
JADE is a middleware that facilitates the development of 
multi-agent systems and applications conforming to 
FIPA standards for intelligent agents. In figure 3 is 
showed the class diagram of the simulator. Each vehicle 
has associated an agent, responsible for the intelligent 
control.  
The response of the physical environment is a 
combination of the outputs of all four sensor modules. 
The implementation of this combination for each 
automaton (longitudinal respectively lateral) is showed 
in figure 4 (the value 0* was substituted by 2). 
A snapshot of the running simulator is shown in figure 5. 
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Fig. 3 The class diagram of the simulator 

// environment response for Longitudinal Automaton 
public double reward(int action){ 
    int combine; 
    combine = Math.max(speedModule(action), 
                                       frontModule(action));        
    if (combine = = 2) combine = 0; 
    return combine; 
} 
// environment response for Lateral Automaton 
public double reward(int action){ 
    int combine; 
    combine = Math.max(leftRightModule(action), 
                      frontModule(action)); 
    return combine; 
} 

Fig. 4 The physical environment response 
 

 
Fig. 5 A scenario executed in the simulator 

 
8 Conclusion 
Reinforcement learning has attracted rapidly increasing 
interest in the machine learning and artificial intelligence 
communities. Its promise is beguiling - a way of 
programming agents by reward and punishment without 
needing to specify how the task (i.e., behavior) is to be 
achieved. Reinforcement learning allows, at least in 
principle, to bypass the problems of building an explicit 
model of the behavior to be synthesized and its 

counterpart, a meaningful learning base (supervised 
learning).  
The reinforcement scheme presented in this paper 
satisfies all necessary and sufficient conditions for 
absolute expediency in a stationary environment. Used 
within a simulator of an Intelligent Vehicle Control 
System, this new reinforcement scheme has proved its 
efficiency. 
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