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Abstract: An adaptive sliding-mode control system, which is insensitive to uncertainties, is proposed to control
the position of an induction motor drive. The designed sliding mode control presents an adaptive switching gain to
relax the requirement for the bound of uncertainties. The switching gain is adapted using a simple algorithm which
do not implies a high computational load. Stability analysis based on Lyapunov theory is also performed in order
to guarantee the closed loop stability. Finally simulation results show, on the one hand that the proposed controller
provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect
to plant parameter variations and external load disturbances.
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1 Introduction
In recent years the induction motors have been in-
creasingly taking place of the DC motors in high per-
formance electrical motor drives [5]. The main advan-
tage of the DC motors is that their speed control can
be carried out in a simple way, since the torque and
flux are decoupled. However, the technique of vec-
torial control [3] based on the rotor field orientation
applied to the induction motors provides the decou-
pling between the torque and flux in a similar way to
the DC machine. Therefore, with the progress of the
power electronics and the appearance of low cost and
very fast microprocessors, the induction motor drives
have reached a competitive position compared to DC
machines. However, the control performance of the
resulting linear system is still influenced by uncertain-
ties, which usually are composed of unpredictable pa-
rameter variations, external load disturbances and un-
modelled and nonlinear dynamics [4].

In the past decade, the variable structure control
strategy using the sliding-mode has been focussed on
many studies and research for the control of the AC
servo drive system [2], [1]. The sliding-mode con-
trol offers many good properties, such as good per-
formance against unmodelled dynamics, insensitivity
to parameter variations, external disturbance rejection
and fast dynamic response [6]. These advantages of
the sliding-mode control may be employed in the po-
sition and speed control of an AC servo system. How-
ever, the traditional sliding control schemes require

the prior knowledge of an upper bound for the system
uncertainties using this bound for the switching gain
calculation. This upper bound should be determined
as precisely as possible, because the higher is the up-
per bound, the higher value should be considered for
the sliding gain, and therefore the control effort will
also be high which is undesirable in practice. Then, to
relax the requirement for the bound of uncertainties,
an sliding mode control scheme with adaptive switch-
ing gain is proposed to control the induction motor
drive. The switching gain is adapted using a simple
algorithm which do not implies a high computational
load.

2 Induction motor model
A dynamic model of an induction motor in a syn-
chronously rotating d-q reference frame expressed in
terms of state variables is given by the following equa-
tions [3]:
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where isd and isq are d-q components of the stator cur-
rent; Vsd and Vsd are d-q components of the the stator
voltage; ψrd and ψrq are d-q components of the rotor

flux linkage; σ = 1 − L2
m

LrLs
is the leakage coeffi-

cient; Ls, Lr and Lm are stator, rotor and mutual in-
ductances; Rs and Rr are stator and rotor resistances;
we is the synchronous speed; and wr is the stator elec-

trical speed; τr =
Lr

Rr
is the rotor time constant; Te

is the induction motor torque and p is the is the pole
numbers.

The relation between the synchronously rotating
reference frame and the stationary reference frame is
performed by the so-called reverse Park’s transforma-
tion:
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where θe is the angle position between the d-axis of
the synchronously rotating reference frame and the
a-axis of the stationary reference frame, and it is as-
sumed that the quantities are balanced.

The main objective of the vector control of in-
duction motor is, as in direct current (DC) drives, to
control the torque and the flux independently. This
DC machine-like performance is only possible if the
current component isd is oriented (or aligned) in the
direction of flux ψ̄r and the other current component
isq is established perpendicular to it (field orientation
control principle). This means that we may control
the current is by means of isq without affecting the
flux ψ̄r, and similarly, when the flux ψ̄r is controlled
by means of isd the q-component of the current isq is
not affected [3].

Under this condition of field orientation control it is
satisfied that:

ψrq = 0, ψrd = |ψ̄r| (3)

Then, the dynamic equations (1) may be simplified to:
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Therefore, for the ideal decoupling, the torque
equation (8) become analogous to the DC machine as
follows:

Te =
3p

4
Lm

Lr
ψrdisq = KT isq (9)

where KT is the torque constant, and is defined as
follows:

KT =
3p

4
Lm

Lr
ψ∗rd (10)

where ψ∗rd denotes the command rotor flux.

And from eqn. (7) the slip frequency wsl can be ex-
pressed as follows:

wsl = we − wr =
Lm

τr

isq
ψrd

(11)

The dynamic equations (4) and (5) can be decou-
pled by means of voltage decoupled control, choosing
the inverter output voltages such that:

V ∗
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where the symbol ’*’ denotes command magnitudes.

3 Variable structure robust speed
control with adaptive sliding gain

In general, the mechanical equation of an induction
motor can be written as:

Jẇm + Bwm + TL = Te (13)
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where J and B are the inertia constant and the viscous
friction coefficient of the induction motor system re-
spectively; TL is the external load; wm is the rotor me-
chanical speed in angular frequency, which is related
to the rotor electrical speed by wm = 2 wr/p where
p is the pole numbers and Te denotes the generated
torque of an induction motor.

Substituting equation (9) in the equation (13) the me-
chanical equation becomes:

ẇm + awm + f = b iqs (14)

where the parameter are defined as:

a =
B

J
, b =

KT

J
, f =

TL

J
; (15)

Now, we are going to consider the previous me-
chanical equation (14) with uncertainties as follows:

ẇm = −(a+4a)wm−(f +4f)+(b+4b)iqs (16)

where the terms 4a, 4b and 4f represents the un-
certainties of the terms a, b and f respectively. It
should be noted that these uncertainties are unknown,
and that the precise calculation of its upper bound are,
in general, rather difficult to achieve.

Let us define define the tracking speed error as fol-
lows:

e(t) = wm(t)− w∗m(t) (17)

where w∗m is the rotor speed command.

Taking the derivative of the previous equation
with respect to time yields:

ė(t) = ẇm − ẇ∗m = −a e(t) + u(t) + d(t) (18)

where the following terms have been collected in the
signal u(t),

u(t) = b iqs(t)− aw∗m(t)− f(t)− ẇ∗m(t) (19)

and the uncertainty terms have been collected in the
signal d(t),

d(t) = −4awm(t)−4f(t) +4b iqs(t) (20)

To compensate for the above described uncertain-
ties that are presented in the system, it is proposed a
sliding adaptive control scheme. In the sliding control
theory, the switching gain must be constructed so as to
attain the sliding condition [6]. In order to meet this
condition a suitable choice of the sliding gain should
be made to compensate for the uncertainties. For
selecting the sliding gain vector, an upper bound of
the parameter variations, unmodelled dynamics, noise

magnitudes, etc. should be known, but in practical ap-
plications there are situations in which these bounds
are unknown, or at least difficult to calculate. A so-
lution could be to choose a sufficiently high value for
the sliding gain, but this approach could cause a to
high control signal, or at least more activity control
than it is necessary in order to achieve the control ob-
jective. One possible way to overcome this difficulty
is to estimate the gain and to update it by some adap-
tation law, so that the sliding condition is achieved.

The sliding variable S(t) is defined with an inte-
gral component as:

S(t) = e(t) +
∫ t

0
(a + k)e(τ) dτ (21)

where k is a constant gain, and a is a parameter that
was already defined in equation (15).

and the sliding surface is defined as:

S(t) = 0 (22)

Now, we are going to design a variable structure speed
controller, that incorporates an adaptive sliding gain,
in order to control the AC motor drive.

u(t) = −k e(t)− β̂(t)γ sgn(S) (23)

where the k is the gain defined previously, β̂ is the
estimated switching gain, γ is a positive constant, S is
the sliding variable defined in eqn. (21) and sgn(·) is
the signum function.

The switching gain β̂ is adapted according to the
following updating law:

˙̂
β = γ |S| β̂(0) = 0 (24)

where γ is a positive constant that let us choose the
adaptation speed for the sliding gain.

In order to obtain the speed trajectory tracking,
the following assumptions should be formulated:

(A 1) The gain k must be chosen so that the term (a+
k) is strictly positive. Therefore the constant k
should be k > −a.

(A 2) There exits an unknown finite non-negative
switching gain β such that

β > dmax + η η > 0

where dmax ≥ |d(t)| ∀ t and η is a positive
constant.

Note that this condition only implies that the
uncertainties of the system are bounded magni-
tudes.
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(A 3) The constant γ must be chosen so that γ ≥ 1.

Theorem 1 Consider the induction motor given by
equation (16). Then, if assumptions (A 1), (A 2) and
(A 3) are verified, the control law (23) leads the rotor
mechanical speed wm(t) so that the speed tracking er-
ror e(t) = wm(t) − w∗m(t) tends to zero as the time
tends to infinity.

The proof of this theorem will be carried out using
the Lyapunov stability theory.

Proof:Define the Lyapunov function candidate:

V (t) =
1
2
S(t)S(t) +

1
2
β̃(t)β̃(t) (25)

where S(t) is the sliding variable defined previ-
ously and β̃(t) = β̂(t)− β

Its time derivative is calculated as:

V̇ (t) = S(t)Ṡ(t) + β̃(t) ˙̃
β(t)

=S · [ė + (a + k)e] + β̃(t) ˙̂
β(t)

=S · [(−a e + u + d) + (k e + a e)] + β̃ γ|S|
=S · [u + d + k e] + (β̂ − β)γ|S|
=S ·

[
−k e− β̂γ sgn(S) + d + k e

]
+ (β̂ − β)γ|S|

=S ·
[
d− β̂γ sgn(S)

]
+ β̂γ|S| − βγ|S|

=dS − β̂γ|S|+ β̂γ|S| − βγ|S| (26)
≤|d||S| − βγ|S|
≤ |d||S| − (dmax + η)γ|S|
= |d||S| − dmax γ|S| − η γ|S|
≤−η γ|S| (27)

then
V̇ (t) ≤ 0 (28)

It should be noted that in the proof the equations
(21), (18), (23) and (24) have been used , and the as-
sumptions (A 2) and (A 3).

Using the Lyapunov’s direct method, since V (t)
is clearly positive-definite, V̇ (t) is negative semidef-
inite and V (t) tends to infinity as S(t) and β̃(t)
tends to infinity, then the equilibrium at the origin
[S(t), β̃(t)] = [0, 0] is globally stable, and therefore
the variables S(t) and β̃(t) are bounded. Since S(t)
is also bounded then it is deduced that e(t) is bounded.

On the other hand, making the derivative of equa-
tion (21) it is obtained that,

Ṡ(t) = ė(t) + (a + k)e(t) (29)

then, substituting the equation (18) in the equation
(29),

Ṡ(t) = −ae(t) + u(t) + d(t) + (a + k)e(t)
= ke(t) + d(t) + u(t) (30)

From equation (30) we can conclude that Ṡ(t) is
bounded because e(t), u(t) and d(t) are bounded.

Now, from equation 26 it is deduced that

V̈ (t) = d Ṡ − β γ
d

dt
|S(t)| (31)

which is a bounded quantity because Ṡ(t) is bounded.

Under these conditions, since V̈ is bounded, V̇ is
a uniformly continuous function, so Barbalat’s lemma
let us conclude that V̇ → 0 as t → ∞, which implies
that S(t) → 0 as t →∞.

Therefore S(t) tends to zero as the time t tends
to infinity. Moreover, all trajectories starting off the
sliding surface S = 0 must reach it in finite time and
then will remain on this surface. This system’s behav-
ior once on the sliding surface is usually called sliding
mode [6].

When the sliding mode occurs on the sliding sur-
face (22), then S(t) = Ṡ(t) = 0, and therefore the dy-
namic behavior of the tracking problem (18) is equiv-
alently governed by the following equation:

Ṡ(t) = 0 ⇒ ė(t) = −(a + k)e(t) (32)

Then, under assumption (A 1), the tracking error
e(t) converges to zero exponentially.

It should be noted that, a typical motion under
sliding mode control consists of a reaching phase dur-
ing which trajectories starting off the sliding surface
S = 0 move toward it and reach it in finite time, fol-
lowed by sliding phase during which the motion will
be confined to this surface and the system tracking
error will be represented by the reduced-order model
(32), where the tracking error tends to zero.

Finally, the torque current command, i∗sq(t), can
be obtained directly substituting eqn. (23) in eqn.
(19):

i∗sq(t) =
1
b

[
k e− β̂γ sgn(S) + aw∗m + ẇ∗m + f

]

(33)

Therefore, the proposed variable structure speed
control with adaptive sliding gain resolves the speed
tracking problem for the induction motor, with some
uncertainties in mechanical parameters and load
torque.
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4 Simulation Results
In this section we will study the speed regulation per-
formance of the proposed adaptive sliding-mode field
oriented control under reference and load torque vari-
ations by means of simulation examples.

The block diagram of the proposed robust control
scheme is presented in figure 1.

The block ‘VSC Controller’ represents the pro-
posed adaptive sliding-mode controller, and it is im-
plemented by equations (21), (33) and (24). The
blocks ‘dq → abc’ makes the conversion between
the synchronously rotating and stationary reference
frames, and is implemented by equation (2). The
block ‘i∗sdq → V ∗

sdq’ represents the voltage decoupled
control which transforms the stator current reference
to the stator voltage reference and it is implemented
by equation (12). The block ‘PWM Inverter’ is a six
IGBT-diode bridge inverter with 780 V DC voltage
source. The block ‘Field Weakening’ gives the flux
command based on rotor speed, so that the PWM con-
troller does not saturate. The block ‘i∗ds Calculation’
provides the current reference d-component from the
rotor flux reference through equation (6). The block
‘wsl calculation’ calculates the slip frequency and it
is implemented by the equation (11). The block ‘IM’
represents the induction motor.

The induction motor used in this case study is a 50
HP, 460 V, four pole, 60 Hz motor having the follow-
ing parameters: Rs = 0.087Ω, Rr = 0.228Ω, Ls =
35.5mH , Lr = 35.5 mH , and Lm = 34.7mH .

The system has the following mechanical param-
eters: J = 1.662 kg.m2 and B = 0.12 N.m.s. It is
assumed that there are an uncertainty around 20 % in
the system parameters, that will be overcome by the
proposed adaptive sliding control.

The following values have been chosen for the
controller parameters: k = 25 and γ = 15.

In the example the motor starts from a standstill
state and we want the rotor speed to follow a speed
command that starts from zero and accelerates until
the rotor speed is 120 rad/s. The system starts with
an initial load torque TL = 0N.m, and at time t =
1 s the load torque steps from TL = 0 N.m to TL =
250N.m and it is assumed that there is an uncertainty
around 70 % in the load torque.

Figure 2 shows the desired rotor speed (dashed
line) and the real rotor speed (solid line). As it may
be observed, after a transitory time in which the slid-
ing gain is adapted, the rotor speed tracks the desired
speed in spite of system uncertainties. However, at
time t = 1 s a little speed error can be observed. This
error appears because of the torque increment at this
time, and then the control system lost the so called

‘sliding mode’ because the actual sliding gain is too
small to overcome the new uncertainty introduced in
the system due to the new torque. But then, after a
small time the sliding gain is adapted so that this gain
can compensate the system uncertainties and so the
rotor speed error is eliminated.

Figure 3 presents the time evolution of the esti-
mated sliding gain. The sliding gain starts from zero
and then it is increased until its value is high enough
to compensate for the system uncertainties. Then
at time 0.21 s the sliding gain is remained constant
because the system uncertainties remain constant as
well. Later at time 1 s, there is an increment in the sys-
tem uncertainties caused by the rise in the load torque.
Therefore the sliding gain is adapted once again in
order to overcome the new system uncertainties. As
it can be seen in the figure, after the sliding gain is
adapted it remains constant again, since the system
uncertainties remains constant as well.

Figure 4 shows the motor torque. This figure
shows that in the initial state, the motor torque has
a high initial value in the speed acceleration zone be-
cause it is necessary a high torque to increment the ro-
tor speed owing to the rotor inertia, then the value de-
creases in a constant region and finally increases due
to the load torque increment.
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Figure 2: Reference and real rotor speed signals
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5 Conclusion
In this paper a new adaptive sliding mode vector con-
trol has been presented. Due to the nature of the slid-
ing control this control scheme is robust under uncer-
tainties caused by parameter error or by changes in the
load torque. Moreover, the proposed variable struc-
ture control incorporates an adaptive algorithm to cal-
culate the sliding gain value. The adaptation of the
sliding gain, on the one hand avoids the necessity of
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Figure 1: Block diagram of the proposed adaptive sliding-mode control
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computing the upper bound of the system uncertain-
ties, and on the other hand allows to employ as smaller
sliding gain as possible to overcome the actual system
uncertainties. Then the control signal of our proposed
variable structure control scheme will be smaller than
the control signals of the traditional variable structure
control schemes, because in the last one the sliding
gain value should be chosen high enough to overcome
all the possible uncertainties that could appear in the
system along the time. Finally, by means of simula-
tion examples, it has been shown that the proposed
control scheme performs reasonably well in practice,
and that the speed tracking objective is achieved under
uncertainties in the parameters and load torque.
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