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Abstract: A well designed and reliable prevention system for non-payment event is very important for the telecom 
company. Monitoring is especially needed in case the client exceeds the level of his standard payments what can lead 
to his financial problems. In this paper, we propose a system describing client's behavior and informing about possible 
problems in advance. In this approach we apply novel ensemble methods to integrate information from many models 
predicting the customer's behaviour. The ensemble methods base on non-negative matrix factorization which allows 
identifying the fundamental prediction components. The practical experiment with prevention system confirmed that 
proposed procedure. 
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1   Introduction 
One of the most important tasks in the company where 
the information systems are introduced is online 
monitoring of individual customer behaviour. In this 
paper we focus on the prevention system for non-
payment event. A key issue is to build an appropriate 
model describing client’s behaviour. Assuming that 
different methods can model the customer behaviour in a 
slightly different way it seems natural to integrate and to 
use the information generated by many models [7].  
From analytical point of view the presented 
methodology can be treated as ensemble methods for 
prediction improvement. Usually solutions of ensemble 
methods propose the combination of a few models by 
mixing their results or parameters [1,8,16]. In this paper 
we propose an alternative concept based on the 
assumption that prediction results contain the latent 
destructive and constructive components common to all 
the model results [14,15]. The elimination of the 
destructive ones should improve the final results. To find 
the latent components we apply a multidimensional 
decompositions with non-negative matrix factorization 
(NMF) [6,11].  
The method will be described in the framework of a 
flexible system for adapting and managing the dunning 
process, but can be applied as ensemble method to any 
regression problem. 
 
 

2   Prediction improvement 
We assume that we test many models eg. neural 
networks for prediction customer behaviour. Next, we 
assume that each prediction result includes two types of 
components: constructive associated with the target and 
destructive associated with the inaccurate learning data, 
individual properties of models, missing data, not precise 
parameter estimation, distribution assumptions etc. We 
collect particular model results together , 
where N is number of observations, and treat them as 
multivariate variable , 

1×ℜ∈ N
ix

NmT
n21 ],...,,[ xxxX = R ×∈X . In 

similar way we assume that the set of basis components 
is represented by S . The relation 
between observed prediction results and latent basis 
components is expressed by  

NnT
n R ×∈Ssss   ,],...,,[ 21=

ASX = , (1)

and means matrix X factorisation by basis components 
matrix S and mixing matrix A.  Our aim is to find such 
mixing matrix A and unknown basis components set that 
matrix S (after rows reordering) can be described as 

[ ]Tnppp ssssssS ,...,,,,...,, 2121 ++=
)))   , (2)

where 1×∈ N
i Rs)  is i-th constructive component, 

1×∈ N
i Rs  is i-th destructive component. After basic 

components are classified into destructive and 
constructive ones we can reject the destructive 

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007         385



components (replace them with zero) to obtain only 
constructive basis components 
matrix [ ]Tnppp 000sssS ,...,,,,...,, 2121 ++=

))))
. Now we can mix 

the cleaned basis results back to obtain improved 
prediction results  

SAX
))

=

A

SASAX ˆˆˆ ==

[ ]nppp 000aaaA ,...,,,,...,,ˆ
2121 ++=

is is

   . (3)

The replacement of destructive signal by zero in (2) is 
equivalent to putting zero in corresponding column of A. 
If we express the mixing matrix as  the 
purified results can be described as  

[ ]naaa ,...,, 21=

 (4)

where .  
The effectiveness of the method highly depends on the 
application of proper transformation providing searched 
basis components and next it is important to perform 
proper distinction )  from . Among many possible 
transformations leading to basis signals we focus on 
blind signals separation (BSS) methods [5,9]. 

Fig. 1. System for integration of neural network 
results      

 
 
3 The blind signal separation and data 
representation 
Blind signals separation (BSS) methods aim at 
identification of the unknown signals mixed in the 
unknown system [4,5,9]. There are many different 
methods and algorithms used in BSS task. They explore 
different properties of data like: independence [4,9], 
decorrelation [5,10], sparsity [12], smoothness [5,15], 
non-negativity [6,11] etc. In our case model results 
represent probability of system reaction. It means that 
our data are non-negative and therefore transformation 
associated with such properties was chosen. It is called 
non-negative matrix factorization. The non-negative 
matrix factorization aims at matrix decomposition into 

product of two matrices with non-negative elements. In 
our case we try to find such A and S where  

 where . To obtain non-
negative factors S and A we can apply the Image Space 
Reconstruction Algorithms (ISRA) which is derived 
form the squared Euclidean distance as the cost function 
[3,11]       

kjixa ikij ,,    0 ,0 ∀≥≥ ASX ≈

2

2
1)||( ASXASX −=FD . (5)

Minimizing the above cost function leads to following 
algorithms 

TT AXXYXAA /..×← ,   (6)

AXAYAXX TT /..×← , (7)

where ×.  and  denote component -wise multiplication 
and division respectively. As the starting point can be 
taken:  

/.

S = X, (8)

A = (I + E) +  (I + E)T, (9)

where I is eye matrix and E is random form. 
 
 
4 Component classification and 
generalized mixing 
After basis component are estimated by e.g. NMF we 
need to classify them as destructive or constructive. The 
problem can be difficult task because obtained 
components might be not pure constructive or 
destructive due to many reasons like improper linear 
transformation assumption or other statistic 
characteristics than explored by chosen BSS method. 
Therefore particular component can have constructive 
impact on one model and destructive on the other or 
there may exist components destructive as a single but 
constructive in a group. To make the classification, for 
all the components’ subset we check the impact after 
elimination of them on the final results. This procedure 
gives us information which component set elimination 
improves prediction mostly. This is equivalent with the 
finding of the mixing matrix . It is the best matrix we 
can find by simple test with eliminating each 
combination of the components. However, the 
components can be not pure so their impact should have 
weight other than 0. It means that we can try to find the 
better mixing system than described by . The new 
mixing system can be formulated more general than 
linear. 

Â

Â
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Fig. 2. Scheme for model improvement. 
 
For the general mixing system we can take MLP neural 
network [2,7]:  

))]([( )2()1()1()1()2()2( bbSBgBgX ++=
)

, (10)

where  is a vector of nonlinearities, is a weight 
matrix and  is a bias vector respectively for i-th 
layer, i=1,2. The first weight layer will produce results 
related to (4) if we take . But we employ also 
some nonlinearities and the second layer, so comparing 
to the linear form the mixing system gains some 
flexibility.  If we learn the whole structure starting from 
system described by  with initial weights 
of B , we can expect the results will be better, 
see Fig. 2.  
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5 Practical experiment 
In practical experiment we have analysed the calls of 
clients with roaming services. If the unbilled amounts on 
their accounts grow quickly and there is a significant 
chance that the client will have the problems with an 
invoice settlement, he should be notified in advance. To 
estimate the non-payment-chance we need some tool 
anticipating, whether the customer will or will not pay. 
The data describe financial characteristic of the client 
and include 7607 observations for learning, 3802 for 
validating and 3802 for testing. About 22% of the 
customers have some payment problems.  
The further models will be evaluated with the PCC 
measure (percentage of correctly classified). For the 
confusion matrix: 

 Model classified as 
Positive 

Model classified 
as Negative 

Real True TP TN 
Real False FP FN 

the PCC measure will be calculated as: 
PCC = (TP + FN) /  

(TP + TN + FP + FN). (11)

Simple random marking 0 and 1 with probability 0.78 
and 0.22 gives the PCC = 65.04%. 
We have created three neural models of the MLP 
structure. The simplest model MLP2-7-1based on two 
variables: number of the outgoing calls blocks and time 

from last block. The hidden layer has hyperbolic 
activation function and the output layer – logistic. The 
aggregation functions are linear. The model achieved 
PCC = 77.96% on the testing set. 
The second model is MLP7-7-1 with input like in 
MLP2-7-1 and also minimal invoice amount, period 
within the telecom, sum of all the invoices issued, sum 
of all the invoices paid, ratio of unbilled amount in the 
sum of all the clients invoices. The aggregation and 
activation functions are like in the model MLP2-7-1. The 
PCC is 78.22% on the testing set. 
The third model is MLP9-10-1 with input like in the 
MLP7-71 model and moreover maximal invoice amount 
and average invoice amount. The aggregation and 
activation functions are like in the model MLP2-7-1. The 
PCC is 77.43% on the testing set. 
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Fig. 3. Improvement rate (in %) of the PCC  
 
Due to starting point randomization we have replicated 
the integration procedure 1000 times. In Fig. 3 you can 
observe the improvement results in the form of 
histogram. About 97% replications lead to the 
improvement of the PCC rate (improvement rate >0). 
The best result was about 12% and the average 5,3%. 
The experiment confirms that the procedure improves 
the model quality with statistical significance. 
 
 
6 Conclusions 
The adaptive dunning system for the telecom customers 
can includes the information integration obtained from 
many models of user behaviour. The ensemble method is 
based on decomposition procedure via non-negative 
matrix factorization what allows the identification of the 
fundamental components. The practical experiment 
confirms that the proposed procedure enhances the 
predictive power of the models and thus the validity of 
the approach, in general. 
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