
A General Algorithm for Triangular Meshes Simplification

BOŠTJAN PIVEC
University of Maribor
Faculty of EE and CS

Smetanova 17, 2000 Maribor
SLOVENIA

bostjan.pivec@uni-mb.si

VID DOMITER
University of Maribor
Faculty of EE and CS

Smetanova 17, 2000 Maribor
SLOVENIA

vid.domiter@uni-mb.si

Abstract: This article introduces the algorithm for simplification of 2D and 3D triangular meshes. The algorithm
evaluates and removes vertices. A hash table is used to speed up the process of selecting the appropriate vertex
for its removal. Therefore, this part of the algorithm is executed in constant time O(1). In spite of simplification,
triangular mesh models still keep majority of their own essential characteristics. With simplification we also ease
transfer of such models through the web.

Key–Words: Simplification, Triangular Mesh, Average Plane, Hash Table, 3D Model

1 Introduction
Nowadays, the majority of free-form geometric ob-
jects are represented with triangular meshes. Due
to high performance of today’s computers, meshes
can be described with more than 1.000.000 triangles.
Such meshes can be rendered in real-time even on
low-cost personal computers. However, the problem
occurs when transferring such large meshes through
the web. Namely, beside geometric data (coordinates
of vertices), triangular meshes are also described by
topological information, which defines how triangles
fit together. Hence, it follows that special-purpose
methods for topology compression have been pro-
posed [1, 2]. Fortunately, high precision of transferred
triangular meshes is not always required. Sometimes
we are satisfied only with good visual representation
of the geometric model. So we can afford to lose
some data with simplification. There are three main
approaches to choose from:

◦ The most frequently used methods are based on
Schroeder’s et. al. simplification algorithm [3, 4].
First, vertices are evaluated and then they are incre-
mentally removed from the mesh according to their
importance.

◦ Edge simplification methods evaluate and remove
edges. Removed edge is replaced with a vertex [5].

◦ Simplification based on triangles is possible in the-
ory yet practical solutions have not been reported.

The algorithm presented in this article is based
upon Schroeder’s vertex simplification method [3]. To
speed-up the search for the most suitable vertex to

be removed, a hash table has been used [6]. Krivo-
grad et.al. suggested this approach for 2.5D triangular
meshes [7]. The presented algorithm expands Krivo-
grad’s work in 3D.

2 Algorithm
The algorithm supports 2D, 2.5D and 3D triangular
meshes. For the method, on which it is based upon,
it is characteristic that we have to evaluate all vertices
correctly, before we can remove them. Input in algo-
rithm is a list of vertices and a list of triangles. The
algorithm works in the following steps:

1. Evaluation of all vertices of the triangular mesh.

2. Arrangement of evaluated vertices into the hash
table.

3. Selection of the most proper vertex for removal.

4. Removal of the selected vertex from the hash ta-
ble and triangular mesh.

5. Removal of the surrounding triangles of the
deleted vertex.

6. Triangulation of the empty space which occurs
as a consequence of removed triangles.

7. Reevaluation of neihghbouring vertices of
deleted vertex.

8. Rearrangement of reevaluated vertices in the
hash table.

9. Returning to step 3 until final condition is
reached.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 613

2.1 Evaluation of vertices
The first step of our algorithm is the evaluation of all
vertices in a triangular mesh. In this way, each ver-
tex is evaluated according to its importance. Lower
is the evaluation factor, the less important is the ver-
tex. There are different possibilities for the evaluation
criteria. For example, in 2.5D, two approaches are
proposed [7]:
◦ The vectors connecting the chosen vertex and its

neighbouring vertices are constructed. After that,
angles between these vectors and the appropriate
plane is calculated. Clearly, for 2.5D triangular
meshes this plane is plane XY. The average value of
all angles between this plane and vectors, which are
defined by chosen vertex and its neighboring ver-
tices, is considered as an evaluation factor.

◦ All distances from the evaluated vertex and its
neighbouring vertices to XY plane are computed.
The evaluation factor is an average difference of dis-
tances between chosen vertex and its neighbouring
vertices regarding the XY plane.

In our approach, the second possibility is general-
ized to 3D triangular meshes. Instead of using an XY
plane, we use an average plane on which the evalua-
tion factor is calculated. The evaluation factor repre-
sents the distance between the evaluated vertex and
the line defined by its neighbouring vertices, if the
evaluated vertex has only two neighbours. This case
can occur only in the corners of non-closed triangu-
lar meshes. The most frequent is the situation where
the evaluated vertex has three or more neighbouring
vertices. In this case, the average plane has to be cal-
culated.

The first step in determination of the average
plane is calculation of all possible combinations of
three arbitrary neighbouring vertices. Each combina-
tion defines a plane in the space described by a nor-
mal vector. The average normal vector, which deter-
mines the average plane, is calculated as the avarage
value of all normal vectors. Thus the evaluation factor
represents the average distances between the selected
vertex (v1 in figure 1) and its neighbouring vertices
regarding the average plane.

2.2 Hash table
The smallest visual change in a triangular mesh is
caused by deleting a vertex with the smallest evalu-
ation factor. After deleting such vertex, the evaluation
factor of its neighbouring vertices has to be recom-
puted. After that, the vertex with the smallest evalua-
tion factor has to be found again. In this way, O(n2)
time complexity is reached. To speed up the selection
of the vertex for its removal, a hash table is applied as

Figure 1: Evaluation of the vertex v1 according to av-
erage plane Σ

suggested by Franc and Skala [6] (figure 2). Vertices
are inserted into hash table according to the evalua-
tion factor. The same heuristic for constructing the
hash table as proposed in [7], has been used.

Figure 2: Structure of our hash table where n is num-
ber of intervals

The algorithm always selects the first vertex from
the lowest non empty hash table entry. The surround-
ing neighbours of removed vertex have to be evaluated
again. Normally, reevaluation change their evaluation
factor and sometimes also the interval in the hash ta-
ble. The reevaluated vertices are always placed at the
end of the list of vertices in the corresponding interval
of the hash table. In this way, the local simplification
of the triangular mesh is prevented.

The hash table is also used to preserve basic shape
of the geometric objects. This can be accomplished
by preserving the last list of vertices in the hash table,

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 614

where the edge vertices and vertices with the highest
evaluation factor are stored.

2.3 Triangulation
Together with the deleted vertex, all triangles that are
defined with this vertex are removed, too. The result
is a hole in the triangular mesh which should be filled
with new triangles. The outer edges of removed trian-
gles form a polygon which has to be triangulated. This
polygon is not necessarily planar. Therefore, all ver-
tices of this polygon are mapped on the average plane
(see section 2.1). In figure 3 vertices v2 to v6 are pro-
jected onto vertices v′2 to v′6 of the planar polygon.

Figure 3: Projection of vertices on average plane Σ

If the polygon is convex, the triangulation is triv-
ial, but if it is concave, well known ear cutting [8]
method is applied. In figure 4 we can see a triangula-
tion of the concave polygon.

Figure 4: Triangulation of concave polygon

When the triangulation of the planar polygon is
finished the newly constructed triangles are mapped

in the triangular mesh. Figure 5 shows the innitial
polygon filled with new triangles.

Figure 5: Result of triangulation

3 Results
In this chapter we estimate time complexity of the al-
gorithm as follows:

◦ Evaluation of vertices. l neighbouring vertices of
the evaluated vertex are needed for the evaluation
factor calculation. As l << n we can suppose that
constant time O(1) is needed. Therefore, all vertices
are evaluated in time O(n).

◦ Hash table. Constructing the hash table and filling
it with vertices is done in linear time O(n). In each
step, the selected vertex is deleted from the hash ta-
ble in constant time O(1). There are l << n reeval-
uated vertices. Each is inserted into the hash table
in constant time as well.

◦ The triangulation using the ear cutting method of a
polygon having l vertices is done in time O(l2). But,
as l << n the task can be considered as finished in
constant time O(1) per removed vertex.

Thus, the common time complexity of the algo-
rithm is O(n).

The algorithm was tested on various triangular
meshes found on the web. The simplification of the
pumpkin model is presented in figures 6, 7 and 8.

We simplified the mesh to a level that still assures
good visual appearance. Results of the simplification
are shown in table 1. The graph in figure 9 confirms
good behaviour of the algorithm. All measurements
were performed on a computer with AMD Athlon XP
2800+ processor and 1GB DDR 333Mhz RAM.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 615

Figure 6: Pumpkin model with 5002 vertices and
10000 triangles

Figure 7: Simplified model with 2501 vertices and
4998 triangles

Figure 8: Simplified model with 501 vertices and 998
triangles

Table 1: Simplification results

Mesh % Vertices Triangles Time (s)
90 4502 9000 0.062

Pumpkin 80 4002 8000 0.125
70 3502 7000 0.188

Vertices: 5002 60 3002 6000 0.25
Triangles: 10000 50 2501 4998 0.297

40 2001 3998 0.359
30 1501 2998 0.406
20 1001 1998 0.438
10 501 998 0.484

Figure 9: Time graph for simplification of Pumpkin
model

4 Conclusion

This paper presents an efficient and general algorithm
for simplification of triangular meshes. It is based on
Schroeder’s et. al. idea of vertex removal. In gen-
eral, the selection of vertex for its removal requires
O(n2) time. Krivograd’s et. al. applied a hash table
for accelerating this selection. However, their method
is limited only to 2.5D triangular meshes. In this pa-
per, we have developed an algorithm that operates in
3D. For this, the new evaluation criteria is proposed
and implemented.

Acknowledgements: The research project was sup-
ported by the University of Maribor, Faculty of Elec-
trical Engineering and Computer Science. The first
author received research grant for one year.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 616

References:

[1] C. Touma, and C. Gotsman, Triangle Mesh Com-
pression, In: Graphics Interface, 1998, pp 26-34.

[2] P. Alliez, and M. Desbrun, Valence-Driven Con-
nectivity Encoding for 3D Meshes, Computer
Graphics Forum, 2001, vol. 20, no. 3, pp. 480-
489.

[3] William J. Schroeder, Jonathan A. Zarge,
William E. Lorensen, Decimation of Triangle
Meshes, Computer Graphics, 1992, vol. 26, no.
2, pp 65-70

[4] Michael Garland, Paul S. Heckbert, Fast Polyg-
onal Approximation of Terrains and Height
Fields, technical report, CMU-CS-95-181, 19.
September 1995

[5] Hugues Hoppe, Tony DeRose, Tom Duchamp,
John McDonald, Werner Stuetzle, Mesh
Optimization, ACM Computer Graphics -
SIGGRAPH’93, Anaheim, California, Unated
States, 1993, pp. 19-26

[6] M. Franc, V. Skala, Parallel Triangular Mesh
Decimation Without Sorting, SCCG Proceed-
ings, Budmerice, 2001, pp. 69-75

[7] Sebastian Krivograd, Borut Žalik, Franc Novak,
Triangular mesh decimation and undecimation
for engineering data modelling, Inf. MIDEM,
September 2002, vol. 32, no. 3

[8] Marko Lamot, Borut Žalik, A fast polygon trian-
gulation algorithm based on uniform plane sub-
division, Computer & Graphics, 2003, vol. 23,
no. 2, pp. 239-253

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 617

