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Abstract—This paper presents some relevant results of a novel 
variant of the Backpropagation Algorithm to be applied during 
the Multilayer Perceptrons learning phase. The novelty consists in 
a weighting operation when the MLP learns the weights. The 
purpose is to modify the Mean Square Error objective giving 
more relevance to less frequent training patterns and resting 
relevance to the frequent ones. The inherent statistical 
distribution of training patterns is used to quantify how frequent 
a pattern is. The results, applied to a radar  detector, show that 
Backpropagation with Weighting training requires much less 
training patterns maintaining the Artificial Neural Network 
performance. 

KEYWORDS: Neural Networks, Backpropagation Training 
Algorithm, Importance Sampling, Binary Detection, Detection 
Curves. 

 

I. INTRODUCTION 

The whole idea of the experiment is to improve the basic BP 
algorithm [9][10] used to train an Artificial Neural Network 
(ANN) of the Multilayer Perceptron (MLP) type manipulating 
the Mean Square Error (MSE) objective function in order to 
give more relevance to less frequent training patterns and 
resting relevance to the frequent ones. If the MSE objective 
function is defined by the following expression: 

 
{ }2( )MS dE Y Yε= −   (1)  

 
where the random variable ( )Y g X=  is the neural network 
output and X is a random variable of the training input vectors 

1 2( , ,... )nx x x x= , ( nx R∈ ), where nR  is the n-
dimensional space. Yd represents the desired output. From 
statistical inference theory applied to Eq. (1), an estimator of 
EMS is given by [1]: 
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where * , 1, 2...kx k N= , are independent sample vectors 

whose pdf is * ( )Xf x , and  e(·) is the error as a function of the 
training  inputs applied in MLP training to update the weights 
in each training iteration step.  * ( )Xf x  is ideally given by [1]: 
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and it is not possible to be known a priori because EMS is not 
known and e(·) is changing in each iteration. Nevertheless, the 
suboptimal solutions can be tested, if * ( ) 0Xf x ≠  wherever 

( ) 0e x ≠ , nx R∀ ∈ . 
 

II. WEIGHTING OPERATION 

The scheme in Fig. 1 represents the training cycle when 
applying the weighting function. 
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Fig. 1.  Weighted Training Cycle 
 
For weighting, we have tested two different functions: 
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and 

 * 0.01( )
ˆXf x
y

= . (5) 

Eq. (2) in fact shows that the MSE can be achieved if we 
divide the error function e(·) by a weighting function * ( )Xf x . 
In Eq. (4) a Gaussian function is proposed as weighting 
function supposing that the inputs also have Gaussian 
distribution. In Eq. (5) the advantage is taken from the inherent 
a posteriori probabilities estimation of the MPL output.    
 

III. COMPUTER RESULTS 

Experiments have been carried out in order to evaluate the 
Backpropagation with Weighting (BPW) [5][6][7] algorithm.  
The main objective of these experiments is the evaluation of 
the weighting function capabilities and limits.  We present the 
results obtained from training of 100 Neural Networks (NNs) 
using a BPW algorithm consisting in Least Mean Square 
(LMS) criterion modified by the proposed weighting functions. 

A. General Characteristics of the Experiments 
The ANNs used are MLPs with structure 16/8/1 (that is 16 

inputs, and one hidden layer of 8 units).  The choice of the 
structure and the rest of parameters of the network was the 
optimal solution for the given example application [4]. The 
activation function is sigmoidal with scalar output in the range 
(0,1) and, it is the same for all the neurons. 

For the training of the network we used balanced patterns of 
two classes, being class H0 noise patterns and being class H1 
signal received with additive Gaussian noise.  These patterns 
configure the problem of signal detection noise and the ANN 
acts as a binary detector. The application of the ANN is an 
elemental radar detection problem [4] when the basic 
parameter for the patterns is the Signal to Noise ratio, SNR, and 
the performance of the detectors is evaluated in terms of the 
Neyman-Pearson criterion. That is, maximizing probability of 
detection, Pd, (the probability of classifying correctly the 
patterns belonging to the class H1) for a fixed false alarm 
probability, Pfa (the probability of classifying erroneously the 
patterns belonging to the class H0).  In the radar literature, 
performance is evaluated through the Detection curves  (Pd vs. 
SNR), so we use these detection curves to present the results of 
our method.  

In our previously conducted experiments the training of a 
network was limited to the error probability value in range of 
0.1–0.2.  Fig. 2 shows an example of NN training only using 
weighting function (4). As we can notice, classification error 
reached the value of 0.125, and this NN could not be 
considered completely trained. For this reason, the weighting 
function (1) was applied until the critical error probability 
value was reached, and from that point the weighting function 
was changed to (2).  The function (5) is not valid until the 

output of the network is a sufficiently good approximation of 
the a posteriori probabilities of the inputs. In the first 
iterations, it can be ˆ 0y = , and the NN stops learning.  We 
conducted two experiments with the different critical error 
probability values: 0.2 and 0.15. 

In each experiment 100 networks were trained in order to 
achieve mean results that does not depend on initial random  

 
Fig. 2.  Classification error in training phase with only one 

weighting function. 
 
 

value of the weights of the ANN. Two different criterions were 
applied to stop the training: in one case it was stopped when 
the error reached zero (denoted as ism) and in the other the 
training was conducted with a fixed number of 3000 patterns 
(3ism). 

As usual [2], three set of patterns have been used to design 
the network. A training set (composed of patterns of  
SNR=13.2 dB for class H1 ), a test set to calculate the error 
during training and a validation set to obtain the detection 
curves.  

B. Critical error probability 0.2 
Fig. 3 shows the error evolution during the network training 

phase, calculated as the rate of misclassified patterns of the 
training set out of the total number of patterns.  We can notice 
that the combination of the proposed weighting functions in 
this experiment made possible to override the threshold of 
error of 0.2 where the training was stopped when using only 
one function. 
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Fig. 3.  Classification Error in Training Phase, Threshold 0.2. 

 
Fig. 4.  Detection Probability, Pfa=10-2, Threshold 0.2. 

 
 

 
 

Fig. 5.  Detection Probability, Pfa=10-3, Threshold 0.2. 
 

 
 

Fig. 6.  Detection Probability, Pfa=10-4, Threshold 0.2. 
 

The detection probability for three different false alarm 
probability (probability of “decide H0 when input corresponds 
to H1”) values related to the SNR are shown in Fig. 4, 5 and 6, 
respectively.  The red line represents the theoretical maximum 
by Marcum theorem [8].  The green line represents average 
performance for the networks that were trained until the error 
probability reached zero and the blue line is used for the 
networks trained with the fixed number of patterns.  False 
alarm probabilities, Pfa, of 10-2, 10-3 and 10-4 have been 
considered.  For the detection probability that corresponds to 
the false alarm probability of 0.01, we find that the results are 
noticeably better if the NNs were trained with the fixed number 
of patterns (3000) for all the values in relation to the SNR 
between 0 and 8 dB. 

In the case of false alarm probability of 0.001 and 0.0001 we 
get better results for training a network with the fixed number 
of patterns and the curve (blue) is much closer to the 
theoretical one (red).  For the high SNR values the results 
could be improved, which could make a part of the future lines 
of investigation. 

C. Critical error probability 0.15 
Fig. 7 shows the results obtained for setting the threshold for 

changing the weighting functions at 0.15.  Again, we 
considered two criterions for stopping the training of a 
network, when error reaches zero and with the fixed number of 
patterns. 

We can see that the decision to change the weighting 
function when the threshold 0.15 was reached gave the 
satisfying results because the training continued lowering the 
error value.  Fig. 8, 9 and 10 show characteristics of trained 
networks for false alarm probabilities, Pfa, of 10-2, 10-3 and    
10-4.  The results obtained are better in the case of training a 
network with the fixed number of patterns, as it was with the 
threshold of 0.2. 

Finally, in both cases training continued over the limiting 
value detected using only one weighting function. 
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Fig. 7.  Classification Error in Training Phase, Threshold 0.15. 

 
Fig. 8.  Detection Probability, Pfa=10-2, Threshold 0.15 

 
 
 

 
Fig. 9.  Detection Probability, Pfa=10-3, Threshold 0.15 

 
 

 
Fig. 10.  Detection Probability, Pfa=10-4, Threshold 0.15. 

D. The Best Obtained Network 
The error probability evolution of the best network obtained 

is shown in Fig. 11.  Only 355 iterations were needed to reach 
the zero classification error.  We can see that the network has a 
rapid error evolution to the zero value, with a low number of 
iterations.  This allows us to save time and resources.  The 
threshold for changing the weighting function was set to 0.2. 

Fig. 12, 13 and 14 show the characteristics of trained 
network for false alarm probabilities, Pfa, of 10-2, 10-3 and 10-4.  
We can see that the distance between two curves is less than 1 
dB.  Even though the number of iterations used was small, we 
can conduct the training with fixed number of patterns and get 
values even closer to the theoretical maximum.  These results 
demonstrate, one more time, the performance of NNs achieved 
by training with the small number of iterations using BPW 
criterion with two weighting functions.  We generated NNs 
with similar or better characteristics than those obtained using 
BPW with only one weighting function or the classical BP.  
From this last experiment we just may extract some 
conclusions about the performance a neural detector trained by 
BPW might reach in the most favorable conditions. 

 
Fig. 11.  Classification Error in Training Phase, Threshold 0.2, The Best Case 
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Fig. 12.  Detection Probability, Pfa=10-2, Threshold 0.2, The Best Case 

 

 
 

Fig. 13.  Detection Probability, Pfa=10-3, Threshold 0.2, The Best Case 
 

 
 

Fig. 14.  Detection Probability, Pfa=10-4, Threshold 0.2, The Best Case 
 
 

IV. CONCLUSIONS 

The results of the experiments presented in this paper show a 
drastic reduction in the number of training patterns (one order 
of magnitude) for Backpropagation algorithm optimized by 
using Weighting techniques.  Combination of two weighting 
functions makes possible to override the critical value of error 
probability.  In many practical applications, when few patterns 
are available for NN training, the proposed Weighting 
technique could be extremely useful. 
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