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Abstract: - This paper presents the use of artificial neural networks (ANN) to estimate electric fields around an 
overhead power transmission line. Although there exist many efficient numerical methods, e.g. finite 
difference method (FDM), finite element method (FEM), boundary element method (BEM), etc, to estimate 
electric field distribution caused by live conductors, it typically consumes substantial execution time when 
high accuracy of obtained solutions is required or especially when time-varying field is involved. Therefore, to 
estimate the electric field strength using ANN employing feedforword network with backpropagation learning 
can be an alternative. To evaluate its use, an overhead single-phase power line of 100 m2 test area was 
simulated with 22 kV standard distribution level of Thailand. The results obtained from the ANN are 
compared with those obtained by the analytical method, the FDM and the FEM.     
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1   Introduction 
The computation of electric fields is complex and 
difficult to find an exact solution [1]. Several 
numerical techniques have been increasingly 
employed to solve such problems since availability 
of high performance computers. Among these, finite 
difference method (FDM), finite element method 
(FEM) and boundary element method (BEM) are 
very popular [2]. Although they are simple and 
useful to estimate electromagnetic fields, it typically 
consumes substantial execution time when high 
accuracy of obtained solutions is required or 
especially when time-varying field is involved. 
Utilizing some efficient intelligent methods such as 
artificial neural networks (ANN) is able to estimate 
an electric field via an appropriate neural model. 
This technique is very useful when some 
environmental factors (e.g. temperature, moisture, 
etc) are taken into account [3]. The neural model is 
very flexible. When its weighting parameters are 
successfully trained corresponding to appropriate 
input variables, electric field estimation of any input 
values can be made rapidly. 
    The prediction of electric field intensity is very 
important in many aspects nowadays. Due to 
difficulty and time consuming of electric field 
measurement, numerical calculation can be applied 

to evaluate electric field distribution. In addition, 
since serious effects on health risk caused by electric 
field strength have been reported [4], 
recommendation and guidelines of electric-field-
related tasks such as an overhead power 
transmission line are released to prevent a careless 
activity that might be performed close to the 
restricted area around the live conductor.  
     In this paper, exploitation of neural modeling to 
estimate electric field strength at any point around 
an overhead transmission line is demonstrated. The 
popular feedforward network with backpropagation 
learning is used. First of all, Section 2 presents an 
analytical solution of electric fields around an 
overhead power line system of a special case of a 
single conductor. Also, brief explanation of FDM 
and FEM to estimate electric field solutions is 
included. The neural model of electric field 
estimation is described in Section 3. Section 4 and 5 
show numerical results and conclusions 
respectively. 
 
2 Electric Field Calculation of a Single 
-conductor System 
Fig. 1 shows a single conductor system in 2D. Points 
1 and 1’ in the figure represent the live conductor 
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with potential V1 and its image potential, 
respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A single conductor system 
 

     To compute the electric field strength at a point 
P(x,y) can be performed in many different ways. 
Some require tedious and substantial mathematical 
expression. Whereas some employ a simple formula, 
but obtained solutions are less accuracy.   
    In this paper, an analytical solution derived from 
Maxwell’ equations, the FDM and the FEM are 
summarized. 
 
 
2.1 Analytical method 
From Maxwell’s equations electric field strength at a 
specified point P(x,y) can be expressed [5] as 
follows.   
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Where  r is a conductor radius 
h is a distance between the conductorand 
   the earth surface underneath 
V1 is a conductor potential 

    Beside the analytical approach, numerical 
solutions can be alternatively obtained by using the 
FDM and the FEM. 
 
 
2.2 Finite Difference and Finite Element 
Methods 
Solutions of partial differential equations such as 
Laplace or Poison equations can be obtained 
numerically by using the FDM and the FEM. These 
two methods divide a domain into many small 
discrete elements to formulate a set of algebraic 
difference equations characterizing electric flux of 
the domain. With given boundary conditions on the 
solution region, an approximate solution is simply 
obtained by solving such algebraic equations. In 2D 
problems, rectangular grid and linear triangular 
elements as shown in Fig. 2 are the most commonly 

used domain discretization [6] for the FDM and the 
FEM respectively.  

 
Fig. 2. Domain discretization of the FDM and FEM 

 
       After all node equations or all element equations 
are successfully derived, they must be assembled 
altogether to represent the unified characteristic of 
the entire domain. The entire system is expressed in 
matrix form as [C][V] = [F], where [C] is a 
coefficient matrix, [V] is a vector of unknowns and 
[F] is a vector of external forces. Its solutions can be 
obtained with many efficient techniques of handling 
a set of linear equations, e.g. Gaussian elimination, 
matrix factorization, conjugate gradient method, etc. 
     Although the FDM is straightforward and simple, 
it is not widely used when a non-uniform domain 
shape and heterogeneous conditions are involved. 
The FEM is more acceptable to deal with nonlinear 
problems. However it can be computationally 
expensive for large problems. Furthermore, to 
include effects of conductor size, unstructured and 
non-uniform grid must be used inevitably. Hence, 
the overall execution time is very expensive.  
 
 

3  Electric Field Model using Artificial 
Neural Networks 
The ANN is well-known and widely used in several 
research areas [7]. The ANN typically consists of a 
set of processing elements called neurons that 
interact by sending signals to one another along 
weighted connections. The connection weights, 
which can be determined adaptively, specify the 
precise knowledge representation. Usually it is not 
possible to specify the connection weights 
beforehand, because knowledge is distributed over 
the network. Therefore, a learning procedure is 
necessary in which the strengths of the connections 
are modified to achieve the desired form of 
activation function.  
     In electromagnetic problems, a small number of 
publications have been found. The implementation 
of ANN model for electric field problems requires 
electric field database of a 2D field domain. This 
paper focuses on the estimation of the electric field 
strength. Hence a single output structure of the ANN 
is presented as shown in Fig. 3.  
     All weighting parameters are obtained by 
backpropagation training in order to minimize mean 

P(x,y)
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square error or so-called loss function. Fig. 4 shows 
training structure of a simple feedforward network. 
The training problem can then be formulated as the 
following optimization problem. 

 
 

Fig. 3. Simple structure of a feedforward neural network 
              

( ) ( )( )
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d,i i d,iS Rw i=1 i=1

1 1
minimize z z z f Wp+b

2 2
MSE

×∈ℜ
= − = −∑ ∑   (2) 

 
     Some efficient classical optimization techniques 
such as steepest descent methods, Newton and 
quasi-Newton methods, etc, are applied to find a set 
of optimal weighting parameters [8].   
 

 
 

Fig. 4. Training structure of a simple feedforward network 
 
    In this paper, when a solution region is defined, 
electric field strength depends on a position of 
measured points, boundary conditions, conductor 
radius, environmental conditions, etc. All physical 
factors can be taken into account as many as 
possible, as shown in Fig. 5.  
 

 
 

Fig. 5. Relation among physical factors via neural model 
 
 

4   Numerical Results 
100 m2 area near an overhead power transmission 
line as shown in Fig. 6 is situated as the test system. 
The voltage distribution standard level of Thailand 
(22 kV, 50 Hz) is applied as the surface conductor 

potential. For benchmarking, calculation lines of 2-
m, 4-m, 6-m above the earth surface and the earth 
surface level are defined.  
 

           
 
  Fig. 6. Test domain of an overhead power transmission line 
 
     For comparison, the solution domain for the 
FDM and the FEM can be discretized as shown in 
Fig. 7. 
 

 
                a) FDM domain                              b) FEM domain 
 

Fig. 7. Solution domain of the FDM and the FEM 
 
    The neural model used in this paper consists of 
two layers with 500 nodes and 1 node respectively. 
The transfer function of the first layer is the log 
sigmoid transfer function, while the linear transfer 
function is applied to the second layer. The training 
process corresponds to electric field strength as a 
function of Cartesian coordinates (x,y), conductor 
radius and boundary conditions. The training of the 
neural network is carried out through 108 training 
points, 36 training for each radius (35 70 and 150 
mm2 AAC: All Aluminium Conductor) as shown in 
Fig. 8.   
 
 
 
 
 
 
 
 
 

Fig. 8. 36 training points for a fixed radius of the 
neural network model 
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     After the training, electric field strength at test 
positions along the calculation lines can be achieved 
and graphically presented in Figs 9 and 10.  
     As a result, the neural network model gives good 
performances for the electric field strength 
estimation. With the training algorithm, this model 
can account effects of some key environmental 
factors such as conductor size, temperature, 
moisture and humidity, dirt or fog condition, etc. 
This leads the neural network approach to overcome 
other efficient numerical methods like the FDM and 
the FEM in this aspect.  
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Fig. 9. Electric field strength caused by 35 mm2 ACC 
 conductor size 
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Fig. 10. Electric field strength caused by 70 mm2 ACC 
conductor size 

 
 

5 Conclusion 
Estimation of electric field strength can be 
performed by using the neural network model. In 
this paper, an overhead 22-kV power transmission 
line is used for test as a solution domain. It consists 
of 121 nodes. The training of neural network is 
based on training data, which correspond to the 
electric field strength at given points. This system is 

simple and the analytical solution is available for 
comparison. With 108 training data, optimal 
weighting parameters are obtained by minimizing 
the mean square error. The test of the network is 
challenged with 44 test points along four calculation 
lines above the earth surface. The numerical results 
present good agreement with that obtained by the 
analytical method, while the FDM and the FEM do 
not. It is very important to be in evidence that the 
neural model gives good results in electric field 
estimation. This might imply that the neural network 
approach can be further used to predict electric field 
distribution around an overhead power transmission 
line under an unexpected weather condition, e.g. 
rainy, foggy, dirty, or other extreme conditions. 
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