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Abstract: - Custom ring tones for cellular phones have become extremely popular over the past several years, 
allowing users to customize their mobile computing experience, expressing their personality or enjoying their 
favorite tune.  In the ring tone selection process, a user generally searches or browses for a ring tone by title in one 
of several ring tone databases and then purchases his selection.  Research into query-by-humming systems may 
eventually enable users to select a song by singing a segment of it.  This project, Sing-a-Ring, extends the user ring 
tone experience by allowing users to create their own ring tones by singing.  Unlike current options to record a 
sound file and set that as a ring tone directly, this application uses an autocorrelation algorithm to convert the 
recorded sample to a MIDI file and then provides customization options, such as instrument and tempo selectors.  
This application is implemented on the Java™ 2 Platform, Micro Edition (J2ME), and has been tested on a 
Motorola RAZR V3i phone.  For the current implementation, due to format conversion issues, recordings must be 
created on a computer and then transferred to the phone.  Nevertheless, the current application is a proof of concept 
with great potential, especially if access to AMR decoding libraries and the digital signal processing chip is 
available. 
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1 Introduction 
In the U.S. in 2005 alone, an estimated $500 

million was spent on ring tone purchases, up from 
$245 million in 2004 [1].  These ring tones are 
generally selected by searching or browsing for a 
ring tone by title, genre, or artist and then 
downloaded to a phone.  Research into query-by-
humming (QBH) systems offers the possibility of an 
alternative ring tone selection method.  Instead of 
locating a song by name or other descriptive features, 
with a QBH system, a user can sing or hum a melody 
and similar ring tones are returned in a result list.  
There are a variety of approaches to QBH, and a 
performance comparison of several popular 
techniques, including note-interval matching, 
melodic contour matching, hidden Markov-models, 
and the CubyHum algorithm can be found in [2]. 

While current ring tone selection methods have 
proven very popular, they limit users to the set of 
songs in the database and have scalability issues.     
In order to further the customization experience, the 
system implemented in this paper, Sing-a-Ring, 

allows users to create their own ring tone by singing 
it.  In contrast to current systems that allow a user to 
record a sound sample and then play it directly as a 
ring tone, this application transcribes a recorded 
sample to a MIDI file and then provides the user with 
the ability to set the instrument, tempo, and 
transposition of the newly created ring tone.   

There are limitations in the current 
implementation that are not an issue with traditional 
ring tone selection methods, such as the restriction 
that melodies can only consist of one voice, the 
requirement that the user hold a tune with reasonable 
accuracy, and the requirement that the melody fall 
within the singing range of the user.  These are not 
small problems, but there are steps to alleviate them.  
For instance, it would be possible to allow a user to 
make two recordings, interleaving the two 
transcribed melodies into one ring tone.  

The rest of this paper is organized as follows.  
Section 2 provides an overview of current 
transcription techniques.  Section 3 discusses the 
implementation of Sing-a-Ring and some challenges 
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and solutions specific to cell phone development.  
Application results are presented in Section 4, 
Section 5 provides a brief conclusion, and Section 6 
discusses ideas for future work. 

2 Transcription 
The conversion of raw audio data from a musical 

performance into a human readable score has 
numerous intricacies and challenges, including: 
identification of the different timbres of different 
instruments; differentiation of individual notes 
despite spectral overlap caused by overtones; 
recognition of precise note durations; and allowance 
for poor recording quality, imprecise performance, 
and stylistic performance practices.  Both 
commercial [3], [4] and research-oriented systems 
exist with varying levels of accuracy.  Some recent 
work includes matrix factorization [5], neural 
networks [6], Dynamical Bayesian Networks [7], 
hidden Markov models [8], and direct signal 
processing methods [9], [10], some of which 
incorporate various psychoacoustic models.  These 
approaches have yielded highly successful results for 
monotimbral pieces, pieces that remain in one key, 
and synthetically generated sounds. 

2.1 Onset, Offset, and Rhythm Detection 
An important part of any complete transcription 

system is a method to determine when notes begin 
and end.  For a system that converts a recording to a 
score, it is also necessary to make an estimate for the 
meter of the piece.  Bello et al. have a summary of 
current onset techniques in [11].  The basic process 
of most onset detection algorithms is to begin with a 
signal, apply some number of preprocessing steps, 
such as amplitude normalization or half-wave 
rectification, apply a reduction algorithm to generate 
a detection function, and then choose onsets with a 
peak identification algorithm.   

After a reduction algorithm has constructed a 
detection function, there is often some post 
processing to provide consistency to the detection 
function and a threshold selection process to 
determine what constitutes enough activity in the 
detection function for a note to be considered active.   

Many applications also require meter estimation 
to generate a musical score.  One approach is to 
simply perform long-term autocorrelation estimates, 
generating peaks at the strong beats of the piece, 
indicating the meter, or rhythmic periodicity, rather 

than the pitch periodicity generally obtained when 
applying autocorrelation [12].  There are also more 
involved approaches which attempt to identify all 
note onsets and then estimate the underlying rhythm, 
often with probabilistic methods [9]. 

2.2 Pitch detection 
Most techniques for monophonic transcription are 

classifiable into the three categories of spectral-
location, spectral-interval, and the "unitary" 
approach.  Spectral-location approaches include 
autocorrelation of the time domain and explicit 
pattern matching of the Fourier decomposition of a 
signal.  With autocorrelation, the highest peak of the 
autocorrelation function is assumed to represent the 
fundamental frequency.  The spectral-interval group 
of algorithms focuses on the distance between 
prominent partials, allowing for a more comfortable 
acceptance of inharmonicity while the "unitary" 
approach describes a model that attempts to take into 
account both spectral-location and spectral-interval 
information as well as psychoacoustic research. 

Two examples of fairly effective transcription 
algorithms are the YIN algorithm proposed by 
Cheveigne [10], which improves upon simple time-
domain autocorrelation, and the Enhanced Summary 
Autocorrelation Function (ESACF) proposed by 
Tolonen [13], which is based on a two channel 
filterbank spectrum autocorrelation approach.  The 
ESACF has been shown to also work with decent 
accuracy for polyphony of several voices.  A more 
comprehensive examination of monophonic 
transcription techniques than the brief discussion 
here is available in [9] and [14].   

3 Implementation 

3.1 Algorithms 
One of the most popular algorithms for 

transcription is the autocorrelation function (ACF), 
which is a time shifted cross-correlation of a signal 
with itself: 
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In the equation, t is the time, W is the window 
size, x is the sample array, and τ is the lag, the 
amount of displacement in cross-correlation.  Many 
improvements have been made to the simple ACF 
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algorithm to improve its accuracy.  One such 
improvement weights lower lag values more heavily 
by reducing the window size for higher lag values, in 
order to reduce the possibility of an integer multiple 
of the lag estimating a halved fundamental pitch: 
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Initially a simple transcription algorithm was 
developed that performed autocorrelation on each 50 
ms time window of a sample, with a simple filtering 
scheme for the resulting pitch estimates.  While this 
transcription algorithm has decent performance, it is 
not feasible to run it on a cell phone due to the large 
number of pitch estimates required.  Thus, a new 
transcription algorithm was developed that imposes a 
few requirements on the sound sample.  The 
algorithm operates by requiring that each note be 
separated with a short silence (approximately 50 ms).  
Using an O(N) algorithm examining the amplitude 
envelope to detect note onset and offsets, the 
program assumes that the pitch remains constant for 
the entirety of the note.  This allows one pitch 
estimate to be made for each note instead of each 
frame. 

The custom onset algorithm maintains a sliding 
window sum of the peaks of the sample, at each peak 
adding the sample amplitude value and subtracting 
the peak value at the current time minus the window 
size.  This generates the window sum: 
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When the window sum is above a certain 
threshold, it is assumed that a note is active.  By 
examining when the sum crosses the value set as the 
threshold parameter, it can be determined when notes 
begin and end.  In order to minimize erroneous notes, 
a minimum note length is imposed on the detection 
process.  The entire onset detection process requires 
one iteration of the sample array and is O(N).  The 
threshold used for determining note offsets is 
currently fixed because even a simple form of 
dynamic thresholding is quite expensive.  A fixed 
threshold for this application should be sufficient as 
long as the user sings at a moderate volume. 

Once the note boundaries have been determined, 
an autocorrelation estimate is taken at approximately 
the middle of the note over a 20 ms window with an 

autocorrelation lag range of 64Hz to 800Hz.  Since 
the J2ME Math library does not contain a native log 
function, the MIDI number is approximated from a 
table in static memory with a list of MIDI numbers to 
frequency values.  In order to conserve space in 
transferring data to the phone via a .jar file, the sound 
sample was saved as a list of float values 
representing the sample data from the .wav file.   

Once all of the notes have been temporally and 
spectrally located, the melody is converted to MIDI 
format using a custom MIDI writing library. 

3.2 Cell Phone Platform 
The Sing-a-Ring system was developed for the 

Motorola RAZR V3i using the Java™ 2 Platform, 
Micro Edition (J2ME), the only supported 
development environment for the V3i.  Cell phone 
applications written with the J2ME are called 
MIDlets, as they use the Mobile Information Device 
Profile (MIDP), which is used in conjunction with 
the Connection Limited Device Configuration 
(CLDC).  There is a cost for the flexibility afforded 
by J2ME, including runtime overhead incurred by the 
virtual machine.   

3.3 Limitations and Challenges  
Processor speed, memory size, and memory speed 

are three of the primary limiting factors for cell 
phone applications.  The V3i took approximately 10 
and 30 seconds to perform 1,000,000 additions and 
multiplications respectively.  Since autocorrelation, 
in the process of cross-correlating a signal with itself, 
requires a large number of both additions and 
multiplications, each autocorrelation pitch estimate 
takes a noticeable amount of time, often slightly over 
a second.  Data access speed is also a problem, 
especially when the data must be saved in the 
MIDlet’s .jar file, because the data must first be read 
from the phone’s memory and then decompressed 
with the phone’s processor.  The limited heap size is 
also problematic for a transcription algorithm, as raw 
sampled data can quickly consume considerable 
amounts of memory. 

Java security privileges proved to be an issue as 
well.  Certain portions of the J2ME APIs are only 
exposed to MIDlets which have been signed by a 
certificate granted by Motorola.  An example is the 
JSR75 FileConnection API [15] which allows a 
MIDlet to read and write from the phone’s main 
memory.  Without a valid Motorola approved 
development certificate, a MIDlet cannot access the 
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phone’s memory.  Thus all data to be read by the 
phone must be packaged in the .jar file with the 
MIDlet, and no data can be saved back to the phone.   

The main obstacle, however, to a fully functional 
program was the lack of an exposed API for 
decoding AMR streams.  Unfortunately, AMR is the 
only recording format supported on the V3i, and 
while AMR streams can be played through the 
JSR135 API, there is no way to decode the stream to 
extract the raw sampled data, according to a 
Motorola representative [16].   Thus, it has not been 
possible to decode AMR data recorded on the phone 
and all recording must be done on a computer. 

4 Results 

4.1 Transcription Results 
In the forthcoming discussion, the initial 

transcription algorithm introduced and the algorithm 
optimized for the cell phone will, creatively, be 
referred to as algorithms 1 and 2 respectively.  
Results from three example recordings illustrate the 
different problems with each algorithm.  The three 
samples are excerpts from the beginnings of the well-
known tunes, Somewhere Over the Rainbow (Some), 
Jingle Bells (Jingle), and Mary Had a Little Lamb 
(Mary), sung and recorded by the author.  All three 
samples were recorded as 16-bit 8kHz samples to 
match the audio format on a V3i.  Table 1 describes 
the properties of each sample.   

Tables 2 and 3 show the accuracy of each 
algorithm with the number of correct notes, omitted 
notes, extra notes, and pitch errors for each sample.  
As shown, algorithm 1 omits many of the notes, 
though this is caused by a lack of onset detection, and 
thus repeated notes are mistakenly identified as one 
note of longer duration.  Ignoring errors in note 
repetition, algorithm 1 correctly identifies all of the 
pitches at approximately the correct time, but it also 
mistakenly transcribes erroneous pitches that make it 
aurally difficult to identify the melody.  Algorithm 2, 
in contrast, does not spectrally locate all of the 
correct pitches.  Since it is only making one pitch 
estimate per note, it is assuming that the ACF 
estimate will be correct, though it sometimes is not.  
As expected, algorithm 2 outperforms algorithm 1 in 
terms of total errors for these samples as they were 
created with the constraints of algorithm 2 in mind.  
Neither transcription algorithm presented herein is a 
robust solution, but each is better suited for specific 

tasks: algorithm 1 functions better for sound samples 
generated from a MIDI synthesizer, and algorithm 2 
is a decent initial algorithm for recorded voice 
samples given the computational limits of a cell 
phone.  Algorithm 2 could be improved by taking 
several pitch estimates for each note at different 
sample frames where the note is active and averaging 
the estimates.  This would, however, also increase the 
execution time substantially. 

 
Table 1. Audio Samples 

Sample Length  Intonation Notes 

Some 7.4 sec Good 7 

Jingle 7.1 sec Fair 11 

Mary 8.6 sec Poor 13 

 

Table 2. Algorithm 1 Performance 

Sample Correct Omit. Extra Pitch err. 

Some 7 0 3 0 

Jingle 6 3 2 0 

Mary 8 5 9 0 

 

Table 3. Algorithm 2 Performance 

Sample Correct Omit.  Extra Pitch err. 

Some 7 0 0 0 

Jingle 8 0 0 3 

Mary 7 0 0 6 

4.2 Execution Time Analysis 
In addition to outperforming algorithm 1 on 

accuracy for the selected samples, algorithm 2 also 
outperforms it in terms of computational 
requirements, largely due to the reduced number of 
autocorrelation estimates required.  Table 4 illustrates 
the average total run times for both algorithms for the 
three samples shown in Table 1 on a computer, and 
Table 5 displays the run times for algorithm 1 for the 
three samples of Table 1 on a Motorola RAZR V3i.  
When executed on a cell phone, algorithm 2 takes 
approximately two orders of magnitude longer than 
when executed on a computer, from one quarter of a 
second to one and a half minutes.  Combined with the 
results of Table 4 this would seem to indicate that 
algorithm 1 should be able to run in approximately 
twice the time, or 3 minutes.  However, the seven 
pitch estimates for the Some sample take about 20 
seconds, 2.8 seconds per pitch estimate.  Assuming 
an autocorrelation window of size 400 samples – 20 
ms – with continuous pitch estimates, the 7.4 second 
Some sample would require 132 pitch estimates.  
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With 2.8 seconds per estimate, this comes out to 
more than 6 minutes just for pitch estimates in 
algorithm 1.  Thus, it would appear that there are 
different limiting factors for the phone and the 
computer. 

 
Table 4. Execution times on a computer 

Sample Algorithm 1 Algorithm 2 

Some 430 ms 300 ms 

Mary 500 ms 210 ms 

Jingle 500 ms 300 ms 

 

Table 5. Execution for algorithm 2 on a V3i 

Sample Init Read Onset ACF Total 

Some 2.5 s 32.3 s 14.8 s 19.8 s 69.6 s 

Mary 2.5 s 38.0 s 17.5 s 37.1 s 95.5 s 

Jingle 2.1 s 31.1 s 14.7 s 31.5 s 79.7 s 

4.3 Application Interface 
The Sing-a-Ring application gives the user several 

options once the transcription process has been 
completed.  The user may set the instrument and 
tempo of the ring tone and transpose it up or down.  
Figs. 1-4 show the user interface as it appears on the 
V3i emulator.  At startup, the user is presented with 
the ability to exit, run, or display help.  Once the user 
selects the Run option from the main menu, seen in 
Fig. 1, the MIDlet opens the data stream containing 
the sample data, reads the data into heap memory, 
detects note onsets, estimates the pitches of each 
note, and creates a MIDI stream for the transcribed 
melody.  While the melody is being transcribed, a 
progress bar shows the approximate percentage that 
has been completed with a status message indicating 
the current operation, as seen in Fig. 2. 

Once the transcription process is complete, the 
result screen displays the transcribed melody in 
iMelody format and shows the total time to transcribe 
the melody.  From the result screen, the user can 
select to play the newly created ring tone, play the 
original recording, or edit properties of the new ring 
tone.  When the edit option is selected, the edit 
screen, shown in Fig. 3, is displayed, and the user can 
interact with the tempo gauge, to increase or decrease 
the playback tempo of the melody, or the 
transposition gauge.  The instrument is also 
selectable, with some of the options shown in Fig. 4.  
Changes to the settings are saved to the MIDI file 
once the Save command is selected, and the updated 
melody can be played from the result screen. 

 

  
Fig. 1 Main menu; Fig. 2 Progress screen 

 

    
Fig. 3 Settings screen; Fig. 4 Instrument screen 

5 Conclusion 
Sing-a-Ring is a novel system enabling users to 

create ring tones.  Simply by humming or singing a 
melody, a user can create a ring tone with any 
melody.  This provides an alternative to the current 
ring tone selection methods that require users to 
select from a database of preexisting ring tones.  In 
addition to providing ring tone creation capabilities, 
Sing-a-Ring allows users to modify created ring tones 
by changing the tempo or instrument and by 
transposing the entire melody to a higher or lower 
key.  While there are limitations in the current Sing-
a-Ring implementation, namely substantial execution 
time, inability to complete the entire creation process 
on the phone, and transcription inaccuracy, all of 
these problems could be alleviated, or even 
eliminated, with access to the digital signal 
processing (DSP) chip.  If all of the DSP algorithms 
could be executed on the DSP chip, it is likely that 
real-time performance could be achieved, decoding 
from the AMR format made possible, and more 
advanced transcription techniques made feasible.  
Sing-a-Ring presents a strong proof of concept for a 
custom ring tone creation cell phone application. 
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6 Future Work 
  Options for improving the current system 

include a more robust autocorrelation function, 
improved note onset and offset detection for 
improved rhythmic accuracy, and melodic interval 
tracking to adjust for the user singing out of tune.  
Adjusting for out of tune singing is a vast topic unto 
itself with approaches from simple interval tracking 
to advanced probabilistic models using knowledge 
based systems that incorporate Western music theory.  
For a robust transcription solution, given the current 
processing capabilities of mobile computing 
platforms, it appears necessary that a server be used 
with more advanced algorithms including signal pre-
processing, probabilistic modeling, band-wise 
processing, and use of the frequency domain.  Also, 
where the current implementation does not support 
sound samples recorded on the phone, a server could 
decode the AMR data recorded on the phone. 

 In order to make a pure client model 
commercially viable, it would be necessary to work 
with Motorola or another cell phone manufacturer to 
gain access to the dedicated DSP chip and to AMR 
decoding libraries or record directly into a format 
with sample data available.  Running as a native 
application would also provide a speed improvement 
over J2ME.  Lastly, as cell phones improve in 
memory and processing, so will the number of 
features possible in a ring tone creation system. 
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