

Sing-a-Ring: a Custom Ring Tone Creation

System for Mobile Platforms

ANDREW MOEDINGER, DANIEL PLANTE
Department of Mathematics and Computer Science

Stetson University
421 N. Woodland Blvd Unit 8332, DeLand, FL 32723

USA

Abstract: - Custom ring tones for cellular phones have become extremely popular over the past several years,
allowing users to customize their mobile computing experience, expressing their personality or enjoying their
favorite tune. In the ring tone selection process, a user generally searches or browses for a ring tone by title in one
of several ring tone databases and then purchases his selection. Research into query-by-humming systems may
eventually enable users to select a song by singing a segment of it. This project, Sing-a-Ring, extends the user ring
tone experience by allowing users to create their own ring tones by singing. Unlike current options to record a
sound file and set that as a ring tone directly, this application uses an autocorrelation algorithm to convert the
recorded sample to a MIDI file and then provides customization options, such as instrument and tempo selectors.
This application is implemented on the Java™ 2 Platform, Micro Edition (J2ME), and has been tested on a
Motorola RAZR V3i phone. For the current implementation, due to format conversion issues, recordings must be
created on a computer and then transferred to the phone. Nevertheless, the current application is a proof of concept
with great potential, especially if access to AMR decoding libraries and the digital signal processing chip is
available.

Key-Words: - Cell phone, Custom ring tones, Mobile platforms, Music transcription

1 Introduction
In the U.S. in 2005 alone, an estimated $500

million was spent on ring tone purchases, up from
$245 million in 2004 [1]. These ring tones are
generally selected by searching or browsing for a
ring tone by title, genre, or artist and then
downloaded to a phone. Research into query-by-
humming (QBH) systems offers the possibility of an
alternative ring tone selection method. Instead of
locating a song by name or other descriptive features,
with a QBH system, a user can sing or hum a melody
and similar ring tones are returned in a result list.
There are a variety of approaches to QBH, and a
performance comparison of several popular
techniques, including note-interval matching,
melodic contour matching, hidden Markov-models,
and the CubyHum algorithm can be found in [2].

While current ring tone selection methods have
proven very popular, they limit users to the set of
songs in the database and have scalability issues.
In order to further the customization experience, the
system implemented in this paper, Sing-a-Ring,

allows users to create their own ring tone by singing
it. In contrast to current systems that allow a user to
record a sound sample and then play it directly as a
ring tone, this application transcribes a recorded
sample to a MIDI file and then provides the user with
the ability to set the instrument, tempo, and
transposition of the newly created ring tone.

There are limitations in the current
implementation that are not an issue with traditional
ring tone selection methods, such as the restriction
that melodies can only consist of one voice, the
requirement that the user hold a tune with reasonable
accuracy, and the requirement that the melody fall
within the singing range of the user. These are not
small problems, but there are steps to alleviate them.
For instance, it would be possible to allow a user to
make two recordings, interleaving the two
transcribed melodies into one ring tone.

The rest of this paper is organized as follows.
Section 2 provides an overview of current
transcription techniques. Section 3 discusses the
implementation of Sing-a-Ring and some challenges

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 663

and solutions specific to cell phone development.
Application results are presented in Section 4,
Section 5 provides a brief conclusion, and Section 6
discusses ideas for future work.

2 Transcription
The conversion of raw audio data from a musical

performance into a human readable score has
numerous intricacies and challenges, including:
identification of the different timbres of different
instruments; differentiation of individual notes
despite spectral overlap caused by overtones;
recognition of precise note durations; and allowance
for poor recording quality, imprecise performance,
and stylistic performance practices. Both
commercial [3], [4] and research-oriented systems
exist with varying levels of accuracy. Some recent
work includes matrix factorization [5], neural
networks [6], Dynamical Bayesian Networks [7],
hidden Markov models [8], and direct signal
processing methods [9], [10], some of which
incorporate various psychoacoustic models. These
approaches have yielded highly successful results for
monotimbral pieces, pieces that remain in one key,
and synthetically generated sounds.

2.1 Onset, Offset, and Rhythm Detection
An important part of any complete transcription

system is a method to determine when notes begin
and end. For a system that converts a recording to a
score, it is also necessary to make an estimate for the
meter of the piece. Bello et al. have a summary of
current onset techniques in [11]. The basic process
of most onset detection algorithms is to begin with a
signal, apply some number of preprocessing steps,
such as amplitude normalization or half-wave
rectification, apply a reduction algorithm to generate
a detection function, and then choose onsets with a
peak identification algorithm.

After a reduction algorithm has constructed a
detection function, there is often some post
processing to provide consistency to the detection
function and a threshold selection process to
determine what constitutes enough activity in the
detection function for a note to be considered active.

Many applications also require meter estimation
to generate a musical score. One approach is to
simply perform long-term autocorrelation estimates,
generating peaks at the strong beats of the piece,
indicating the meter, or rhythmic periodicity, rather

than the pitch periodicity generally obtained when
applying autocorrelation [12]. There are also more
involved approaches which attempt to identify all
note onsets and then estimate the underlying rhythm,
often with probabilistic methods [9].

2.2 Pitch detection
Most techniques for monophonic transcription are

classifiable into the three categories of spectral-
location, spectral-interval, and the "unitary"
approach. Spectral-location approaches include
autocorrelation of the time domain and explicit
pattern matching of the Fourier decomposition of a
signal. With autocorrelation, the highest peak of the
autocorrelation function is assumed to represent the
fundamental frequency. The spectral-interval group
of algorithms focuses on the distance between
prominent partials, allowing for a more comfortable
acceptance of inharmonicity while the "unitary"
approach describes a model that attempts to take into
account both spectral-location and spectral-interval
information as well as psychoacoustic research.

Two examples of fairly effective transcription
algorithms are the YIN algorithm proposed by
Cheveigne [10], which improves upon simple time-
domain autocorrelation, and the Enhanced Summary
Autocorrelation Function (ESACF) proposed by
Tolonen [13], which is based on a two channel
filterbank spectrum autocorrelation approach. The
ESACF has been shown to also work with decent
accuracy for polyphony of several voices. A more
comprehensive examination of monophonic
transcription techniques than the brief discussion
here is available in [9] and [14].

3 Implementation

3.1 Algorithms
One of the most popular algorithms for

transcription is the autocorrelation function (ACF),
which is a time shifted cross-correlation of a signal
with itself:

∑
+

+=

+
=

Wt

tj

jjt xxr
1

)(ττ
 (1)

In the equation, t is the time, W is the window
size, x is the sample array, and τ is the lag, the
amount of displacement in cross-correlation. Many
improvements have been made to the simple ACF

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 664

algorithm to improve its accuracy. One such
improvement weights lower lag values more heavily
by reducing the window size for higher lag values, in
order to reduce the possibility of an integer multiple
of the lag estimating a halved fundamental pitch:

∑
−+

+=

+
=′

τ

ττ
Wt

tj

jjt xxr
1

)(
 (2)

Initially a simple transcription algorithm was
developed that performed autocorrelation on each 50
ms time window of a sample, with a simple filtering
scheme for the resulting pitch estimates. While this
transcription algorithm has decent performance, it is
not feasible to run it on a cell phone due to the large
number of pitch estimates required. Thus, a new
transcription algorithm was developed that imposes a
few requirements on the sound sample. The
algorithm operates by requiring that each note be
separated with a short silence (approximately 50 ms).
Using an O(N) algorithm examining the amplitude
envelope to detect note onset and offsets, the
program assumes that the pitch remains constant for
the entirety of the note. This allows one pitch
estimate to be made for each note instead of each
frame.

The custom onset algorithm maintains a sliding
window sum of the peaks of the sample, at each peak
adding the sample amplitude value and subtracting
the peak value at the current time minus the window
size. This generates the window sum:

∑
−=

=
t

windowSizeti

ipeakwindowSum . (3)

When the window sum is above a certain
threshold, it is assumed that a note is active. By
examining when the sum crosses the value set as the
threshold parameter, it can be determined when notes
begin and end. In order to minimize erroneous notes,
a minimum note length is imposed on the detection
process. The entire onset detection process requires
one iteration of the sample array and is O(N). The
threshold used for determining note offsets is
currently fixed because even a simple form of
dynamic thresholding is quite expensive. A fixed
threshold for this application should be sufficient as
long as the user sings at a moderate volume.

Once the note boundaries have been determined,
an autocorrelation estimate is taken at approximately
the middle of the note over a 20 ms window with an

autocorrelation lag range of 64Hz to 800Hz. Since
the J2ME Math library does not contain a native log
function, the MIDI number is approximated from a
table in static memory with a list of MIDI numbers to
frequency values. In order to conserve space in
transferring data to the phone via a .jar file, the sound
sample was saved as a list of float values
representing the sample data from the .wav file.

Once all of the notes have been temporally and
spectrally located, the melody is converted to MIDI
format using a custom MIDI writing library.

3.2 Cell Phone Platform
The Sing-a-Ring system was developed for the

Motorola RAZR V3i using the Java™ 2 Platform,
Micro Edition (J2ME), the only supported
development environment for the V3i. Cell phone
applications written with the J2ME are called
MIDlets, as they use the Mobile Information Device
Profile (MIDP), which is used in conjunction with
the Connection Limited Device Configuration
(CLDC). There is a cost for the flexibility afforded
by J2ME, including runtime overhead incurred by the
virtual machine.

3.3 Limitations and Challenges
Processor speed, memory size, and memory speed

are three of the primary limiting factors for cell
phone applications. The V3i took approximately 10
and 30 seconds to perform 1,000,000 additions and
multiplications respectively. Since autocorrelation,
in the process of cross-correlating a signal with itself,
requires a large number of both additions and
multiplications, each autocorrelation pitch estimate
takes a noticeable amount of time, often slightly over
a second. Data access speed is also a problem,
especially when the data must be saved in the
MIDlet’s .jar file, because the data must first be read
from the phone’s memory and then decompressed
with the phone’s processor. The limited heap size is
also problematic for a transcription algorithm, as raw
sampled data can quickly consume considerable
amounts of memory.

Java security privileges proved to be an issue as
well. Certain portions of the J2ME APIs are only
exposed to MIDlets which have been signed by a
certificate granted by Motorola. An example is the
JSR75 FileConnection API [15] which allows a
MIDlet to read and write from the phone’s main
memory. Without a valid Motorola approved
development certificate, a MIDlet cannot access the

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 665

phone’s memory. Thus all data to be read by the
phone must be packaged in the .jar file with the
MIDlet, and no data can be saved back to the phone.

The main obstacle, however, to a fully functional
program was the lack of an exposed API for
decoding AMR streams. Unfortunately, AMR is the
only recording format supported on the V3i, and
while AMR streams can be played through the
JSR135 API, there is no way to decode the stream to
extract the raw sampled data, according to a
Motorola representative [16]. Thus, it has not been
possible to decode AMR data recorded on the phone
and all recording must be done on a computer.

4 Results

4.1 Transcription Results
In the forthcoming discussion, the initial

transcription algorithm introduced and the algorithm
optimized for the cell phone will, creatively, be
referred to as algorithms 1 and 2 respectively.
Results from three example recordings illustrate the
different problems with each algorithm. The three
samples are excerpts from the beginnings of the well-
known tunes, Somewhere Over the Rainbow (Some),
Jingle Bells (Jingle), and Mary Had a Little Lamb
(Mary), sung and recorded by the author. All three
samples were recorded as 16-bit 8kHz samples to
match the audio format on a V3i. Table 1 describes
the properties of each sample.

Tables 2 and 3 show the accuracy of each
algorithm with the number of correct notes, omitted
notes, extra notes, and pitch errors for each sample.
As shown, algorithm 1 omits many of the notes,
though this is caused by a lack of onset detection, and
thus repeated notes are mistakenly identified as one
note of longer duration. Ignoring errors in note
repetition, algorithm 1 correctly identifies all of the
pitches at approximately the correct time, but it also
mistakenly transcribes erroneous pitches that make it
aurally difficult to identify the melody. Algorithm 2,
in contrast, does not spectrally locate all of the
correct pitches. Since it is only making one pitch
estimate per note, it is assuming that the ACF
estimate will be correct, though it sometimes is not.
As expected, algorithm 2 outperforms algorithm 1 in
terms of total errors for these samples as they were
created with the constraints of algorithm 2 in mind.
Neither transcription algorithm presented herein is a
robust solution, but each is better suited for specific

tasks: algorithm 1 functions better for sound samples
generated from a MIDI synthesizer, and algorithm 2
is a decent initial algorithm for recorded voice
samples given the computational limits of a cell
phone. Algorithm 2 could be improved by taking
several pitch estimates for each note at different
sample frames where the note is active and averaging
the estimates. This would, however, also increase the
execution time substantially.

Table 1. Audio Samples

Sample Length Intonation Notes

Some 7.4 sec Good 7

Jingle 7.1 sec Fair 11

Mary 8.6 sec Poor 13

Table 2. Algorithm 1 Performance

Sample Correct Omit. Extra Pitch err.

Some 7 0 3 0

Jingle 6 3 2 0

Mary 8 5 9 0

Table 3. Algorithm 2 Performance

Sample Correct Omit. Extra Pitch err.

Some 7 0 0 0

Jingle 8 0 0 3

Mary 7 0 0 6

4.2 Execution Time Analysis
In addition to outperforming algorithm 1 on

accuracy for the selected samples, algorithm 2 also
outperforms it in terms of computational
requirements, largely due to the reduced number of
autocorrelation estimates required. Table 4 illustrates
the average total run times for both algorithms for the
three samples shown in Table 1 on a computer, and
Table 5 displays the run times for algorithm 1 for the
three samples of Table 1 on a Motorola RAZR V3i.
When executed on a cell phone, algorithm 2 takes
approximately two orders of magnitude longer than
when executed on a computer, from one quarter of a
second to one and a half minutes. Combined with the
results of Table 4 this would seem to indicate that
algorithm 1 should be able to run in approximately
twice the time, or 3 minutes. However, the seven
pitch estimates for the Some sample take about 20
seconds, 2.8 seconds per pitch estimate. Assuming
an autocorrelation window of size 400 samples – 20
ms – with continuous pitch estimates, the 7.4 second
Some sample would require 132 pitch estimates.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 666

With 2.8 seconds per estimate, this comes out to
more than 6 minutes just for pitch estimates in
algorithm 1. Thus, it would appear that there are
different limiting factors for the phone and the
computer.

Table 4. Execution times on a computer

Sample Algorithm 1 Algorithm 2

Some 430 ms 300 ms

Mary 500 ms 210 ms

Jingle 500 ms 300 ms

Table 5. Execution for algorithm 2 on a V3i

Sample Init Read Onset ACF Total

Some 2.5 s 32.3 s 14.8 s 19.8 s 69.6 s

Mary 2.5 s 38.0 s 17.5 s 37.1 s 95.5 s

Jingle 2.1 s 31.1 s 14.7 s 31.5 s 79.7 s

4.3 Application Interface
The Sing-a-Ring application gives the user several

options once the transcription process has been
completed. The user may set the instrument and
tempo of the ring tone and transpose it up or down.
Figs. 1-4 show the user interface as it appears on the
V3i emulator. At startup, the user is presented with
the ability to exit, run, or display help. Once the user
selects the Run option from the main menu, seen in
Fig. 1, the MIDlet opens the data stream containing
the sample data, reads the data into heap memory,
detects note onsets, estimates the pitches of each
note, and creates a MIDI stream for the transcribed
melody. While the melody is being transcribed, a
progress bar shows the approximate percentage that
has been completed with a status message indicating
the current operation, as seen in Fig. 2.

Once the transcription process is complete, the
result screen displays the transcribed melody in
iMelody format and shows the total time to transcribe
the melody. From the result screen, the user can
select to play the newly created ring tone, play the
original recording, or edit properties of the new ring
tone. When the edit option is selected, the edit
screen, shown in Fig. 3, is displayed, and the user can
interact with the tempo gauge, to increase or decrease
the playback tempo of the melody, or the
transposition gauge. The instrument is also
selectable, with some of the options shown in Fig. 4.
Changes to the settings are saved to the MIDI file
once the Save command is selected, and the updated
melody can be played from the result screen.

Fig. 1 Main menu; Fig. 2 Progress screen

Fig. 3 Settings screen; Fig. 4 Instrument screen

5 Conclusion
Sing-a-Ring is a novel system enabling users to

create ring tones. Simply by humming or singing a
melody, a user can create a ring tone with any
melody. This provides an alternative to the current
ring tone selection methods that require users to
select from a database of preexisting ring tones. In
addition to providing ring tone creation capabilities,
Sing-a-Ring allows users to modify created ring tones
by changing the tempo or instrument and by
transposing the entire melody to a higher or lower
key. While there are limitations in the current Sing-
a-Ring implementation, namely substantial execution
time, inability to complete the entire creation process
on the phone, and transcription inaccuracy, all of
these problems could be alleviated, or even
eliminated, with access to the digital signal
processing (DSP) chip. If all of the DSP algorithms
could be executed on the DSP chip, it is likely that
real-time performance could be achieved, decoding
from the AMR format made possible, and more
advanced transcription techniques made feasible.
Sing-a-Ring presents a strong proof of concept for a
custom ring tone creation cell phone application.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 667

6 Future Work
 Options for improving the current system

include a more robust autocorrelation function,
improved note onset and offset detection for
improved rhythmic accuracy, and melodic interval
tracking to adjust for the user singing out of tune.
Adjusting for out of tune singing is a vast topic unto
itself with approaches from simple interval tracking
to advanced probabilistic models using knowledge
based systems that incorporate Western music theory.
For a robust transcription solution, given the current
processing capabilities of mobile computing
platforms, it appears necessary that a server be used
with more advanced algorithms including signal pre-
processing, probabilistic modeling, band-wise
processing, and use of the frequency domain. Also,
where the current implementation does not support
sound samples recorded on the phone, a server could
decode the AMR data recorded on the phone.

 In order to make a pure client model
commercially viable, it would be necessary to work
with Motorola or another cell phone manufacturer to
gain access to the dedicated DSP chip and to AMR
decoding libraries or record directly into a format
with sample data available. Running as a native
application would also provide a speed improvement
over J2ME. Lastly, as cell phones improve in
memory and processing, so will the number of
features possible in a ring tone creation system.

References:

[1] Broadcast Music Inc., "BMI Forecasts U.S.
Ringtones Sales to Hit $600 Million in 2006," 3
Apr. 2006 [Online], Available:
http://www.bmi.com/news/entry/334746

[2] R. Dannenberg and N. Hu, “Understanding search
performance in query-by-humming systems,” In
Proc. of ISMIR 2004, pp. 236-241, Barcelona,
Spain, 2004.

[3] Widisoft, "WIDI Recognition System," [Online],
Available: http://www.widisoft.com/

[4] Innovative Music Systems, Inc., "intelliscore
Polyphonic WAV to MIDI Converter," [7 Apr.
2006] [Online], Available:
http://www.intelliscore.net/

[5] S.A. Abdallah and M. D. Plumbley, "Polyphonic
transcription by non-negative sparse coding of
power spectra," In Proc. of ISMIR 2004, pp. 318-
325, Barcelona, Spain, Oct. 10-14, 2004.

[6] A. Pertusa and J. Iñesta, "Polyphonic
monotimbral music transcription using dynamic
networks," Pattern Recognition Letters, Special
Issue on Artificial Neural Networks in Pattern
Recognition, 26.12:1809-1818, Sep. 2005, Eds.
Simone Marinai and Marco Gori.

[7] A.T. Cemgil, B. Kappen, and D. Barber,
"Generative model based polyphonic music
transcription," In Proc. of the 2003 IEEE

Workshop on Apps. of Signal Processing to Audio

and Acoust., Oct. 19-22, 2003, New Paltz, NJ.
[8] M. Ryynänen and A. Klapuri, "Polyphonic music

transcription using event note modeling," Apps. of
Signal Processing to Audio and Acoust., 2005
IEEE Workshop on, pp 319-22, Oct. 2005.

[9] A. Klapuri, "Signal processing methods for the
automatic transcription of music," Ph.D. thesis,
Institute of Signal Processing, Tampere
University of Technology, Tampere, Finland,
March 2004.

[10] A. Cheveigné and H. Kawahara, "YIN, a
fundamental frequency estimator for speech and
music," J. Acoust. Soc. Am. 111.4, April 2002.

[11] J. Bello et al., "A tutorial on onset detection in
music signals," IEEE Trans. on Speech and Audio
Processing, 13.5.2:1035-1047, Sep. 2005.

[12] A. Klapuri, "Sound onset detection by applying
psychoacoustic knowledge,” In Proc. of IEEE
International Conf. on Acoust., Speech, and

Signal Processing, 1999. 6:3089-92, Phoenix, AZ,
Mar. 15-19, 1999.

[13] T. Tolonen and M. Karjalainen, "A
computationally efficient multipitch analysis
model," IEEE Trans. on Speech and Audio

Processing, 8.6:708-16, Nov. 2000.
[14] T. Viitaniemi, "Probabilistic Models for the

Transcription of Single-Voice Melodies," M.Sc.
thesis, Institute of Signal Processing, Tampere
University of Technology, Tampere, Finland,
May 2003.

[15] Sun Microsystems, "JSR-000075 PDA Optional
Packages for the J2ME™ Platform," 07 Jun. 2004
[Online], Available:
http://jcp.org/aboutJava/communityprocess/final/j
sr075/

[16] Motorola, Inc., "Ask a Question",
http://motocoder.custhelp.com

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 668

