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Abstract: - Estimating the generalization capability is one of the most important problems in supervised 
learning. That is why, various generalization error estimators have been proposed in the literature.  

In this paper we propose an approach based on randomly generated objects to enhance the quality of 
training step of a standard SVM multi-class classifier and consequently try to reduce its generalization error. 
The idea is to generate artificial test samples which help automatic classifiers learn from their mistakes by 
reintroducing the misclassified examples in training set. But adding misclassified examples to the training set 
will induce a more complex quadratic program on which the decision rule is based. To overcome this 
complexity, while additional learning vectors are introduced, we integrated the idea of incremental training to 
our method.  
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1 Introduction 
A classifier is considered to be good or not 

accordingly to its ability to generalize. In practice we 
can obtain classifiers that have very low empirical 
errors, but may give unacceptable errors when used to 
classify new data (examples not seen during the 
training phase). 

The SVM (binary case) technique is based on the 
structural risk minimization using the Vapnik and 
Chervonenkis dimension. Theoretically speaking, 
SVM classifiers present some robustness due to the 
margin maximization. This margin allows classifying a 
new object with more confidence. 

It has become common to say that the popular 
support vector machines (SVM) classifiers have good 
generalization when applied to any kind of dataset 
[10]. But, in many cases SVMs do not give the best 
performances especially when applied to datasets with 
thousands of objects or data sets with few training 
examples.  

The SVM (binary case) classifiers are based on the 
structural risk minimization using the Vapnik and 
Chervonenkis dimension. They rely on margin 
maximization [8] and hence present some robustness.  

Despite its theoretical robustness, in practice an 
SVM classifier does not always give low 
generalization errors. This is particularly true, when 

the training sample size is small compared to the 
number of features (sub-training) or when training is 
based on a set of objects that does not contain some 
important individuals (hidden information). So, if they 
are further submitted to the classifier they will be 
misclassified. 
It is clear that the performances of classifiers depend 
crucially on the ability of the training sample to 
represent the entire population of objects. 
 The criterion that is often used to appreciate 
the quality of a classifier is the generalization error. 
Unfortunately it is very hard to find an exact analytical 
expression for this error, given the training data, and 
use standard optimization techniques to minimize it.   

Researchers proposed solutions to the weak 
generalization problem of classifiers for which the 
training is based on samples of small size, by 
techniques like regularization and noise injection [9]. 
Our heuristic is similar in spirit to the combination of 
two ideas:  

a- The idea of noise injection in the sense that we 
randomly generate data to be tested from a 
wider distribution; 

b- We focus on misclassified objects by 
reintroducing them in the training dataset. 

But these two ideas were exploited in a slightly 
different way in our work. Explicitly, we use the 
available sample to train our classifier, and then 
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progressively generate samples to test it. The 
misclassified objects are added to the previous training 
set and training step is repeated. The goal of this 
retraining is to enlarge the variation specter of the 
training data. So, a larger number of practical 
situations will be taken into account in the learning 
phase. We have called the ‘training-test-retraining’ 
process, ‘progressive learning’. It is in some way 
similar to the natural learning of a child. 

 
Other researchers gave estimates for upper 

bound on the generalization error to give some 
confidence to the future users of such classifiers [3]. 
So they are sure that in the worst cases they risk to 
have very low errors with high probabilities. Others 
tried to conduct statistical studies on the evolution of 
this error and constructed the receiver operator curves 
(ROC) to show the robustness of classifiers.  
In our work we focus on training enrichment to 
overcome under-training and hidden information 
problems. More explicitly, we intend to allow training 
become as general as possible, so that our SVM 
classifier will be able to minimize effects of causes 
leading to a weak generalization.  

After the selection of a good model accordingly to 
some criterion, we begin a retraining step. It is based 
on artificial data (randomly generated samples). The 
idea is that a larger number of practical situations will 
be taken into account in the learning phase. 
Before giving more details about this approach, we 
will give the main sources of bad generalization.  
 

2 Sources of weak generalization 
 SVM classifiers are based on the construction 
of a hyperplane that separates the objects of two 
classes: negative objects labelled by yi = -1 and 
positive objects labelled by yi = +1. The equation of 
the hyperplane is:    wx + b = 0.   (1) 
The vector w and the constant b are chosen such that 
they maximize the margin. 
In the general case we have to solve the quadratic 
program bellow: 
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 The αi’s are Lagrange multipliers, C is the 
regularization parameter and K(.,.) is a kernel function 
(linear, polynomial or radial basis function: RBF). 

The decision function for the classifier is then: 
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2.1 Model selection  

The choice of parameter C in all cases (linear, 
polynomial and RBF kernels) and the type of kernel 
with its own parameters is a crucial step in the 
construction of an SVM classifier. The performance of 
SVM classifiers is very sensitive to the model’s 
parameters. Indeed, not only changing the kernel will 
influence the result but simply changing the kernel’s 
parameters will induce great variations in the results.  
So, in our work, before using the classifier to assign 
new data, we have to be sure that model parameters 
have been chosen in a way that assure the lowest 
generalization error.  

2.2 Undertraining 

If the training set is a sample of relatively small 
size, compared to the number of features, it can be a 
source of high generalization error. Training SVM 
classifier using this sample can lead to what is called 
under training.  

2.3 Hidden information 

The database used for the construction of a 
classifier may not contain some important data that 
should have significantly influenced its decision 
function. If these data where present, they should have 
been taken as support vectors. These data are called 
hidden information. If their number is sufficiently 
high, we can say that our sample is information poor. 
Consequently, the classifier will have a bad 
generalization.  

To reduce the generalization error, solutions must 
be found for solving these three problems. 
Our approach focuses on the two last problems. 
 

3 Solutions for weak generalization 

3.1 Model selection 

Until now there is no method that helps to 
systematically choose the parameters of the model. 
Indeed many researchers in the field of automatic 
training are still working on choice of parameters that 
allow the classifier to well behave when facing new 
individuals. The best way to choose these parameters 
is based on an estimation of the generalization error 
given the training data.  The most common techniques 
for estimating this error are based on cross-validation. 
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However, even if this error is relatively high, no 
satisfactory solution is proposed for undertraining and 
hidden information.  
  

    The cross-validation can be described as fellows: 
 Given a training set    
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Subdivide this set into M subsets of approximately   
equal sizes. 

For every subset  
Perform training using (M-1) subsets. 
Estimate the error with the remaining subset. 
End for 

Calculate the average error on the M estimations. 
End. 
 
If M is chosen such that M = N, the cross-validation is 
called Leave one out (Loo) technique. 

Estimating the generalization error this way, is 
time consuming because we would need to construct N 
classifiers. Jaakkola & Hausler [1] proved a theorem 
that gives an upper bound for the estimate of the 
generalization error by only constructing one SVM 
classifier. 
 For the SVM classifier, the generalization 
error estimated by N cross-validations (loo) is 
bounded by: 
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The functions STEP count the number of objects that 
are misclassified using the prediction model. 
 One interesting method that helps selecting 
good parameters for SVMs is described by Chih-Jen 
Lin [2].  It consists in first, choosing the kernel (linear, 
polynomial or RBF) then defining intervals of 
variation for its parameters. For the polynomial kernel 
the degree is often taken in the set 
 A = {1, 2, 3, 4, 5, 6, 7}. 
For the RBF, the values of the set:  
{0.00025, 0.0005, 0.001, 0.002, 0.004, 0.008, 0.016, 
0.032, 0.064, 0.128, 0.256, 0.512, 1.024, 2.048} were 

tried for the parameter 22
1
σ

γ = . 

The parameter C (for all the kernels) was taken in the 
set:  
{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}. 
 

For every model, we estimated the upper bound on the 
generalization error (UGE) using formula (1) and 
selected the model that produced the lowest bound.  

3.2 Undertraining and hidden information 

The first difficulty in classification is to find a 
representative database to be used to train a machine 
(classifier). Once these data are collected, they are 
subdivided into two parts: one to extract the 
parameters of the classifier and the other to test its 
performances.  

The main idea of our work is to, first augment 
the training set by adding the misclassified objects of 
the test sample and then retrain the classifier. So we 
make the machine learns from its mistakes.  
Unfortunately, in practice, data are often rare and 
expensive and the available database does not suffice 
to repeat the training-test process many times.  To 
obtain a classifier that generalizes well even though 
based, in its training, on a sample of small size, we 
generate artificial samples to enrich the training. 
Hence, the data used to train the machine will cover a 
larger range of variation and take account of more 
practical situations. 

We assume that a tolerated error (Tol_Err) is 
given. So after training, we perform some tests and 
consider the training to be satisfactory if the error 
produced by these tests is lower than Tol_Err.  

 
The main steps of our approach are given bellow: 
Step 1: Subdivide the data into three parts: One for 

training, the second, to have an idea its 
generalization, and the third as a reference for 
measuring the improvement induced by our 
approach. 

Step 2: Train the SVM and estimate the UGE. 
Step 3: Calculate the rate of misclassified objects of 

the second test sample.  
Step 4: a) Classify the objects of the first test sample. 

If the rate of misclassified objects is greater 
than the Tol_err, add these objects to the 
SVMs of the previous step and repeat step 2. 
b) Recalculate the rate of misclassified objects 

of the second test sample. If this rate is 
lower than the tolerated error, stop.  

c) Else, go to step 5. 
Step 5: a) Generate artificial data and classify them 

(according to the model obtained for the last 
training).  

b) If their classification error is greater than 
the Tol_Err, then add misclassified data to the 
SVMs of previous step and repeat step 2.  
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c) Recalculate the classification error for 
reference sample.  
If the new error is lower than Tol_Err, stop 
training.  
d) Else, generate a new sample and repeat sub 
steps (b) and (c). 
 
But before implementing our idea, we had to 

answer two questions: 
1. According to which distribution we can generate the 

artificial samples? 
2. It may happen that after a few failures, the training 

sample size becomes very high and the associated 
quadratic program difficult to solve. So, how to 
speed the construction of SVMs?  

For the first, we try to fit the data to appropriate 
theoretical distributions and generate samples from 
these distributions. In our work we only generated 
samples from Gaussian distributions. 
To overcome the second problem we exploited the 
idea of incremental learning. So, at each step, the new 
data are learned recursively by only augmenting them 
with the support vectors of the previous step [11].  The 
underlying idea is that the support vectors are able to 
represent all the relevant information contained in the 
whole sample.  

The main steps of incremental learning algorithm 
can be summarized as fellows: 

1- Subdivide the entire input set TR into k 
subsets  DS1, DS2,…,DSk. 

2- Initialize the learning set TS to DS1. 
3- Train the SVM on TS and save the support 

vectors SV1.  
4-  For i =1,…k-1, repeat: 

(a) TS = SVi ∪ DSi+1

 (b) Train the SVM on TS and save SVi+1. 
 

4 Experiments 
 To show the effectiveness of our heuristic, we 
used three datasets:  
a. Quality of wines: these 178 objects subdivided (at 
random) into:  98 instances for training, 40 for a first 
test and 40 for a second test sample.  
b. Iris dataset: the 150 individuals subdivided into: 90 
instances (30 for each class) for training, 30 (10 for 
each class) for the first test and 30 for the second.  
c. Fingerprints dataset: 68 fingerprints taken from four 
different classes were obtained by applying a Radon 
transform followed by a PCA transform on the original 
pixels. We obtained a dataset of 68 objects described 
by 67 features for training, 100 for the first test and 
100 for the second. 

The second test sample was used as a 
reference sample to compare the error of a standard 
SVM and that that the retrained SVM. 

Our implementation in visual C++ was based 
on the sequential minimal optimization (SMO) 
algorithm. For the multi-class case the one against all 
strategy has been used. 

For the first database, we succeeded to 
correcly classify the entire training individuals using 
linear kernels with the parameters: C = 512 for the first 
hyperplane, C = 4 for the second and C = 8 for the 
third. The UGE was 11.22%. This model is then used 
to estimate the class of the first test sample 
individuals. All the objects were assigned to the 
correct classes. But the same model gave an error of 
2.50% (one misclassified individual) on the second 
test sample. So, we generated artificial samples of 100 
individuals (34 from the first class, 33 from the second 
and 33 from the third). For the first artificial sample, 
we obtained two misclassified individuals (2% error). 
These two objects were added to the training set and 
the SVM is retrained using the same model (C = 512 
for the first hyperplane, C = 4 for the second and C = 8 
for the third). UGE estimate, for the new model, is 
15% and applying the new SVM to the second test 
sample gave a 0% error. This shows that using our 
approach, we were able to reduce the error (from 2.5% 
to 0%). 
 For the second data set, linear kernels (with 
any value of C) allowed to separate all the training 
objects of class1 from the other training objects (from 
class2 and class3). For all the tried models (all the 
values of parameter C), the UGE estimate is 2.22%. So 
we chose the model with the lowest C (C=1). But 
linear and polynomial kernels were inappropriate to 
separate the second and the third hyperplanes. So, 
RBF kernels were used. For the second hyperplane, 
the minimal UGE was 4% and obtained with C = 2 
and γ =1.024, while a minimal UGE of 6.88% was 
obtained for the third with the parameters C =128 and 
γ = 0.256. The tests, with this model, produced a 
classification error of 6.66% (two misclassified 
objects) on the reference sample and 3.33% (one 
misclassified object) on the first test sample. So, we 
reintroduced the misclassified object of the first 
sample in the training set and retrained the SVM with 
augmented sample, using the same parameters of the 
previous model.  

UGE estimate after retraining was 6.95% and 
the classification error over the second test sample 
6.66% (two misclassified data). We can then notice 
that retraining the SVM by adding the misclassified 
data of the first test sample did not reduce the 
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classification error over the second test sample. That is 
why artificial data were generated. The first sample (of 
100 objects) gave five misclassified objects.  
The resulting model gave 3.33% error (one 
misclassified object) on the reference sample, which is 
lower than that obtained after the previous retraining 
(6.66%).  A second artificial sample has been 
generated, for which we obtained three misclassified 
objects. With this last retraining we succeeded to 
classify correctly all the elements of the reference 
sample. Again, this shows that, with our retraining 
process, we reduced the error for the iris data set.  

The third experiment illustrates the case of 
training dataset of small size (68 objects) compared to 
the number of features (67 features). Using our 
features, we were able to linearly separate the four 
classes. The lowest errors were obtained with the same 
parameter C which was 100 for the four hyperplanes. 
The empirical error for the initial training was zero. 
The generalization error estimates were: 32% for the 
first Hyperplane, 36% for the second, 36% for the 
third and 30% for the fourth. In this case the SVM 
classifier gave a bad generalization. This result was 
also true for the reference sample on which we 
initially obtained a 20% error. Applying our heuristic 
to this data, we succeeded to decrease this error to 
about 10% after having generated 9 samples of 100 
objects (25 objects from each class).  
 

5 Conclusions 
The tests performed on the three data sets, have 

shown that we were able to ameliorate the scores of 
standard SVM multi-class classifiers. Indeed, this has 
been proven for two different kinds of data: linearly 
separable data (first and third data sets) and not 
linearly separable data (second data set). 

We selected optimal models (parameters that 
gave the lowest UGE); to be sure that improvement 
did not result from randomness of the SMO algorithm, 
but from training enhancement based on artificial data.  

Finally, we can then assert that training a 
standard SVM, using our approach, reinforces training 
and helps this classifier generalize better. 
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