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Abstract: - Building mathematical models of a dynamic system based on measured data, by adjusting 
parameters within a given model until its output coincides with the measured output is one of the means ideas 
in the black box modelling - system identification technique. Picking a model, from the model structure, that 
provides the best one-step ahead predictions in terms of the smallest expected squared error between observed 
outputs and predictions – the estimation process- is the first important step in the identification procedure. In 
many real-world situations, it is too difficult to describe a system using known physical laws. This article 
exploits the MatLab System Identification Toolbox objects, methods, and functions to perform black-box 
modelling. Based on measured data sets obtained by simulation of linear models, considerations and 
comments are made upon the results of the SIT techniques application.  
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1 Introduction 
A black-box model is a flexible structure that is 
capable of describing many different systems and its 
parameters might not have any physical 
interpretation. Black-box modeling has the 
advantage that can estimate many model structures 
and compare them to choose the best one.  

Prediction error approach is the method where 
the parameters of the model are chosen so that the 
difference between the model predicted output and 
the measured output is minimized. The availability 
of this method covers all model structures.   
 
 
2 Linear Model Structures 
According to Ljung [1] a system is called linear if it 
is possible to describe it by a model like this: 
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where G and H are transfer functions in the time 
delay operator. Equation (1) said that the measured 
output y(t) is a sum of two contributions: first comes 
from the measured input u(t) and  second comes 
from the noise He. 

The objective of the identification procedure is 
to determine good estimates of the two transfer 
functions, meaning the model’s ability to produce 
one-step ahead predictions with errors of low 
variance. The predictor form of the model or the 
minimum variance (one-step ahead) prediction is 
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The model structure is a parameterized set M of 
candidate models:  
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where θ signifies the adjustable parameters and Dm 
is a subset in Rp inside which  the search for a model 
should be carried out. 

The inclusion of θ as an argument in predictor 
form implies that the model structure represents a 
set of models. The model structure can be written in 
the alternative form: 
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    (4) 
whereθ  is the parameter vector and ϕ  is the 
regression vector, which contains past inputs, past 
outputs, or signals derived from the inputs and outputs. 

A particular choice of parameter vector 
∧

=θθ  
represents the model. Different assumptions about 
the spectral density of the noise and how the noise is 
assumed to enter the system will determine 
simplifications and consequently the different types 
of model structures. The general parametric model 
structure is represented in fig.1 and written as: 
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where A, B, C, D, F are monic polynomials written 
in time delay operator, d represents the number of 
delays between input and output and e is a white 
noise sequence with zero mean value. 

Special forms of (1), where one or more 
polynomial are set to identity are known as: AR, 
ARX, ARMAX, BJ, OE, models. System 
Identification Toolbox handles models structures 
defined in a flexible way by specifying the orders 
and delays in corresponding estimation routines 
such as arx, iv4, oe, bj, armax, pem.  
  
 
3 Model Estimation 
System identification is the procedure of deriving a 
model from data and model estimation is the 
procedure of fitting a model with a specific model 
structure. We have linear models and parametric 
models of a specific structure—e.g., physical 
models, ARMAX models. Parametric models have a 
well-defined mathematical structure, and this 
structure is fit to the input-output data by adjusting 
the coefficient values (model parameters). 

Parametric identification methods use 
numerical search to find the parameter values that 
correspond to the best agreement between simulated 
and measured output. The prediction error in (1) can 
be computed as: 
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It means that for given data y and u, these 

errors are functions of G and H. The parametric 
identification method (prediction error approach) 
determines estimates of G and H by minimizing the 
criterion: 
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The SIT’s functions for parametric model 
estimation share the same command structure: 
model = pem (data, modelstructure), where data is 
an iddata object and contains the output and input 
data sequences, the variable modelstructure 
specifies the particular structure (orders and delays) 
of the model to be estimated and pem represents the 
estimation routine. The resulting  estimated model is 
contained in model, coded in theta format and 
colecting information about the model structure and 
orders, delays, parameters and estimated covariances 
of estimated parameters. Models of basically any 
structure can be constructed based on the prediction 
error method.  

These parameter estimation routines require an 
itterative search for the minimum of the function 
(7): this search uses a startup procedure based on 
least squares and instrumental variables [2]. From 
the initial estimate, a Gauss-Newton minimization 
procedure is carried out until the norm of the Gauss- 
Newton direction is less than a certain tolerance [3]. 
The itterations also stops when reaching the maximum 
number initially established by the routine or when 
none decrease of the criterion is observed along the 
search direction.  

Observations: while the search is typically 
initialized by the built-in startup procedure giving 
just orders and delays, the ability to force specific 
initial conditions is useful in many contexts. The 
iterative search procedure in pem, armax, oe, bj 
routines lead to theta values corresponding to a local 
minima of the criterion function, but nothing 
guarantees that this local minima is also a global 
one. Even if the startup procedure for black-box 
models in these routines is reasonably efficient in 
giving initial estimates that lead to the global 
minimum, it is a good idea to try starting the 
minimization at several different initial conditions to 
see if a smaller value of the loss function can be found. 
The estimated covariance matrix of the estimated 
parameter vector is returned by these routines, as part 
of the model. This reflects the reliability of the 
estimates. 
 
 
4 Simulation and estimation case study  
The case under study takes for simulating synthetic 
data an ARMAX system given initially by the linear 
difference equation, see Listing 1.  

The steps made are as follows: 
- model1 contains the A, B, C original parameters 

polynomials; 
- based on the obtained data set, an identification 

procedure is applied, see Listing 2; 

Fig. 1 The general parametric model structure 
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- the results are the th model which contains this 
time the A, B, C estimated parameters 
polynomials, the value of the criterion (Loss 
function) and the final prediction error (FPE); 

- the minimization algorithm is modified by 
decreasing the admitted values of the norm search 
vector (Tolerance) and estimated residual standard 
deviation (LimitError-robustification), and applied 
again, in order to better achievement results, see 
Listing 3; 

- the results are the new model model2 which 
contains the new A, B, C estimated parameters 
polynomials and the new values of Loss function 
and FPE;  

- the three models model1, th and model2 are 
compared, see Table1 where are centralized the 
values of original parameters, first estimated 
parameters, second estimated parameters, Loss 
function and FPE. 

Listing 1 
model1=poly2th([1 -1.5 0.7],[0 1 0.5],[1 -1 0.2]); 
u=idinput(400,'rs',[0 1]);  
e=randn(400,1); 
y=idsim([u e],model1); 
Listing 2 
z=[y u]  
th=armax(z, [2 2 2 1], 'trace') 
Initial Estimate: 
   Current loss: 0.914        ParVector 
      -1.4945 
       0.6917 
       1.0098 
       0.5102 
      -1.0585 
       0.2277 
Iteration # 1: 
   Search direction: gns 
   Bisected search vector 0 times 
   Current loss: 0.80863   Previous loss: 0.81338 
   New par   prev. par   gn-dir  
   -1.5052   -1.4945   -0.0107 
    0.7024    0.6917    0.0106 
    0.9974    1.0098   -0.0123 
    0.4912    0.5102   -0.0189 
   -1.0827   -1.0585   -0.0241 
    0.2240    0.2277   -0.0036 
   Norm of gn-vector: 0.036525 
   Expected improvement: 0.56548 % 
   Achieved improvement: 0.58378 % 
Iteration # 2: 
   Search direction: gns 
   Search direction: lm 
   Search direction: grad 
   Bisected search vector 6 times 
   Current loss: 0.80862   Previous loss: 0.80863 
   New par   prev. par   gn-dir  
   -1.5047   -1.5052    0.0016 
    0.7021    0.7024   -0.0011 

    0.9976    0.9974   -0.0026 
    0.4916    0.4912    0.0074 
   -1.0834   -1.0827    0.0009 
    0.2232    0.2240   -0.0031 
   Norm of gn-vector: 0.0086718 
   Expected improvement: 0.0083665 % 
   Achieved improvement: 0.00043643 % 
Discrete-time IDPOLY model: A(q)y(t) = B(q)u(t) + C(q)e(t) 
A(q) = 1 - 1.505 q^-1 + 0.7021 q^-2                                                         
B(q) = 0.9976 q^-1 + 0.4916 q^-2                                                            
C(q) = 1 - 1.083 q^-1 + 0.2232 q^-2                                                         
Estimated using ARMAX from data set z                      
Loss function 0.912001 and FPE 0.94028                     
 
 
4.1 The algorithm 
An iterative Gauss-Newton algorithm is used to 
minimize a robustified quadratic prediction error 
criterion. Each iteration the Gauss-Newton vector is 
bisected up to 10 times until a lower value of the 
criterion is found: Current loss:  0.80863 ≤  Previous 
loss: 0.81338 (Iteration #1). If no such value is 
found, a Levenberg-Marquardt (lm) or gradient 
(grad) search direction is used instead and the 
procedure is repeated (Iteration #2).  

The minimization information furnished 
includes current (New par) and previous (prev par) 
parameter estimates, values of the criterion function 
(Current loss), Gauss-Newton vector (gn-dir) and its 
norm (Norm of gn-vector), number of times the 
search vector has been bisected.  
Listing 3 
m=armax(z,[2 2 2 1],'tol',0.001,'lim',1,'trace','full'); 
modified_alg=m.alg 
model2=armax(z,[2 2 2 1], 'alg', modified_alg) 
modified_alg =  
Approach: 'Pem' 
Focus: 'Prediction' 
MaxIter: 20 
Tolerance: 0.0010 
LimitError: 1 
MaxSize: 'Auto' 
SearchDirection: 'Auto' 
FixedParameter: [] 
Trace: 'Full' 
N4Weight: 'Auto' 
N4Horizon: 'Auto' 
Advanced: [1x1 struct] 
Initial Estimate: 
   Current loss: 0.914  ParVector 
      -1.4945 
       0.6917 
       1.0098 
       0.5102 
      -1.0585 
       0.2277 
Iteration # 1: 
   Search direction: gns 
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   Bisected search vector 0 times 
   Current loss: 0.92562   Previous loss: 0.93392 
   New par   prev. par   gn-dir  
   -1.5036   -1.4945   -0.0092 
    0.7023    0.6917    0.0105 
    0.9901    1.0098   -0.0196 
    0.5014    0.5102   -0.0088 
   -1.0851   -1.0585   -0.0265 
    0.2178    0.2277   -0.0098 
   Norm of gn-vector: 0.038203 
   Expected improvement: 0.84686 % 
   Achieved improvement: 0.88878 % 
Iteration # 2: 
   Search direction: gns 
   Bisected search vector 0 times 
   Current loss: 0.92538   Previous loss: 0.92562 
   New par   prev. par   gn-dir  
   -1.5008   -1.5036    0.0028 
    0.6996    0.7023   -0.0027 
    0.9897    0.9901   -0.0004 
    0.5090    0.5014    0.0076 
   -1.0830   -1.0851    0.0021 
    0.2137    0.2178   -0.0041 
   Norm of gn-vector: 0.0097605 
   Expected improvement: 0.024797 % 
   Achieved improvement: 0.026487 % 
Iteration # 3: 
   Search direction: gns 
   Bisected search vector 0 times 
   Current loss: 0.92537   Previous loss: 0.92538 
   New par   prev. par   gn-dir  
   -1.5008   -1.5008    0.0000 
    0.6995    0.6996   -0.0000 
    0.9899    0.9897    0.0001 
    0.5088    0.5090   -0.0002 
   -1.0832   -1.0830   -0.0002 
    0.2128    0.2137   -0.0009 
   Norm of gn-vector: 0.00094901 
   Expected improvement: 0.00056232 % 
   Achieved improvement: 0.00053764 % 
Discrete-time IDPOLY model: A(q)y(t) = B(q)u(t) + C(q)e(t) 
A(q) = 1 - 1.501 q^-1 + 0.6995 q^-2                                                                                
B(q) = 0.9899 q^-1 + 0.5088 q^-2                                                                                     
C(q) = 1 - 1.083 q^-1 + 0.2128 q^-2                                                                                 
Estimated using ARMAX from data set z                      
Loss function 0.911245 and FPE 0.939501                    
Table 1 

4.2 Refining the estimates  
The case under study takes a data set obtained in an 
experiment. To refine the model estimates, two 
ways are followed:  
1. the set splits in two parts: set1 and set2; the first 

is used to estimate an ARMAX model model1 
with the default armax algorithm properties and 
the second is used to refine the initial model 
with pem routine and with modified algorithm 
settings: increased number of maximum 
iterations and smaller tolerance; 

2. for initial parameter guesses a model object is 
created first, using a constructor method and 
setting the initial parameter values in the model 
properties; this initial model is provided next as 
input to pem routine. 

Figure fig.2 shows the compared results of the 
original data, initial model and refined model. 

 
5    Conclusion 
It is important to state the purpose of the model as a 
first step in the system identification procedure. 

There are a huge variety of model applications, 
for example, the model could be used for control, 
prediction, signal processing, error detection or 
simulation. The purpose of the model affects the 
choice of identification methods and the 
experimental conditions, and it should therefore be 
clearly stated (for example, it is important to have an 
accurate model around the desired crossover 
frequency, if the model is used for control design). 

This article has shown that the estimation 
process, as the first important step in the 
identification procedure, can be improved by 
modifying the minimization algorithm and by 
refining the estimates. 

 model1 th model2 
a0 1 1 1 
a1 - 1.5 -1.505 -1,501 
a2 0.7 0.721 0.6995 
b0 0 0 0 
b1 1 0.9976 0.9899 
b2 0.5 0.4916 0.5088 
c0 1 1 1 
c1 -1 -1.083 -1.083 
c2 0.2 0.2232 0.2128 
Current loss  0.912001 0.911245 
FPE  0.94028 0.93950 

Fig. 2 Original data, initial and refined model 
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Estimating polynomial models means 
providing input delays and model orders. When 
known insights into the physics of the system exist, 
there is the possibility to guess the number of poles 
and zeros. However, in most cases, we do not know 
the model orders in advance.  

Any single-output polynomial model can be 
estimated using the iterative prediction-error 
estimation method pem. For Gaussian disturbances, 
this method gives the maximum likelihood estimate 
that minimizes the prediction errors to obtain 
maximum-likelihood values. The resulting models 
are stored as idpoly model objects. This routine can 
also be used to refine parameter estimates of an 
existing polynomial model. 

It is very important to note that validating the 
estimated model is the next step in determining how 
robust the estimation was. Even if the estimation 
data set returns very good results, without validation 
of the model, there is no way of telling if the 
estimated parameters were over-fitted for a 
particular data set. Using additional data sets for 
validation shows how the model responds to a 
variety of different inputs and if the original 
estimation was appropriate. 
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