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Abstract: - Reconfigurable radio systems are radios that can change to different communication protocols as 
they move between different radio environments. An example would be moving from a wireless LAN 802.11b 
to 802.11a and then to EV-DO (Evolution Data – Optimized). Researching the development of a 
Reconfigurable Radio Architecture that will concurrently support multiple radio protocols over multiple 
frequency bands across multiple wireless networking environments is an active area of R&D in the industry. 
The Reconfigurable radio realizes the convergence of computing and communications by allowing a flexible 
communications for any handheld computing device. As more digital processing is applied to the radio 
system, the promise of a software based digital baseband processor controlling a reconfigurable RF front end 
approaches reality. The focus of this paper is the development and testing of a generic API (Application 
Program Interface) on a software based baseband processor to access and control any arbitrary RF front end.  
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1   Introduction 
Software Defined Radios (SDR) have the potential 
of changing the fundamental usage model of 
wireless communications devices. These 
transceivers are often conceptually divided into two 
major sections: the Baseband Processing Section 
and the RF Front End. This division is simply a 
matter of convenience as the technological state of 
the two sections are at different stages. The 
baseband section which is responsible for all symbol 
level and bit level computations is typically 
implemented as reconfigurable hardware 
architecture or a digital signal processor (DSP). The 
RF front end on the other hand, requires wide 
bandwidth filters with high selectivity throughout 
the band as well as highly accurate synthesizers and 
ADC/DACs over a large range of frequencies. 
While much work has been done to enable most air 
interfaces to be digitally implemented on signal 
processors, SDR's still use conventional RF designs 
for their front end, and thus can only operate over 
limited frequency ranges. The ideal SDR RF unit 
would be frequency-agile, tunable and could be 
incorporated directly into a radio to replace multiple 
banks of microwave sources, thus reducing the size, 
weight and (ideally) cost of the unit. [5] 
 
In addition to the capability of the RF front end to 
configure to various air-interface standards, the RF 
front end is also required to quickly perform 
transition from one standard to another. 

 
There are a number of commercially available 
configurable RF front ends available. However, 
currently there is no standard that has emerged for 
the interface between the baseband processor and 
the RF front end. As a result for every possible RF 
front end in a SDR implementation, there is the 
requirement for developing a custom device driver 
and interface software to configure and 
communicate with the RF front end.  
 
In this paper we discuss the development of a 
generic API that can be used to unify the RF device 
driver interface of any application running on the 
baseband processing DSP platform.  
 
2   API Architecture 
The API consists of two separate sub-layers, The 
Application Sub-Layer that remains mostly uniform 
for any wireless standard (with parametric variations 
to accommodate different modulations and 
frequency ranges), and the Hardware Specific Sub-
Layer that is specific to a particular hardware 
realization of the RF front end. The Hardware 
Specific Sub-Layer needs to be rewritten and ported 
to any new RF platform; however, the Application 
Sub-Layer remains the same for all applications 
requiring services from the RF. 
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Figure 1 - Generic RF API Breakdown 
 
The goal of this project was to test the developed 
API on a specific hardware platform (currently 
focusing on an EV-DO RF card), as connected to a 
baseband processing card, and measure and analyze 
the transmitter and receiver characteristics via the 
use of this API. Once this API was tested, the 
application sublayer would then be reused for 
interfacing this baseman processor to any other RF 
front end. 
 
The hardware platform to test and verify the API 
was the Sandbridge Technologies SB3011 
configurable baseband processor. Sandbridge’s 
flagship product is the SB3011 Flexible Baseband 
Processor. The SB3011 uniquely provides the 
capability to operate on any network and any 
communication protocol. 
Featuring the integration of FOUR Sandblaster™ 
cores into a single SoC, the innovative 
Sandblaster™ architecture enables the SB3011 to 
implement the latest 3G protocols including W-
CDMA, CDMA2000, and TD-SCDMA. 
Additionally, since the physical layers of these 
protocols are implemented in software, creating 
‘derivative’ device designs is a relatively 
inexpensive software task, rather than a costly 
hardware integration effort. [2] 
 
The SB3011 features the Sandblaster™ DSP for 
execution of baseband in software - including 
physical layer. It has a programmable RF interface, 
with the capability to capture raw data at 100 million 
samples/sec. It includes interfaces to LCD, keypad, 
USIM, SmartCard, Audio codec, IrDA, plus 
emerging 'critical' features such as add-on memory 
cards, camera interface, and USB. [3] 

 
Figure 2 shows the SB3011 chip which has four 
SandBlaster™ DSP cores. The SB3011 has the 
following features: 

• Low-power-consumption design 
• Four SandBlaster™ DSP cores connected 

by a high speed bus in a ring topology 
• Eight time-multiplexed hardware thread 

execution units for each DSP core 

• SIMD/Vector operation unit 

• 600MHz (1.67ns instruction cycle) 
Figure 2 - SB3011 Internal Block 

Diagram 

 
• 90nm CMOS process 
• 32Kbytes instruction cache per core 
• 64Kbytes L1 data memory per core 
• 256Kbytes L2 data memory per core 
• Integrated ARM processor 

 
SB3011 DSP core has a SIMD vector operation unit 
which provides a parallel-execution capability of 
four 16-bit multiply-accumulate (MAC) operations 
per single instruction cycle. [7] 
The peripheral devices which require high-speed 
access are connected with Advanced High-
Performance Bus (AHB) and most peripherals are 
connected via Advanced Peripheral Bus (APB). 
Both AHB and APB are compliant with Advanced 
Microcontroller Bus Architecture (AMBA).  
  
The API developed and the associated data obtained 
from verification of the RF front end is discussed in 
the following. 
 
2 The Driver API Development 
A device driver is software that abstracts the 
functionality of a physical or virtual device. A 

Application Sub-Layer 

Hardware Specific Sub-Layer 
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device driver manages the operation of these 
devices. Examples of physical devices are network 
adapters, timers, and universal asynchronous 
receiver-transmitters (UARTs). Implementing a 
device driver allows the functionality of your device 
to be exposed to applications and other parts of the 
operating system (OS). While developing a device 
driver, take advantage of the services provided by 
the OS. One of the most basic rules to remember 
when writing portable code is to be aware of how 
big one needs to make the variables. Different 
processors define different variable sizes for int and 
long data types. They also differ in specifying 
whether a variable size is signed or unsigned. 
Because of this, if one knows the variable size has to 
be a specific number of bits, and it has to be signed 
or unsigned, then one needs to use the built-in data 
types. The following typedefs can be used anywhere 
in kernel code and are defined in the linux/types.h 
header file:  
 
 u8    unsigned byte (8 bits) 
 u16   unsigned word (16 bits) 
 u32   unsigned 32-bit value 
 u64   unsigned 64-bit value 
  
 s8    signed byte (8 bits) 
 s16   signed word (16 bits) 
 s32   signed 32-bit value 
 s64   signed 64-bit value 
 
All of these functions return a signed 32-bit value 
and take a number of values for either a data or 
command parameters. Because these data types are 
used, this code is portable to any processor type.  
 
If the variables are going to be used in any code that 
can be seen by user-space programs, then one needs 
to use the following exportable data types. Examples 
of this are data structures that get passed through 
ioctl() calls. Once again they are defined in the 
linux/types.h header file:  
 
__u8   unsigned byte (8 bits) 
__u16   unsigned word (16 bits) 
__u32   unsigned 32-bit value 
__u64   unsigned 64-bit value 
  
__s8    signed byte (8 bits) 
__s16   signed word (16 bits) 
__s32   signed 32-bit value 
__s64   signed 64-bit value 
 
3  RF API Description 

The general form of the API is a series of function 
calls, where each function call returns an error code 
and receives one or more parameters.  For example, 
the following API is designed to set the automatic 
frequency control setting of the RF front end.  It 
receives a 16-bit parameter that corresponds to a 
number between -5000 to plus 5000 Hz. If the API 
is successful it will return a value of zero.  Any 
nonzero return value corresponds to a particular 
error that has been identified in a header file. [6] 
 
RF_Drv_Rf_Error_t  Drv_Rf_Set_Afc (int afc_val) 
Sets the value of AFC. 
Parameters: 
afc_val 
Units:   Hz 
Range: -5000 to +5000 Hz (approx.) 
Mapping:  <absolute gain> + 100 
0 = -5000 Hz 
256 = +5000 Hz 
 
Return Value: 
• RF_DRV_RF_SUCCESS 
• Or Error code 
 
Another example of an API call is two sets be out of 
my gain control of the transmitter.  As can be seen 
in the example the API has a uniform and consistent 
format. 
 
 RF_Drv_Rf_Error_t  Drv_Rf_Set_Tx_Agc (int 
tx_agc_val) 
Sets the value of transmit AGC. 
Parameters:  
tx_agc_val 
Units:   dB 
Range: -60 dBm to +30 dBm (approx.) 
Mapping:   
 
Return Value: 
• RF_DRV_RF_SUCCESS 
• Or Error code 
 
Contents of rf_api h are any data definitions, 
datatypes and function prototypes, as well as an 
enumeration of all return error codes.  A sample of 
the return error codes is shown below 
 
enum 
{ 
 RF_DRV_RF_SUCCESS = 0, 
 MAX_RF_DRV_RF_ERRORS 
} RF_Drv_Rf_Error_t; 
 
enum 
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{ 
 RF_OFF_STATE, 
 RF_ON_STATE, 
 RF_MAX_STATE 
} RF_On_State_t; 
 
 
4 API Testing 
The API test suites consisted of a battery of tests to 
test the transmitter, and another battery of tests to 
test the receiver. 
 
Figure 3 shows a test configuration for the 
transmitter.  As can be seen, a PC connected to the 
baseband processor board is used to send commands 
to exercise various transmitter APIs.  The baseband 
processor then exercises the appropriate 
functionality in the RF transmitter, and a  test 
equipment (Agilent PSA) is used to view various 
characteristics of the transmitted signal.  As can be 
seen in Figure 4 the transmitter was configured to 
transmit a QPSK signal at 21dBm power level, and 
the I/Q contents of the signal where measured on the 
Agilent equipment. 
 

 
Figure 3 – Transmitter Test Suite Configuration 

 
 

Figure 4 – EVM for QPSK  21 dBm 
 

A sample test Scenario is listed below: 
1. Set transmitter frequency to 1935[MHz]. 
2. Output the EV-DO signal from transmitter 

using the EV-DO test program 
3. Set the transmitting power to 0[dBm], 

21[dBm] and 24[dBm] one by one.  
4. Set PSA. 

   Amplitude key -> Attenuation -> Auto 
   MODE key -> 1xEV-DO 

   Mode Setup key -> Radio -> Device -> 
MS(Rev) Frequency key -> Center Freq -> 
1.935GHz 
   Input/Output key -> Max Total Pwr -> 
[Corresponding to transmitting power] 

 
 

The receiver test suite configuration is shown in  
Figure 5. As can be seen, a vector signal generator 
is configured to generate various EV-DO signals.  
The signals or received by the RF front end and the 
receive RF API is used to configure the receiver as 
well as capture the received data.  The 
characteristics of the captured data are used in the 
tests battery. 

 
 

Figure 5 – Receiver Test Suite Configuration 
 
As can be seen in Figure 6, the power spectrum of 
the CW signal is received and analyzed. 

 

Figure 6 - Power spectrum of data 
captured on SB DSP (CW Rx test) 

 
5 Physical Layer Receiver Chain 
Description 
The baseband transmit and receive processing 
chains used to exercise the EV-DO RF front end are 
shown in Figure 7 below. 
 
6    Conclusion 
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As demonstrated in this paper, a generic RF API can 
be written for a software defined radio platform to 
unify and standardize the control of the RF front 
end.  This API can be extended to reconfigurable RF 
front end easily by simply modifying the underlying  
Hardware Specific Sublayer. Results of this API 
development indicated speed of development, and 
efficient integration of the RF API into the 
application code. 
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Figure 7 – EV-DO Forward and Reverse Link Processing Chains 
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