

Reconfigurable Wireless Handset Realization Based on a Universal API

BABAK D. BEHESHTI
School of Engineering and Technology

New York Institute of Technology
Old Westbury, NY11568

U.S.A.

Abstract: - Reconfigurable radio systems are radios that can change to different communication protocols as
they move between different radio environments. An example would be moving from a wireless LAN 802.11b
to 802.11a and then to EV-DO (Evolution Data – Optimized). Researching the development of a
Reconfigurable Radio Architecture that will concurrently support multiple radio protocols over multiple
frequency bands across multiple wireless networking environments is an active area of R&D in the industry.
The Reconfigurable radio realizes the convergence of computing and communications by allowing a flexible
communications for any handheld computing device. As more digital processing is applied to the radio
system, the promise of a software based digital baseband processor controlling a reconfigurable RF front end
approaches reality. The focus of this paper is the development and testing of a generic API (Application
Program Interface) on a software based baseband processor to access and control any arbitrary RF front end.

Key-Words: - Wireless, Physical layer, Baseband processing, Software Defined Radio.

1 Introduction
Software Defined Radios (SDR) have the potential
of changing the fundamental usage model of
wireless communications devices. These
transceivers are often conceptually divided into two
major sections: the Baseband Processing Section
and the RF Front End. This division is simply a
matter of convenience as the technological state of
the two sections are at different stages. The
baseband section which is responsible for all symbol
level and bit level computations is typically
implemented as reconfigurable hardware
architecture or a digital signal processor (DSP). The
RF front end on the other hand, requires wide
bandwidth filters with high selectivity throughout
the band as well as highly accurate synthesizers and
ADC/DACs over a large range of frequencies.
While much work has been done to enable most air
interfaces to be digitally implemented on signal
processors, SDR's still use conventional RF designs
for their front end, and thus can only operate over
limited frequency ranges. The ideal SDR RF unit
would be frequency-agile, tunable and could be
incorporated directly into a radio to replace multiple
banks of microwave sources, thus reducing the size,
weight and (ideally) cost of the unit. [5]

In addition to the capability of the RF front end to
configure to various air-interface standards, the RF
front end is also required to quickly perform
transition from one standard to another.

There are a number of commercially available
configurable RF front ends available. However,
currently there is no standard that has emerged for
the interface between the baseband processor and
the RF front end. As a result for every possible RF
front end in a SDR implementation, there is the
requirement for developing a custom device driver
and interface software to configure and
communicate with the RF front end.

In this paper we discuss the development of a
generic API that can be used to unify the RF device
driver interface of any application running on the
baseband processing DSP platform.

2 API Architecture
The API consists of two separate sub-layers, The
Application Sub-Layer that remains mostly uniform
for any wireless standard (with parametric variations
to accommodate different modulations and
frequency ranges), and the Hardware Specific Sub-
Layer that is specific to a particular hardware
realization of the RF front end. The Hardware
Specific Sub-Layer needs to be rewritten and ported
to any new RF platform; however, the Application
Sub-Layer remains the same for all applications
requiring services from the RF.

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 361

REFIN_0

REFIN_1

10-50
MHz

SPL_Clka

SPL_Clkb

AHB APB
Bridge

Device Control

AHB DMA

ARM926EJ-S

Vector Interrupt
Controller

TAP
(JTAG)

AHB

Power
Mgmt

APB

USB OTG Interface

LCD Interface

Camera Interface

Ethernet Interface

General
Purpose

I/O
General
Purpose

I/O
General
Purpose

I/O
GPIO

(8)

HSN AHB
Bridge

HSN

Audio
Codec

UART
/ IrDA PS/2

Synch
Serial
Port

Smart
Card

MMC
Card

Real Time
Clock (2)RTC

(2)
Timers

(2)
Timer

s
(2)

Multi Port
Memory

Controller

NAND Flash Interface

L2 Memory

L2 Memory DSP2

Node
1

PSD

TDM

SPI / I2C

MPTMPTMPT

Core 1

Local External ICache

L1
Data

Memory

L2 Memory

Node
2

PSD

TDM

NGPIO

MPT MPTMPT

L2 Memory

Node
3

PSD

TDM

MPT MPTMPT

Core 3

LocalExternal

ICache

L1
Data

Memory

L2 Memory

Node
4

PSD

TDM

SPI / I2C

MPTMPTMPT

Core 4

LocalExternalICache

L1
Data

Memory

MCU MCU

MCUMCU

TCMCache

DSP Complex

Clock
Generation

Int. Clks

Core 2

LocalExternal

ICache

L1
Data

Memory

Figure 1 - Generic RF API Breakdown

The goal of this project was to test the developed
API on a specific hardware platform (currently
focusing on an EV-DO RF card), as connected to a
baseband processing card, and measure and analyze
the transmitter and receiver characteristics via the
use of this API. Once this API was tested, the
application sublayer would then be reused for
interfacing this baseman processor to any other RF
front end.

The hardware platform to test and verify the API
was the Sandbridge Technologies SB3011
configurable baseband processor. Sandbridge’s
flagship product is the SB3011 Flexible Baseband
Processor. The SB3011 uniquely provides the
capability to operate on any network and any
communication protocol.
Featuring the integration of FOUR Sandblaster™
cores into a single SoC, the innovative
Sandblaster™ architecture enables the SB3011 to
implement the latest 3G protocols including W-
CDMA, CDMA2000, and TD-SCDMA.
Additionally, since the physical layers of these
protocols are implemented in software, creating
‘derivative’ device designs is a relatively
inexpensive software task, rather than a costly
hardware integration effort. [2]

The SB3011 features the Sandblaster™ DSP for
execution of baseband in software - including
physical layer. It has a programmable RF interface,
with the capability to capture raw data at 100 million
samples/sec. It includes interfaces to LCD, keypad,
USIM, SmartCard, Audio codec, IrDA, plus
emerging 'critical' features such as add-on memory
cards, camera interface, and USB. [3]

Figure 2 shows the SB3011 chip which has four
SandBlaster™ DSP cores. The SB3011 has the
following features:

• Low-power-consumption design
• Four SandBlaster™ DSP cores connected

by a high speed bus in a ring topology
• Eight time-multiplexed hardware thread

execution units for each DSP core

• SIMD/Vector operation unit

• 600MHz (1.67ns instruction cycle)
Figure 2 - SB3011 Internal Block

Diagram

• 90nm CMOS process
• 32Kbytes instruction cache per core
• 64Kbytes L1 data memory per core
• 256Kbytes L2 data memory per core
• Integrated ARM processor

SB3011 DSP core has a SIMD vector operation unit
which provides a parallel-execution capability of
four 16-bit multiply-accumulate (MAC) operations
per single instruction cycle. [7]
The peripheral devices which require high-speed
access are connected with Advanced High-
Performance Bus (AHB) and most peripherals are
connected via Advanced Peripheral Bus (APB).
Both AHB and APB are compliant with Advanced
Microcontroller Bus Architecture (AMBA).

The API developed and the associated data obtained
from verification of the RF front end is discussed in
the following.

2 The Driver API Development
A device driver is software that abstracts the
functionality of a physical or virtual device. A

Application Sub-Layer

Hardware Specific Sub-Layer

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 362

device driver manages the operation of these
devices. Examples of physical devices are network
adapters, timers, and universal asynchronous
receiver-transmitters (UARTs). Implementing a
device driver allows the functionality of your device
to be exposed to applications and other parts of the
operating system (OS). While developing a device
driver, take advantage of the services provided by
the OS. One of the most basic rules to remember
when writing portable code is to be aware of how
big one needs to make the variables. Different
processors define different variable sizes for int and
long data types. They also differ in specifying
whether a variable size is signed or unsigned.
Because of this, if one knows the variable size has to
be a specific number of bits, and it has to be signed
or unsigned, then one needs to use the built-in data
types. The following typedefs can be used anywhere
in kernel code and are defined in the linux/types.h
header file:

 u8 unsigned byte (8 bits)
 u16 unsigned word (16 bits)
 u32 unsigned 32-bit value
 u64 unsigned 64-bit value

 s8 signed byte (8 bits)
 s16 signed word (16 bits)
 s32 signed 32-bit value
 s64 signed 64-bit value

All of these functions return a signed 32-bit value
and take a number of values for either a data or
command parameters. Because these data types are
used, this code is portable to any processor type.

If the variables are going to be used in any code that
can be seen by user-space programs, then one needs
to use the following exportable data types. Examples
of this are data structures that get passed through
ioctl() calls. Once again they are defined in the
linux/types.h header file:

__u8 unsigned byte (8 bits)
__u16 unsigned word (16 bits)
__u32 unsigned 32-bit value
__u64 unsigned 64-bit value

__s8 signed byte (8 bits)
__s16 signed word (16 bits)
__s32 signed 32-bit value
__s64 signed 64-bit value

3 RF API Description

The general form of the API is a series of function
calls, where each function call returns an error code
and receives one or more parameters. For example,
the following API is designed to set the automatic
frequency control setting of the RF front end. It
receives a 16-bit parameter that corresponds to a
number between -5000 to plus 5000 Hz. If the API
is successful it will return a value of zero. Any
nonzero return value corresponds to a particular
error that has been identified in a header file. [6]

RF_Drv_Rf_Error_t Drv_Rf_Set_Afc (int afc_val)
Sets the value of AFC.
Parameters:
afc_val
Units: Hz
Range: -5000 to +5000 Hz (approx.)
Mapping: <absolute gain> + 100
0 = -5000 Hz
256 = +5000 Hz

Return Value:
• RF_DRV_RF_SUCCESS
• Or Error code

Another example of an API call is two sets be out of
my gain control of the transmitter. As can be seen
in the example the API has a uniform and consistent
format.

 RF_Drv_Rf_Error_t Drv_Rf_Set_Tx_Agc (int
tx_agc_val)
Sets the value of transmit AGC.
Parameters:
tx_agc_val
Units: dB
Range: -60 dBm to +30 dBm (approx.)
Mapping:

Return Value:
• RF_DRV_RF_SUCCESS
• Or Error code

Contents of rf_api h are any data definitions,
datatypes and function prototypes, as well as an
enumeration of all return error codes. A sample of
the return error codes is shown below

enum
{
 RF_DRV_RF_SUCCESS = 0,
 MAX_RF_DRV_RF_ERRORS
} RF_Drv_Rf_Error_t;

enum

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 363

{
 RF_OFF_STATE,
 RF_ON_STATE,
 RF_MAX_STATE
} RF_On_State_t;

4 API Testing
The API test suites consisted of a battery of tests to
test the transmitter, and another battery of tests to
test the receiver.

Figure 3 shows a test configuration for the
transmitter. As can be seen, a PC connected to the
baseband processor board is used to send commands
to exercise various transmitter APIs. The baseband
processor then exercises the appropriate
functionality in the RF transmitter, and a test
equipment (Agilent PSA) is used to view various
characteristics of the transmitted signal. As can be
seen in Figure 4 the transmitter was configured to
transmit a QPSK signal at 21dBm power level, and
the I/Q contents of the signal where measured on the
Agilent equipment.

Figure 3 – Transmitter Test Suite Configuration

Figure 4 – EVM for QPSK 21 dBm

A sample test Scenario is listed below:
1. Set transmitter frequency to 1935[MHz].
2. Output the EV-DO signal from transmitter

using the EV-DO test program
3. Set the transmitting power to 0[dBm],

21[dBm] and 24[dBm] one by one.
4. Set PSA.

 Amplitude key -> Attenuation -> Auto
 MODE key -> 1xEV-DO

 Mode Setup key -> Radio -> Device ->
MS(Rev) Frequency key -> Center Freq ->
1.935GHz
 Input/Output key -> Max Total Pwr ->
[Corresponding to transmitting power]

The receiver test suite configuration is shown in
Figure 5. As can be seen, a vector signal generator
is configured to generate various EV-DO signals.
The signals or received by the RF front end and the
receive RF API is used to configure the receiver as
well as capture the received data. The
characteristics of the captured data are used in the
tests battery.

Figure 5 – Receiver Test Suite Configuration

As can be seen in Figure 6, the power spectrum of
the CW signal is received and analyzed.

Figure 6 - Power spectrum of data
captured on SB DSP (CW Rx test)

5 Physical Layer Receiver Chain
Description
The baseband transmit and receive processing
chains used to exercise the EV-DO RF front end are
shown in Figure 7 below.

6 Conclusion

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 364

As demonstrated in this paper, a generic RF API can
be written for a software defined radio platform to
unify and standardize the control of the RF front
end. This API can be extended to reconfigurable RF
front end easily by simply modifying the underlying
Hardware Specific Sublayer. Results of this API
development indicated speed of development, and
efficient integration of the RF API into the
application code.

7 References
[1] B. Beheshti, T. Raja, ”Software Defined Radio

Implementation Considerations and Principles
Using the Sandblaster™ SDR Baseband
Processor”, Proceedings of Software Defined
Radio Technical Forum, 16-18 November,
2005, Anaheim, California.

[2] B. Beheshti, J. Glossner, D. Routenberg, L.
Zannella, and P. Steensma, “Evaluation of
Military Waveform Processing on a COTS
Reconfigurable SDR Processing Platform“,
Proceedings of Software Defined Radio
Technical Forum, Volume A, pp. 147-151, 16-
18 November, 2004, Scottsdale, Arizona.

[3] B. Beheshti, S. Jinturkar, “Simultaneous
Baseband Processing Considerations in a
Multi-Mode Handset Using the Sandblaster™
Baseband Processor”, Proceedings of Software
Defined Radio Technical Forum, 16-18
November, 2006, Orlando, Florida.

[4] D. Iancu, J. Glossner, V. Kotlyar, H. Ye, M.
Moudgill, and E. Hokenek, “Software Defined
Global Positioning Satellite Receiver”,
Proceedings of the 2003 Software Defined
Radio Technical Conference (SDR’03), HW-2-
001, 6 pages, Orlando, Florida, 2003.

[5] J. Glossner, D. lancu, J. Lu, E. Hokenek, and M.
Moudgill, “A Software Defined
Communications Baseband Design”, IEEE
Communications Magazine, Vol. 41, No.1, pp.
120-128, Jan., 2003.

[6] J. Glossner, S. Dorward, S. Jinturkar, M.
Moudgill, E. Hokenek, M. Schulte, and S.
Vassiliadis, “Sandbridge Software Tools”, in
Proceedings of the 3rd International Worksop
on Systems, Architectures, Modeling, and
Simulation (SAMOS.p3), July 21-23,2003, pp.
142-147, Samos, Greece.

[7] J. Glossner, T. Raja, E. Hokenek, and M.
Moudgill, “A Multithreaded Processor
Architecture for SDR”, The Proceedings of the
Korean Institute of Communication Sciences,
Vol. 19, No. 11, pp. 70-84, November, 2002.

Figure 7 – EV-DO Forward and Reverse Link Processing Chains

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 365

