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Abstract: - This paper has as aim the design and applications of two self-organizing maps using non-
conventional metrics. First approach concerns the Levensthein Self-Organizing Map (LSOM). The LSOM is a 
SOM that uses a symbolic representation for both the input and also for the weight rows and it is based on the 
Levensthein metrics. The software implementation of the experimental LSOM model is designed for 
automatic Romanian-English translation of 1009 words and expressions. The second approach corresponds to 
the Hamming Self-Organizing Map (HSOM). The HSOM is a SOM that uses binary representation for input 
and weight vectors and is based on Hamming metric. We have implemented the HSOM for recognition of iris 
binary templates, and we have evaluated its performances for CASIA iris database with 108 subjects. A 
recognition score of 99.08% is obtained.  
 
Key-Words: - Self-organizing map, Levensthein metric, Hamming metric, automatic translation, iris 
recognition 
 
1   Introduction 
In pattern recognition, the Self-Organizing Map  
(SOM) (often called Kohonen network [1], [2]) 
performs a high quality classification, assigning the 
similar input vectors to the same neuron or to 
neighbour neurons. Thus, this network transforms 
the relation of similarity between input vectors into 
a relation of neighbourhood of the neurons. The map 
uses the competition principle, by evaluating the 
distances between the input vector and the weight 
vectors corresponding to each neuron. Instead of 
using the classical Euclidean distance, there are 
recent approaches to use other metrics. The author 
of this paper proposed a syntactical SOM based on 
Levensthein metric [3]. There are also other 
approaches to apply the Hamming metric for a SOM 
with binary inputs and weights [4], [5]. 
 
 
2   Levensthein Self-Organizing Map 
(LSOM) 
We further propose a syntactical Levensthein Self-
Organizing Map (LSOM) that has significant  

differences by comparison to the conventional SOM. 
 
 
2.1 Characteristics of LSOM 
• Both the inputs and the weights of the LSOM are 
represented into a symbolic form, but not in a 
numerical one (like for SOM); 
• For the LSOM, we eliminate the condition that the 
two representations used in the competition phase to 
have the same length. Instead of evaluating the 
Euclidean distance between two real vectors, 
belonging to the same space (for the case of 
conventional SOM), we evaluate the weighted 
Levensthein distance between two rows of symbols 
with different lengths, for the LSOM. For computing 
the above distance, we have used the Wagner-Fisher 
algorithm. The application of Levensthein distance 
is perfectly adequate for our task, where we compare 
words (expressions) of different lengths. 
• The LSOM uses the competition principle (like SOM). 
One computes the Levensthein distances between the 
input row of symbols and all the rows of weights 
corresponding to the network neurons. The winner is the 
neuron that minimizes the above distances. 
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2.2 Levensthein metric 
We further define the weighted Levensthein metrics 
([3], [6], and [7]) in order to compute the distance 
between two rows of symbols of different lengths. 
Let α  and β  be two rows of symbols of lengths 
“m” and “n” defined as  
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where ji ba ,  are symbols belonging to the same 
alphabet. We define the transformation 
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     One can prove that the M transformation satisfies 
the following interpretations: 
  (1) If ji ba ≠ , for ( ) Mji ∈, , then jb  is 

substituted by ai ; 
  (2) If Jj ∉ , then bj  is inserted; 

(3) If i I∉ , then ai  is eliminated. 
     Let M  be the set of all the transformations from 
α  to β .  Then, the minimum cost of a 
transformation from α  to β , denoted by D (α , β ) 
is defined as follows: 
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where JI ,  are the cardinals of I, respectively of 
J, q is the insertion cost, r is the elimination cost, 
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is the cost of substitution of symbol ia  by jb . 
     The above-defined distance is called weighted 
Levensthein distance if the following two conditions 
are fulfilled for any pair ( ) ( )2211 ,,, jiji : 
  (1) 2121 jjii =⇔=  
  (2) 2121 jjii <⇔<  
 
 
2.3 Wagner-Fisher algorithm 
In order to iteratively compute the Levensthein 
distance, we have used the Wagner-Fisher algorithm 
(given in [3], [6], and [7]), having the following 
steps: 
 
Step 1. D (0, 0)= 0; 
Step 2. For i from 1 to n, one computes 

  D (i, 0)=D (i-1, 0)+ ( )c ai1 ; 
Step 3. For j from 1 to m, one computes 
  D (0, j)=D (0, j-1)+ ( )c bj2 ; 

Step 4. For i from 1 to n and j from 1 to m, one 
computes:  
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where ( )iac1 , ( )jbc2 , and ( )ji bac ,  are the costs of 
insertion, elimination, and respectively substitution. 
Step 5. The distance between the two words is D (n, 
m). 
 
 
2.4 LSOM Training 
Training of the LSOM (refinement of the weights) is 
performed by analogy to the procedure of 
conventional SOM, in a neighbourhood of the 
winner neuron using the Levensthein distance 
between the input row and the row of weights 
characterizing the winner neuron (or one of its 
neighbours). One tends to change the weight row in 
order to minimize the Levensthein distance. To 
solve this task, one uses the following operations: 
insertion, deletion and/or substitution. 
     The training algorithm for LSOM is the 
following: 
 
Step 1. 
Initialize the weights of the LSOM  
Step 2. 
• Apply one by one the words (expressions) 
belonging to the training set.  
• For each of them, compute the winner neuron, by 
minimizing the Levenshein distance between the 
input word and all the weight rows corresponding to 
the LSOM neurons. 
• Make identical the weight row of the winner 
neuron with that of the input word (corresponding 
row). 
• Refine the weight rows of the neurons belonging to 
the neighbourhood of the winner by performing the 
elementary operations of substitution, insertion, and 
deletion, in order to reduce their Levensthein 
distances to the input word (but not to make them 
zero). The reduction of the Levensthein distance is a 
function of the neuron position regarding the 
winner; this reduction increases when the Euclidean 
distance (in the map co-ordinates) between the 
corresponding neuron and the winner neuron 
decreases. 
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Step 3. 
• Compute the classification error as a sum of all the 
minimum Levenshein distances of the words 
(expressions) belonging to the training lot. Such a 
distance is the minimum of the distances between 
the corresponding input word and the weight rows 
of the LSOM neurons. 
Step 4. 
• Test the stop condition (if the classification error is 
zero). 
 
 
2.5 LSOM Test 
The test (operational) phase consists of computing 
the Levensthein distance between the input word 
and all the weight rows of the LSOM. The minimum 
distance leads to the winner neuron; its label 
corresponds to the class label.  
 
 
3   Hamming Self-Organizing Map 
(HSOM) 
We shall present a SOM variant based on Hamming 
metric, called Hamming Self-Organizing Map 
(HSOM). It can be considered as a particular case of 
the previous LSOM. 
 
 
3.1 Characteristics of HSOM 
• Both the input vector elements and the weights of 
the HSOM are represented as binary integers 
“0” or “1”; 
• The HSOM is based on Hamming distance. 
Assuming two binary vectors,  
  A=( a1, a2, …, an)t 
  B=( b1, b2, …, bn)t 
where ai, bi ∈{0, 1}, the Hamming distance between 
A and B is  
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     Consequently, the Hamming distance between 
the input vector X and the weight vector Wj of the  
j-th neuron in the competitive layer is calculated by 
the equation  
 dH(X, Wj) = bitcount{ xi XOR wji } 
 dH(X, Wj) = bitcount{( ix  ∧ wji) ∨ (xi ∧ jiw )  

 | i = 1, …, n}, j=1, …, M; M = number of output 
neurons.  
• The HSOM uses the competition principle (like 
SOM). One computes the Hamming distances  

between the binary input vector and all the binary 
weight vectors. The winner is the neuron that 
minimizes the above distances 
  c = 

j
minarg {dH(X, Wj)} 

 
 
3.2 HSOM Training 
To update the binary weight vectors of HSOM, we 
firstly compute exclusive-OR (XOR) of each 
element of X and Wj. If XOR ( xi, wji ) = 1, then wji 
is a candidate for inversion. The number of inverted 
bits (belonging to the weight vector Wj) is defined 
as a learning rate; it gradually decreases as learning 
progresses. 
 
 
4   LSOM for Automatic Translation 
There are many automatic translation systems using 
very sophisticated techniques, most of them being 
non-neural. They take into account both the 
dictionary of correspondence between the words of 
the two languages and also the syntax rules. The 
design of such a system is laborious and usually it is 
specific for the two languages. 
     We further present the experimental results of the 
software implementation of the LSOM model, 
corresponding to a Romanian-English translation 
application, using a set of 1009 Romanian words 
and expressions. One chooses a circular architecture 
[8] of the LSOM (Fig. 1). Denoting by “n“ the 
number of inputs (representing the maximum 
number of symbols belonging to an input row) and 
by “M” he number of outputs (neurons), the 
software experiment corresponds to: n =20 and  
M= 1050. The weight matrix is w(i,j), i= 1, 2, …, n; 
j=1, 2, …,M. 
 

 
Fig. 1. The circular architecture of the LSOM. 
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Fig. 2. The “27 x 27” matrix of substitution costs 
 
     The input alphabet has 27 symbols, namely 26 
letters and the “space” symbol (for expression 
translation): 
A={ a  b  c  d  e  f  g  h  i  j  k  l  m  n  o  p  q  r  s  t  
u  v  w  x  y  z } . 
     For using the Levensthein metrics, we have 
chosen the substitution costs, insertion costs, and 
deletion costs. The substitution costs are defined as a 
function of the distance between the corresponding 
letters on the keyboard, in order to correct the punch 
errors (for example, c (a, b)=5, c (a, c) =3,  
c (a, d) =2). Taking into account the above principle, 
we have defined the corresponding 27 x 27 matrix of 
substitution costs. (Fig. 2). The insertion, respectively 
the deletion costs are taken all equal to 2. 
     For training, we used a variable size 
neighbourhood, where the radius of neighbourhood 
decreases with the epoch index, according to the 
following sequence: 
{ 256, 256, 256, 128, 128, 128, 32, 32, 32, 8, 8, 8, 2, 
2, 2 }. 
     To perform an automatic translation, we 
associate a table to the output labelled neurons 
giving the correspondence between the two 
languages: Romanian and English. At the same time, 
taking into account the LSOM design, one can 
correct some input (typing) errors. In Table 1, we 
give an example. 
 

Table 1. Example of automatic translation  
and error correction. 

Original 
Word (Ro) 

Erroneous 
Input (Ro) 

Output 
(En) 

Error 
Correction 

abil Abi Skilful Yes 
abur Abuv Steam Yes 
lemn Lenm Wood Yes 

admite Dmit Bribe No 
 
 
5   HSOM for Iris Recognition 
Since 1987, when Flom and Safir [9] observed the 
stability of iris morphology over human lifetime and 
estimated the probability for the existence of two 
similar irises at 1 in 1072, the use of iris biometrics 
has been increasingly encouraged by both 
government and private entities. The iris is 
commonly recognized as one of the most reliable 
biometric traits[10], [11], [12]. We shall further 
apply the HSOM for binary iris template 
recognition. 
 
 
5.1 CASIA Iris Database 
The Chinese Academy of Sciences – Institute of 
Automation (CASIA) eye image database contains 
756 grey scale eye images with 108 unique eyes or 
classes and 7 different images of each unique eye. 
Images from each class are taken from two sessions 
with one month interval between sessions. The 
images were captured especially for iris recognition 
research using specialised digital optics developed 
by the National Laboratory of Pattern Recognition, 
China. The eye images are mainly from persons of 
Asian decent, whose eyes are characterised by irises 
that are densely pigmented, and with dark eyelashes. 
Due to specialized imaging conditions using near 
infra-red light, features in the iris region are highly 
visible and there is good contrast between pupil, iris 
and sclera regions. 
 

   
Fig.3. CASIA images of the first session. 

 

    
Fig.4. Corresponding images of the second session. 
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5.2 The experimental system for iris 
recognition 

The experimental software implemented system for 
iris recognition has the following stages (Fig. 5):  

a) Iris detection 
b) Normalisation 
c) Feature extraction and encoding 
d) Hamming Self-Organizing Map 

 

 
Fig. 5. Architecture of the implemented software for iris recognition including HSOM 

 

 
Fig. 6. a) an eye image from the CASIA database;  

b) corresponding edge map 
 
1. Iris detection implies three steps: 
a) edge detection 
b) detection of the borders of iris region 
c) eyelash and noise isolation 
     For edge detection, an edge map is generated by 
calculating the first derivatives of intensity values in 
an eye image and then thresholding the result (Fig. 6). 
From the edge map, votes are cast in Hough space 
for the parameters of circles passing through each 
edge point. The circular Hough transform is 
employed to deduce the radius and centre 
coordinates of the pupil and iris regions. The results 
are shown in Fig. 7. 

 

 
Fig. 7. Detection of iris borders using Hough 

transform. 
 
     Eyelids were isolated by first fitting a line to the 
upper and lower eyelid using the linear Hough 
transform. A second horizontal line is then drawn, 
which intersects with the first line at the iris edge that 
is closest to the pupil. This process is illustrated in Fig. 
8 and is done for both the top and bottom eyelids. 
 
 

 

 
Fig. 8. Isolation of eye lids using a linear Hough 

transform. 
 

     Separable eyelashes are detected using 1D Gabor 
filters, since the convolution of a separable eyelash 
with the Gaussian smoothing function results in a 
low output value. Thus, if a resultant point is smaller 
than a threshold, it is noted that this point belongs to 
an eyelash (Fig. 9) 

 

 
Fig. 9. Eye lash and noise detection. 

 
     For normalisation, the homogenous rubber sheet 
model devised by Daugman [1] remaps each point 
within the iris region to a pair of polar coordinates 
(r,θ) where r is on the interval [0,1] and θ is angle 
[0,2π] (Fig. 10). 
 

 
Fig.10. Daugman’s rubber sheet model. 

 
     The output of the normalisation stage is given in 
Figs. 11 and 12. 
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Fig. 11. Polar normalisation of iris region. 

 
 

Fig.12. Noise mask corresponding to polar 
normalisation. 

 
     Feature encoding was implemented by 
convolving the normalised iris pattern with 1D Log-
Gabor wavelets. The 2D normalised pattern is 
broken up into a number of 1D signals, and then 
these 1D signals are convolved with 1D Gabor 
wavelets. The output of filtering is then phase 
quantized to four levels using the Daugman method 
[10], with each filter producing two bits of data for 
each phasor. The output of phase quantization is 
chosen to be a grey code, so that when going from 
one quadrant to another, only one bit changes. 
     The encoding process produces a bitwise 
template containing a number of bits of information, 
and a corresponding noise mask which corresponds 
to corrupt areas within the iris pattern, and marks 
bits in the template as corrupt (figs. 13 ands 14). 

 
 

Fig. 13. Binary iris template. 
 

 
Fig. 14. Binary noise mask. 

 
     For each subject (belonging to the set of 108 of 
the database CASIA), the three images of the first 
session have been considered for training, while 
three of the four images of the second session have 
been included in the test set. Thus, the learning set 
contained 324 images and the test set had 324 as 
well. Using HSOM, one obtains a correct 
recognition score of 98.15%. 
     To improve the recognition performance, we 
have chosen a decision fusion; namely, for each 
subject we performed a classification for each of the 
three images of the test set corresponding to this subject, 
then we combined the results by decision fusion. Thus, 
one obtains a recognition score of 99.08%. 
 
 
6   Conclusions 
1. We propose a Levensthein Self-Organizing Map 
(LSOM), where input rows and the SOM weights 
are represented by rows of symbols of different 
lengths, by eliminating the necessity of normalizing 
the length of input . One uses the specific weighted 
Levensthein distance, which is computed by 
applying the Wagner-Fisher algorithm. 

2. The syntactical way of representation of the input 
words and expressions is naturally adequate to the 
automatic translation. Any substitution cost given in 
the matrix of Fig. 1 is defined as a function of the 
Euclidean distance between the corresponding 
letters on the keyboard, in order to correct the input 
(typing) errors. 
3. An important advantage of the model is that its 
design does not depend on the specific two 
languages, characterizing the translation. 
Consequently, it can be trained and retrained by the 
user for any pair of languages. 
4. The second approach has as target the Hamming 
Self-Organizing Map (HSOM). Both the input 
vector elements and the weights of the HSOM are 
represented as binary integers “0” or “1”. One uses 
the specific Hamming distance in the competition 
phase. 
5. We have implemented the HSOM for recognition 
of iris binary templates, and we have evaluated its 
performances for CASIA iris database with 
108 subjects. A recognition score of 99.08% is 
obtained. 
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