
Minimum-Change Drawings for Labeled Graphs∗

MICHAEL A. BEKOS, KATERINA POTIKA, ANTONIOS SYMVONIS

National Technical University of Athens
School of Applied Mathematical & Physical Sciences

15780 Zografou, Athens
GREECE

{mikebekos, epotik, symvonis}@math.ntua.gr

Abstract: The interest in algorithms that automate the process of information visualization by the usage of textual
labels for features of interest within a visualization has increased with the advance in type-setting technology and
the amount of information to be visualized. In this paper, we study minimum-change drawings for labeled graphs,
adopting the boundary labeling model [6]. Changes within the graph may occur because of the actions of a user,
which is able to insert new features within the visualization, delete previously placed features and change the sizes
of the labels. Each time the user acts, a small change should be performed within the visualization in order to
rearrange its components with respect to some optimization criterion. We model this problem and we also provide
several heuristics to obtain “near-optimal” solutions.

Key–Words: Labeled graphs, Minimum-change drawings, Boundary Labeling.

1 Introduction
A common task in the process of information visual-
ization is the placement of textual labels for features
of interest within the visualization. The interest in al-
gorithms that automate this task has recently received
considerable attention, due to the numerous applica-
tions that stem from diverse areas such as Cartography
and Graphical Information Systems.

Recent research on automated label placement
has concentrated on placing the textual labels as close
to the features of interest as possible, so that the la-
bels do not overlap each other. Due to the compu-
tational complexity of this problem, which is NP-hard
in general [7, 9, 11, 12], cartographers, graph drawers,
and computational geometers have proposed several
approaches, among them approximation algorithms
[7, 13], expert systems [1], gradient descent [8], zero-
one integer programming [14] and simulated anneal-
ing [15]. However, there exist cases in which these

∗The work is co - funded by the European Social Fund (75%)
and National Resources (25%) - Operational Program for Educa-
tional and Vocational Training II (EPEAEK II) and particularly
the Program PYTHAGORAS.

approaches are difficult or even undesirable to be ap-
plied. Such cases arrive when the labels are large
enough (i.e. they contain blocks of texts rather than
a single word), or when the features lie close to each
other and there is not enough space to place the la-
bels. In addition, there exist cases, where the underly-
ing map contains useful information and must not be
obscured or occluded by the use of labels.

As a response to this problem Bekos, Kaufmann,
Symvonis and Wolff [6] proposed a reasonable alter-
native, according to which the labels are placed on the
boundary of a rectangle enclosing the drawing and
they are connected to their associated features with
non-intersecting polygonal lines. This approach is de-
noted as boundary labeling, and the lines are called
leaders.

In practice, this approach is quite usual in med-
ical maps and technical drawings, where it is often
common to explain certain features of the drawing
with blocks of text, that are arranged on its bound-
ary. In such a setting, labels containing long texts do
not overlap each over, do not obscure the site set and
more importantly they do not occlude the underlying
drawing.

1

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 403

Adopting the boundary labeling model, we inves-
tigate minimum-change drawings for labeled graphs.
More precisely, we assume that a labeling is being cre-
ated interactively based on the actions of a user. Each
time the user acts (e.g. inserts a new site or deletes a
site), a small change should be performed within the
visualization in order to rearrange its components with
respect to some optimization criterion. Clearly, this
could be done by applying an optimal algorithm each
time the user acts. However, this is a time consum-
ing task, especially when the number of features to be
labeled is large. In addition, such an approach could
lead into confusing situations for the user’s point of
view, since the new labeling could be completely dif-
ferent from the one obtained before the user’s action
has taken place. Therefore, we propose an alternative
to cope with this problem, relaxing our demands on
optimality and focusing on the user’s point of view.

This paper is structured as follows: In Section 2,
we define formally the boundary labeling model. Sec-
tion 3, reviews previous results. In Section 4, we focus
on minimum-change drawings for labeled graphs. We
conclude in Section 5 with open problems and future
work.

2 The boundary labeling model
A boundary labeling in its primitive form specifies as
part of its input a set P of n sites si, i = 1,2, . . .n, each
associated with an open, rectangular label li of width
wi and height hi. The site set P and the corresponding
drawing are enclosed in an axis-parallel rectangle R
of sufficient size, which is called enclosing rectangle.
The labels should be placed on distinct positions on
the boundary of R, so that they do not overlap each
over and to be connected to their corresponding sites
with non-intersecting polygonal lines, called leaders.
Such labelings are referred to as legal or crossing free
labelings.

In boundary labeling, the type of the leaders used
to produce labelings, is one of the most important as-
pects that determine the readability and the ambiguity
of the drawing. Surprisingly, it is not always the best
choice to rely exclusively on straight-line leaders (also
refereed to as type-s leaders) . The reason is that the
variety of different slopes among the leaders may un-
necessarily clutter the visualization, especially if the
number of labels is large. Leaders look less disturb-

ing if their shapes are more uniform, as the rectilinear
leaders do. When a leader is rectilinear, it consists of
a sequence of axis-parallel segments, which are either
parallel (p) or orthogonal (o) to the side of R contain-
ing the label it leads to. This implies that a leader c of
type c1c2 . . .ck, where ci ∈ {o, p} consists of a x- and
y-monotone connected sequence (s1,s2, . . . ,sk) of seg-
ments from the site to the label, where segment si is
parallel to the side of R containing the label if ci = p;
otherwise it is orthogonal to that side. Since we target
on simple and easy to visualize labelings, we focus
only on leaders of types po and opo . For each opo
leader, we further insist that its p segment lies outside
R, in the so called track routing area, so that the vi-
sualization is not cluttered unnecessarily. Leaders of
type o are trivially considered to be of type opo and
po, as well.

The labels are attached on the boundary of an
axis-parallel rectangle R = [lR,rR]x[bR, tR] of height
H = tR− bR and width W = rR− lR, which contains
the site set P. In the general case of the problem, the
labels are of arbitrary sizes (non-uniform labels), i.e.
label li, which corresponds to site si has height hi and
width wi. However, of particular interest are the labels
of uniform size, or of maximum uniform size.

Keeping in mind that we want to obtain simple
and easy to visualize labelings, the following crite-
ria can be adopted from the areas of VLSI and graph
drawing: (1) minimize the total number of bends used
for the leaders, i.e. determine a legal labeling, such
that the total number of leader bends is minimum and
(2) minimize the total leader length, i.e. determine a
legal labeling, such that the total leader length is min-
imum.

3 Previous Work
Bekos, Kaufmann, Symvonis and Wolff introduced
the boundary labeling problem in [6]. The focus of
their work is on efficient algorithms for minimizing
the total leader length and for minimizing the total
number of leader bends. An algorithm for minimizing
the total leader length with type-opo leaders, when the
labels are allowed to be placed on all four sides of R
is presented in [2]. In subsequent works Bekos et al.
study variations, where the labels are arranged in mul-
tiple stacks on one side of the rectangle [3] or where
a set of polygons is labeled instead of a set of fixed

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 404

points [4]. In [5], they presented another variation,
where the sites to be labeled are collinear.

Kao, Lin and Yen [10] introduced the term Many-
to-One boundary labeling to describe a variation of
boundary labeling, where several sites are associated
with a common label. In the case of Many-to-One
boundary labeling, the presence of crossings among
leaders often becomes inevitable. Therefore, they pre-
sented several algorithms, approximations and heuris-
tics for minimizing the total number of crossings.

4 Minimum-Change Drawings for
Labeled Graphs

In this section, we adopt the boundary labeling model
and we study minimum-change drawings for labeled
graphs.

We assume that a labeling is being created inter-
actively based on the actions of a user (e.g. inser-
tion of a new site). This suggests that, small changes
should be performed within the visualization, each
time the user acts, otherwise, the user may be con-
fused. Therefore, we can not apply an optimal algo-
rithm each time the user acts, since the resulting vi-
sualization may be completely different from the one
of some previous stage (i.e. before the user’s action
takes place). Figure 1 illustrates this case. Both Fig-
ures 1a and 1b are optimal in terms of the number of
leader bends, however the insertion of the new site
(Yorkshire; pointed by an arrow) has introduced a “big
change” in the labeling of Figure 1b compared with
the one of Figure 1a. This is because several labels
have been rearranged and some of them have changed
side, in order to maintain the optimality of the latter
visualization.

A reasonable alternative to cope with this prob-
lem is to relax our demands regarding the optimality
of the visualization and focus on the user’s point of
view.

4.1 User Actions and their Consequences
Since this is our first attempt to model this problem,
we assume that the user is only allowed to insert and
delete sites and change the size of the labels. In more
complicated cases, the user may be able to zoom and
navigate over the map.

(a) Before the insertion of the new site.

(b) After the insertion of the new site, which is pointed out by the
arrow.

Figure 1: Both labelings are optimal in terms of total leader
bends.

The actions of the user influence the structure
of the visualization. When the user inserts a new
site, then sufficient space must be allocated in or-
der to accommodate a new label, associated with this
site. This implies that other neighboring labels might
have to be rearranged somehow in order to realize
this placement. Additionally, the placement has to
be done so that to obtain a “near-optimal” solution.
However, since the labeling is not optimal anymore,
this may imply crossings among the leaders, which
is a drawback, as crossings are often regarded as the
main source of confusion in information visualization.
This is exactly the point where the optimal algorithm
comes into play. If the number of crossings exceeds a
previously defined quantity (e.g. the number of sites

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 405

being used), then the optimal algorithm should be exe-
cuted and the user must be informed, that he will face
a greater change within the visualization being cre-
ated.

When a site is removed, then its associated label
has also to be removed. This implies that some space
is released, so that some bottlenecks to be improved.
Keeping in mind that small changes should be per-
formed, a good choice would be to rearrange some
of its neighboring labels so that to reduce the number
of crossings or archive a better solution regarding the
optimization criterion we have adopted.

Finally, the user is also able to change the size of
the labels. Such an action can be done either man-
ually because of a user’s demand or can be gener-
ated because of some change on the font format or
font size. In this case, the label has to enlarge or
shrink, which suggests that a new change should be
performed within the structure of the visualization.
Both cases can be treated by following similar ap-
proaches as the ones for site creation and deletion, re-
spectively.

4.2 Greedy Heuristics
To evaluate our heuristics, we adopt the following
boundary labeling model: The labels are allowed to
be placed on one side of the enclosing rectangle R,
say the east side of R. The assumed model is quite
general, since it permits non uniform labels with slid-
ing label ports (i.e. each leader is allowed to touch the
label anywhere on its boundary). We seek to deter-
mine a near-optimal type-po boundary labeling with
respect to the total number of leader bends.

4.2.1 Insertion of Sites
The heuristic regarding the site creations is stated as
follows: Each time a new site is being created, deter-
mine whether it can be routed using a type-o leader. In
a straight-forward approach, this can be determined in
O(n) total time, where n is the number of labels al-
ready placed. However, we can improve ourselves in
O(logn) by applying a binary search over the label set.
If this is not possible, then the label is placed so that
to minimize the number of crossings implied by this
placement. Again, in a straight-forward approach this
can be done in O(n2) total time, however we can im-
prove ourselves in O(log3 n + k logn), where k is the
maximum number of reported crossings by employing

Algorithm 1: Greedy Heuristic on Site Creations

On site creation (s):
Determine whether s can be routed with a type-o
leader.
if (this is possible) then

Proceed with the placement.
else

Place the label so that to minimize the number
of newly introduced crossings.

if (# crossings exceeds # sites) then
Inform the user.
Run the optimal algorithm.

(a) Before the insertion of the new site.

(b) After the insertion of the new site,
which is pointed out by the arrow.

Figure 2: A labeling produced by Algorithm 1.

binary search like techniques over the label set and in-
terval trees to support visibility queries. Our heuristic
is also stated in Algorithm 1.

Figure 2 illustrates the usage of our heuristic. The
insertion of the new site (Yorkshire; pointed by an ar-
row in Figure 2b) has introduced an additional cross-
ing in the resulting labeling of Figure 2b compared

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 406

with the one of Figure 2a. Note that in this case, this
crossing can be easily eliminated, however in more
complicated cases such an elimination may require
several labels to be rearranged.

4.2.2 Deletion of Sites
As mentioned earlier, when a site is deleted some
space is released. We choose to use this space in order
to increase the number of sites that are routed using a
type-o leader, if this is possible. We could also use it
so that to reduce the number of crossings or combine
with these objectives.

Our heuristic regarding the site deletions is stated
as follows: Each time a site is deleted, determine
whether one of its label’s two immediate neighbor la-
bels can be rearranged, so that to be routed using a
type-o leader. This can be done in constant time as-
suming that each label keeps a reference to its two im-
mediate neighbor labels. We proceed by recursively
applying the same approach to the rearranged label.
Thus, the total time needed to delete a site is at most
O(n), where n is number of labels already placed.
Clearly, this recursion does not result into an optimal
elimination of the leader bends that can be eliminated.
However, it is efficient in term of time complexity.
This heuristic is also stated in Algorithm 2.

Figure 3 illustrates the usage of our heuristic. The
deletion of the site (East Midlands; pointed by an ar-
row in Figure 3a) result into a labeling with greater
number of type-o leaders. However, it did not affect
the number of crossings. Note that in general this pro-
cedure can lead into a labeling with greater number of
leader crossings.

4.2.3 Changing a label’s size
Changes on labels’ sizes are treated by following simi-
lar approaches as the ones for site insertions and dele-
tions. The case where a label is about to shrink is
easy. We do not have to consider special issues. We
just shrink it, such that its leader do not bend, if it is
of type-o. The space that is earned can be exploited as
in the case of site deletion. Therefore, such a change
demands a linear time effort.

If a label is about to enlarge, then there exist two
alternatives. The first one occurs, when there exists
enough space (either on top or bellow the label), in or-
der to accommodate this enlargement. In this case, we
just enlarge it by focussing on the type of the leader

Algorithm 2: Greedy Heuristic on Site Deletions

On site deletion (s):
l:= the label of site s.
lt := the label on top of l.
lb:= the label bellow l.
Remove l.
if (lt can be routed using a type-o leader) then

Proceed with the new placement of lt .
Recursively, apply the same approach to the
two immediate neighbor labels of lt .

else
if (lb can be routed using a type-o leader) then

Proceed with the new placement of lb .
Recursively, apply the same approach to the
two immediate neighbor labels of lb.

if (# crossings exceeds # sites) then
Inform the user.
Run the optimal algorithm.

(a) Before the deletion of the site, which
is pointed out by the arrow.

(b) After the deletion of the site.

Figure 3: A labeling produced by Algorithm 2.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 407

that we will use, since such an enlargement may lead
into an additional leader of type-o. To cope with this
case demands a constant time effort. The second alter-
native occurs when there exists no enough space. In
this case, some labels either on top or bellow the label
(that is about to enlarge) have to be rearranged. From
these two alternatives we choose the one which maxi-
mizes the total number of type-o leaders. This can be
done in linear time.

5 Conclusions
In this paper, as a first step towards solving this prob-
lem, we presented results only for the leader bend
minimization problem. No results presented regard-
ing the total leader length minimization problem. We
also assumed that the user is only allowed to insert and
delete sites and change the size of the labels. In more
complicated cases, the user may be able to change the
sizes of the labels, or even zoom and navigate over the
map. No algorithms exist for this model.

References:

[1] J. Ahn and H. Freeman. AUTONAPan expert
system for automatic map name placement. In
Proc. International Symposium on Spatial Data
Handling (SDH’84), pages 544–569, 1984.

[2] M. A. Bekos, M. Kaufmann, K. Potika, and
A. Symvonis. Boundary labelling of optimal to-
tal leader length. In P. Bozanis and E. Houstis,
editors, 10th Panhellenic Conference on Infor-
matics (PCI’05), pages 80–89, 2005.

[3] M. A. Bekos, M. Kaufmann, K. Potika, and
A. Symvonis. Mutli-stack boundary labeling
problems. In S. Arun-Kumar and N. Garg, ed-
itors, Proc. 26th Conference on Foundations of
Software Technology and Theoretical Computer
Science (FSTTCS2006), LNCS 4337, pages 81–
92, 2006.

[4] M. A. Bekos, M. Kaufmann, K. Potika, and
A. Symvonis. Polygons labelling of minimum
leader length. In M. Kazuo, S. Kozo, and T. Jiro,
editors, Proc. Asia Pacific Symposium on Infor-
mation Visualisation (APVIS2006), CRPIT 60,
pages 15–21, 2006.

[5] M. A. Bekos, M. Kaufmann, and A. Symvo-
nis. Labeling collinear sites. In Proc. Asia
Pacific Symposium on Information Visualisation
(APVIS2007), IEEE, pages 45–51, 2007.

[6] M. A. Bekos, M. Kaufmann, A. Symvonis, and
A. Wolff. Boundary labeling: Models and effi-
cient algorithms for rectangular maps. In J. Pach,
editor, Proc. 12th Int. Symposium on Graph
Drawing (GD’04), LNCS 3383, pages 49–59,
New York, 2005.

[7] M. Formann and F. Wagner. A packing problem
with applications to lettering of maps. In Proc.
7th Annu. ACM Sympos. Comput. Geom., pages
281–288, 1991.

[8] S. A. Hirsch. An algorithm for automatic name
placement around point data. The American
Cartographer, 9(1):5–17, 1982.

[9] C. Iturriaga and A. Lubiw. NP-hardness of some
map labeling problems. Technical Report CS-
97-18, University of Waterloo, Canada, 1997.

[10] H.-J. Kao, C.-C. Lin, and H.-C. Yen. Many-
to-one boundary labeling. In Proc. Asia Pa-
cific Symposium on Information Visualisation
(APVIS2007). To appear.

[11] T. Kato and H. Imai. The NP-completeness of
the character placement problem of 2 or 3 de-
grees of freedom. In Record of Joint Confer-
ence of Electrical and Electronic Engineers in
Kyushu, page 1138, 1988. In Japanese.

[12] S. H. Poon, C.-S. Shin, T. Strijk, T. Uno, and
A. Wolff. Labeling points with weights. Algo-
rithmica, 38(2):341–362, 2003.

[13] M. van Kreveld, T. Strijk, and A. Wolff. Point
labeling with sliding labels. Conputational Geo-
mentry: Theory and applications, 13:21–47,
1999.

[14] S. Zoraster. The solution of large 0-1 integer pro-
gramming problems encountered in automated
cartography. Operations Research, 38(5):752–
759, 1990.

[15] S. Zoraster. Practical results using simulated an-
nealing for point feature label placement. Car-
tography and GIS, 24(4):228–238, 1997.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 408

