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1 Introduction

This section contains some basic elements of
the umbral calculus (Gian–Carlo Rota and Steven
Roman).

We shall be concerned with the algebra (over
a field of characteristic zero) of all polynomials
p(x) in one variable, to be denoted by Π.

By a polynomial sequence we shall denote a
sequence of polynomials pn(x), n = 0, 1, 2, . . .,
where pn(x) is exactly of degree n for all n.

A polynomial sequence is said to be of bino-
mial type if it satisfies the infinite sequences of
identities

pn(x + y) =

n
∑

k=0

(

n
k

)

pk(x)pn−k(y), n = 0, 1, . . . .

The simplest sequence of binomial type is of
course xn, but we give some nontrivial examples

1. pn(x) = x(x − na)n−1, (Abel)

2. (x)[n,−1] = x(x + 1) · . . . · (x + n − 1),
(upper-factorials)

3. (x)[n,1] = x(x − 1) · . . . · (x − n + 1),
(lower-factorials)

.

The most important shift–invariant operators
are the shift operators, written Ea, that is

E
ap(x) = p(x + a).

An operator T : Π → Π which commutes with
all shift operators is called a shift–invariant oper-
ator. In symbols, TEa = EaT , for all real a in
the field.

We define a delta operator (E.B. Hildebrand,
Gian–Carlo Rota), usually denoted by Q, as a
shift–invariant operator for which Qx is a nonzero
constant.

For examples:

1. Q = D Ea (Abel operator)

2. Q =
1

a
(I −E

−a), a 6= 0, (backward difference

operator)

3. Q =
1

a
(E

−a − I) a 6= 0, (forward difference

operator.)

If Q is a delta operator, then Qa = 0 for every
constant a.

A polynomial sequence pn(x) is called the se-
quence of basic polynomials for Q if

i) p0(x) = 1
ii) pn(0) = 0 whenever n ≥ 1

iii) Qpn(x) = npn−1(x), n ≥ 1.

Every delta operator has an unique sequence
of basic polynomials.

The typical example of a basic polynomial se-
quence is xn, basic for the derivative operator D,
D p(x) = p′(x).

The following theorem generalizes the Taylor
expansion theorem to delta operators and their
basic polynomials.

Theorem 1 Let T be a shift–invariant operator
and let Q be a delta operator with basic set pn(x).
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Then

T =
∑

k≥0

(T pk)(0)

k!
Qk. (1)

In the following, we write Q = f(D) where
f(t) is a formal power series.

An important result with generating func-
tions for binomial polynomials is in the following
theorem

Theorem 2 Let Q be a delta operator with basic
polynomials pn(x) and let Q = f(D). Then there
exists the inverse formal power series f−1(u), and

∑

n≥0

pn(x)

n!
un = exf−1(u). (2)

For example, we consider the delta operator

Q =
1

a

(

E
ϕ(a) − I

)

,

where I is the identity operator and ϕ : J →
(0, 1), J ⊂ R, 0 /∈ J , is a real function with

lim
x→0

ϕ(x) = 0, lim
x→0

ϕ(x)

x
= 1.

The basic set for Q is

pn(x) =
an

ϕn(a)
x(x−ϕ(a)) · . . . · (x− (n− 1)ϕ(a)),

where n ≥ 1, p0(x) = 1.
We denote

pn(x) =
an

ϕn(a)
· (x)[n,ϕ(a)], n ≥ 1, p0(x) = 1.

We have f(t) =
1

a

(

eϕ(a)·t − 1

)

and hence

f−1(u) =
1

ϕ(a)
ln(1 + au).

Using (2), we obtain

(1 + au)
x

ϕ(a) =
∞

∑

k=0

ak

ϕk(a)
·
(x)[k,ϕ(a)]

k!
· uk

and consider the sequence of linear operators

(Pnf)(x) = (3)

= (1 + au)
− nx

ϕ(a)

∞
∑

k=0

ak

ϕk(a)
·
(nx)[k,ϕ(a)]

k!
ukf

(

k

n

)

where x ≥ 0, f : [0,∞) → R.
If we impose that

(Pne1)(x) = x, ek(x) = xk, k ∈ N

we find
(Pne1)(x) =

= (1 + au)
− nx

ϕ(a)

∞
∑

k=0

ak

ϕk(a)
·
(nx)[k,ϕ(a)]

k!
uk ·

k

n
=

=
1

n
(1 + au)

− nx
ϕ(a)

∞
∑

k=1

ak

ϕk(a)
·
(nx)[k,ϕ(a)]

(k − 1)!
uk.

Using the identity

(nx)[k,ϕ(a)] =

= nx(nx)[k−1,ϕ(a)] − (k − 1)ϕ(a)(nx)[k−1,ϕ(a)]

we have
(Pne1)(x) =

=
a

ϕ(a)
xu(1 + au)

− nx
ϕ(a)

∞
∑

k=1

ak−1

ϕk−1(a)
·
(nx)[k−1,ϕ(a)]

(k − 1)!
uk−1−

−
au

n
(1 + au)

− nx
ϕ(a)

∞
∑

k=2

ak−1

ϕk−1(a)
·
(nx)[k−1,ϕ(a)]

(k − 2)!
uk−1 =

=
a

ϕ(a)
xu − au(Pne1)(x)

and hence

u =
ϕ(a)

a(1 − ϕ(a)
.

In the present paper we investigate the se-
quence of linear and positive operators defined by

(Pnf)(x) = (4)

= (1 − ϕ(a))
nx

ϕ(a)

∞
∑

k=0

(nx)[k,ϕ(a)]

k![1 − ϕ(a)]k
f

(

k

n

)

where ϕ : J → (0, 1), 0 /∈ J ⊂ R, x ≥ 0, and
f ∈ C([0,∞)) is a real and bounded function.

Remark 1 For ϕ(x) = sinx, ϕ : (0, π) → (0, 1)
we have

lim
x→0

ϕ(x) = 0, lim
x→0

ϕ(x)

x
= 1,

and
(Pnf)(x) =

= (1 − sin a)
nx

sin a

∞
∑

k=0

(nx)[k,sin a]

k!(1 − sin a)k
f

(

k

n

)

.
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Remark 2 For ϕ(a) = a, ϕ : (0, 1) → (0, 1), the

delta operator is Q =
1

a
(E

a − I) (forward differ-

ence operator) with the basic set pn(x) = (x)[n,a]

and

(Pnf)(x) = (1 − a)
nx
a

∞
∑

k=0

(nx)[k,a]

k!(1 − a)k
f

(

k

n

)

.

Remark 3 Finally we wish to notice that the
Mirakyan–Favard–Szász operator

(Mnf)(x) = e−
nx
a

∞
∑

k=0

(nx)k

k!
f

(

k

n

)

may be obtained as a limiting case of our operators
(4).

For a → 0 we have

Q −→ D, (nx)[k,ϕ(a)] → (nx)k

and

(1 − ϕ(a))
1

ϕ(a) → e−1.

Hence Pn −→ Mn.

2 Approximation properties

New we study the convergence of the sequence
(4).

Lemma 1 The following identities

(Pne0)(x) = 1, (Pne1)(x) = x, (5)

(Pne2)(x) = x2 +
1 − ϕ(a)

n
x

are valid.

Proof: Evidently that (Pne0)(x) = e0(x) and
(Pne1)(x) = e1(x).

Next

(Pne2)(x) = (1−ϕ(a))
nx

ϕ(a)

∞
∑

k=0

(nx)[k,ϕ(a)]

k!(1 − ϕ(a))k

k2

n2
=

= (1 − ϕ(a))
nx

ϕ(a)
1

n2

∞
∑

k=1

(nx)[k,ϕ(a)]

(k − 1)!(1 − ϕ(a))k
· k =

=
x

1 − ϕ(a)
(Pne1)(x) −

ϕ(a)

1 − ϕ(a)
(Pne2)(x)+

+
x

n(1 − ϕ(a))
−

ϕ(a)

n(1 − ϕ(a))
(Pne1)(x).

Hence

(Pne2) = x2 +
1 − ϕ(a)

n
x.

Theorem 3 If Pn is defined by (4) then one has

lim
n→∞

Pnf = f

uniformly on any compact K ⊂ [0,∞).

Proof: By making use the identities (5) we can
write

lim
n→∞

(Pnek)(x) = ek(x), k = 0, 1, 2

uniformly on any compact K ⊂ [0,∞).
Consequently, our assertion appears directly

from the well known theorem of Bohman–
Korovkin.

Theorem 4 If Pn is defined by (4) then for each
x ≥ 0 the following inequality

| (Pnf)(x) − f(x) |≤

≤

(

1 + min
(

√

1 − ϕ(a), 1 − ϕ(a) +
1

3nx

)

)

ω
(

f ;

√

x

n

)

holds, where ω(f ; δ) = sup
0<h≤δ

sup
x≥0

| f(x+h)−f(x) |

is the first modulus of continuity.

Proof: We have

| (Pnf)(x) − f(x) |≤

≤ (1−ϕ(a))
nx

ϕ(a)

∞
∑

k=0

(nx)[k,ϕ(a)]

k!(1 − ϕ(a))k
| f

(

k

n

)

−f(x) | .

We consider

| f

(

k

n

)

− f(x) |≤ sup
x,t≥0

| f(x) − f(t) |=

= ω(f ; | x−t |)) ≤

(

1+δ−2(x−t)2
)

ω(f ; δ). (6)

For | x − t |< δ we have

ω(f ; | x− t |) < ω(f ; δ) ≤ (1 + δ−2(x− t)2)ω(f ; δ)

and the last inequality (6) is valid.
For | x − t |≥ δ we have

ω(f ; λδ) ≤ (1 + λ)ω(f ; δ) ≤ (1 + λ2)ω(f ; δ),

where λ = δ−1 | x − t |, λ ≥ 1.
Next we introduce the following integral

method
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| (Pnf)(x) − f(x) |≤

≤ (1−ϕ(a))
nx

ϕ(a)

∞
∑

k=0

(nx)[k,ϕ(a)]

k!(1 − ϕ(a))k
| f

(

k

n

)

−f(x) |=

=

∞
∑

k=0

pa
n,k(x) | f

(

k

n

)

− f(x) |=

= n
∞

∑

k=0

pa
n,k(x)

k+1
n

∫

k
n

| f

(

k

n

)

− f(x) | dt

where

pa
n,k(x) =

(

1 − ϕ(a)

)
nx

ϕ(a) (nx)[k,ϕ(a)]

k!(1 − ϕ(a))k
. (7)

Using Lemma 1 and the inequality (6) we have

| (Pnf)(x) − f(x) |≤

≤ n
∞

∑

k=0

pa
n,k(x)

k+1
n

∫

k
n

(

1 + δ−2(x − t)2
)

ω(f ; δ)dt =

= nω(f ; δ)

(

1

n
+ δ−2

k+1
n

∫

k
n

∞
∑

k=0

pa
n,k(x)(x − t)2dt

)

=

= ω(f ; δ)

(

1 + δ−2

(

1 − ϕ

n
x +

1

3n2

)

)

.

For δ =

√

x

n
we obtain

| (Pnf)(x) − f(x) |≤ (8)

≤

(

2 − ϕ(a) +
1

3nx

)

ω
(

f ;

√

x

n

)

.

Now, we starting with the inequality

| f
(k

n

)

− f(x) |≤ ω
(

f ; |
k

n
− x |

)

using the following property of the first modulus
of continuity

ω(f ; λδ) ≤ (1 + λ)ω(f ; δ)

we obtain for λ = δ−1 |
k

n
− x |

| f
(k

n

)

− f(x) |≤ ω
(

f ; |
k

n
− x |

)

≤

≤
(

1 + δ−1 | x −
k

n
|
)

ω(f ; δ).

Hence

| (Pnf)(x) − f(x) |≤

≤

(

1 + δ−1
∞

∑

k=0

pa
n,k(x) | x −

k

n
|

)

ω(f ; δ)

where pa
n,k(x) is defined by (8).

From the Cauchy – Schwarz – Buniakowski
inequality we have

∞
∑

k=0

pa
n,k(x) | x −

k

n
|≤

( ∞
∑

k=0

pa
n,k(x)

(

x −
k

n

)2
)

1
2

.

But
∞

∑

k=0

pa
n,k(x)

(

x −
k

n

)2
=

= x2 − 2x(Pne1)(x) + (Pne2)(x) =
1 − ϕ(a)

n
x

and hence

| (Pnf)(x)−f(x) |≤

(

1+δ−1

√

1 − ϕ(x)

n
x

)

ω(f ; δ).

For δ =

√

x

n
we obtain the following inquality

| (Pnf)(x) − f(x) |≤ (9)

≤
(

1 +
√

1 − ϕ(x)
)

ω

(

f ;
x

n

)

.

From (8) and (9) it results

| (Pnf)(x) − f(x) |≤ (10)

≤

(

1 + min
(

√

1 − ϕ(a), 1 − ϕ(a) +
1

3nx

)

)

ω
(

f ;

√

x

n

)

.

Remark 4 For a → 0 we get the well-known i-
nequality for Mirakyan–Favard–Szász operator

| (Mnf)(x) − f(x) |≤ 2ω

(

f ;

√

x

n

)

. (11)
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3 Conclusion

The sequence (Pn) of linear and positive oper-
ators defined by (4) are obtained using the umbral
calculus (further, using the formula for generating
function of binomial polynomials) verify

lim
n→∞

Pnf = f

uniformly on any compact K ⊂ [0,∞) and
f ∈ C([0,∞)) is a real and bounded function.

Is important the fact that the well–known se-
quences of approximation operators Mirakyan–
Favard–Szász my be obtained as a limiting case
of our operators.
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