On a sequence of approximation operators constructed by means of generating functions for binomial polynomials

EMIL C. POPA
"Lucian Blaga" University of Sibiu, Faculty of Sciences
Department of Mathematics
I. Ratiu Street 5-7, Sibiu
ROMANIA

Abstract: In this paper, using the umbral calculus, we introduce an sequence of linear and positive operators. Some approximation properties on given.

Keywords: delta operators, basic sequences, generating functions, approximation operators

1 Introduction

This section contains some basic elements of the umbral calculus (Gian-Carlo Rota and Steven Roman).

We shall be concerned with the algebra (over a field of characteristic zero) of all polynomials $p(x)$ in one variable, to be denoted by Π.

By a polynomial sequence we shall denote a sequence of polynomials $p_{n}(x), n=0,1,2, \ldots$, where $p_{n}(x)$ is exactly of degree n for all n.

A polynomial sequence is said to be of binomial type if it satisfies the infinite sequences of identities
$p_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} p_{k}(x) p_{n-k}(y), n=0,1, \ldots$.
The simplest sequence of binomial type is of course x^{n}, but we give some nontrivial examples

1. $p_{n}(x)=x(x-n a)^{n-1}$, (Abel)
2. $(x)^{[n,-1]}=x(x+1) \cdot \ldots \cdot(x+n-1)$, (upper-factorials)
3. $(x)^{[n, 1]}=x(x-1) \cdot \ldots \cdot(x-n+1)$, (lower-factorials)

The most important shift-invariant operators are the shift operators, written E^{a}, that is

$$
E^{a} p(x)=p(x+a)
$$

An operator $T: \Pi \rightarrow \Pi$ which commutes with all shift operators is called a shift-invariant operator. In symbols, $T E^{a}=E^{a} T$, for all real a in the field.

We define a delta operator (E.B. Hildebrand, Gian-Carlo Rota), usually denoted by Q, as a shift-invariant operator for which $Q x$ is a nonzero constant.

For examples:

1. $Q=D E^{a}$ (Abel operator)
2. $\quad Q=\frac{1}{a}\left(I-E^{-a}\right), a \neq 0$, (backward difference operator)
3. $\quad Q=\frac{1}{a}\left(E^{-a}-I\right) a \neq 0$, (forward difference operator.)

If Q is a delta operator, then $Q a=0$ for every constant a.

A polynomial sequence $p_{n}(x)$ is called the sequence of basic polynomials for Q if
i) $p_{0}(x)=1$
ii) $\quad p_{n}(0)=0$ whenever $n \geq 1$
iii) $\quad Q p_{n}(x)=n p_{n-1}(x), n \geq 1$.

Every delta operator has an unique sequence of basic polynomials.

The typical example of a basic polynomial sequence is x^{n}, basic for the derivative operator D, $D p(x)=p^{\prime}(x)$.

The following theorem generalizes the Taylor expansion theorem to delta operators and their basic polynomials.

Theorem 1 Let T be a shift-invariant operator and let Q be a delta operator with basic set $p_{n}(x)$.

Then

$$
\begin{equation*}
T=\sum_{k \geq 0} \frac{\left(T p_{k}\right)(0)}{k!} Q^{k} . \tag{1}
\end{equation*}
$$

In the following, we write $Q=f(D)$ where $f(t)$ is a formal power series.

An important result with generating functions for binomial polynomials is in the following theorem

Theorem 2 Let Q be a delta operator with basic polynomials $p_{n}(x)$ and let $Q=f(D)$. Then there exists the inverse formal power series $f^{-1}(u)$, and

$$
\begin{equation*}
\sum_{n \geq 0} \frac{p_{n}(x)}{n!} u^{n}=e^{x f^{-1}(u)} \tag{2}
\end{equation*}
$$

For example, we consider the delta operator

$$
Q=\frac{1}{a}\left(E^{\varphi(a)}-I\right)
$$

where I is the identity operator and $\varphi: J \rightarrow$ $(0,1), J \subset \mathbb{R}, 0 \notin J$, is a real function with

$$
\lim _{x \rightarrow 0} \varphi(x)=0, \quad \lim _{x \rightarrow 0} \frac{\varphi(x)}{x}=1 .
$$

The basic set for Q is
$p_{n}(x)=\frac{a^{n}}{\varphi^{n}(a)} x(x-\varphi(a)) \cdot \ldots \cdot(x-(n-1) \varphi(a))$, where $n \geq 1, p_{0}(x)=1$.

We denote

$$
p_{n}(x)=\frac{a^{n}}{\varphi^{n}(a)} \cdot(x)^{[n, \varphi(a)]}, n \geq 1, p_{0}(x)=1 .
$$

We have $f(t)=\frac{1}{a}\left(e^{\varphi(a) \cdot t}-1\right)$ and hence

$$
f^{-1}(u)=\frac{1}{\varphi(a)} \ln (1+a u)
$$

Using (2), we obtain

$$
(1+a u)^{\frac{x}{\varphi(a)}}=\sum_{k=0}^{\infty} \frac{a^{k}}{\varphi^{k}(a)} \cdot \frac{(x)^{[k, \varphi(a)]}}{k!} \cdot u^{k}
$$

and consider the sequence of linear operators

$$
\begin{gathered}
\left(P_{n} f\right)(x)= \\
=(1+a u)^{-\frac{n x}{\varphi(a)}} \sum_{k=0}^{\infty} \frac{a^{k}}{\varphi^{k}(a)} \cdot \frac{(n x)^{[k, \varphi(a)]}}{k!} u^{k} f\left(\frac{k}{n}\right)
\end{gathered}
$$

where $x \geq 0, f:[0, \infty) \rightarrow \mathbb{R}$.
If we impose that

$$
\left(P_{n} e_{1}\right)(x)=x, e_{k}(x)=x^{k}, k \in \mathbb{N}
$$

we find

$$
\begin{gathered}
\left(P_{n} e_{1}\right)(x)= \\
=(1+a u)^{-\frac{n x}{\varphi(a)}} \sum_{k=0}^{\infty} \frac{a^{k}}{\varphi^{k}(a)} \cdot \frac{(n x)^{[k, \varphi(a)]}}{k!} u^{k} \cdot \frac{k}{n}= \\
=\frac{1}{n}(1+a u)^{-\frac{n x}{\varphi(a)}} \sum_{k=1}^{\infty} \frac{a^{k}}{\varphi^{k}(a)} \cdot \frac{(n x)^{[k, \varphi(a)]}}{(k-1)!} u^{k} .
\end{gathered}
$$

Using the identity

$$
\begin{gathered}
(n x)^{[k, \varphi(a)]}= \\
=n x(n x)^{[k-1, \varphi(a)]}-(k-1) \varphi(a)(n x)^{[k-1, \varphi(a)]}
\end{gathered}
$$

we have

$$
\begin{gathered}
\left(P_{n} e_{1}\right)(x)= \\
=\frac{a}{\varphi(a)} x u(1+a u)^{-\frac{n x}{\varphi(a)}} \sum_{k=1}^{\infty} \frac{a^{k-1}}{\varphi^{k-1}(a)} \cdot \frac{(n x)^{[k-1, \varphi(a)]}}{(k-1)!} u^{k-1}- \\
-\frac{a u}{n}(1+a u)^{-\frac{n x}{\varphi(a)}} \sum_{k=2}^{\infty} \frac{a^{k-1}}{\varphi^{k-1}(a)} \cdot \frac{(n x)^{[k-1, \varphi(a)]}}{(k-2)!} u^{k-1}= \\
=\frac{a}{\varphi(a)} x u-a u\left(P_{n} e_{1}\right)(x)
\end{gathered}
$$

and hence

$$
u=\frac{\varphi(a)}{a(1-\varphi(a)} .
$$

In the present paper we investigate the sequence of linear and positive operators defined by

$$
\begin{equation*}
\left(P_{n} f\right)(x)= \tag{4}
\end{equation*}
$$

$$
=(1-\varphi(a))^{\frac{n x}{\varphi(a)}} \sum_{k=0}^{\infty} \frac{(n x)^{[k, \varphi(a)]}}{k![1-\varphi(a)]^{k}} f\left(\frac{k}{n}\right)
$$

where $\varphi: J \rightarrow(0,1), 0 \notin J \subset \mathbb{R}, x \geq 0$, and $f \in \mathcal{C}([0, \infty))$ is a real and bounded function.

Remark 1 For $\varphi(x)=\sin x, \varphi:(0, \pi) \rightarrow(0,1)$ we have

$$
\lim _{x \rightarrow 0} \varphi(x)=0, \quad \lim _{x \rightarrow 0} \frac{\varphi(x)}{x}=1
$$

and

$$
\begin{gathered}
\left(P_{n} f\right)(x)= \\
=(1-\sin a)^{\frac{n x}{\sin a}} \sum_{k=0}^{\infty} \frac{(n x)^{[k, \sin a]}}{k!(1-\sin a)^{k}} f\left(\frac{k}{n}\right) .
\end{gathered}
$$

Remark 2 For $\varphi(a)=a, \varphi:(0,1) \rightarrow(0,1)$, the delta operator is $Q=\frac{1}{a}\left(E^{a}-I\right)$ (forward difference operator) with the basic set $p_{n}(x)=(x)^{[n, a]}$ and

$$
\left(P_{n} f\right)(x)=(1-a)^{\frac{n x}{a}} \sum_{k=0}^{\infty} \frac{(n x)^{[k, a]}}{k!(1-a)^{k}} f\left(\frac{k}{n}\right) .
$$

Remark 3 Finally we wish to notice that the Mirakyan-Favard-Szász operator

$$
\left(M_{n} f\right)(x)=e^{-\frac{n x}{a}} \sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} f\left(\frac{k}{n}\right)
$$

may be obtained as a limiting case of our operators (4).

For $a \rightarrow 0$ we have

$$
Q \longrightarrow D,(n x)^{[k, \varphi(a)]} \rightarrow(n x)^{k}
$$

and

$$
(1-\varphi(a))^{\frac{1}{\varphi(a)}} \rightarrow e^{-1}
$$

Hence $P_{n} \longrightarrow M_{n}$.

2 Approximation properties

New we study the convergence of the sequence (4).

Lemma 1 The following identities

$$
\begin{gather*}
\left(P_{n} e_{0}\right)(x)=1, \quad\left(P_{n} e_{1}\right)(x)=x, \tag{5}\\
\left(P_{n} e_{2}\right)(x)=x^{2}+\frac{1-\varphi(a)}{n} x
\end{gather*}
$$

are valid.
Proof: Evidently that $\left(P_{n} e_{0}\right)(x)=e_{0}(x)$ and $\left(P_{n} e_{1}\right)(x)=e_{1}(x)$.

Next

$$
\begin{aligned}
& \left(P_{n} e_{2}\right)(x)=(1-\varphi(a))^{\frac{n x}{\varphi(a)}} \sum_{k=0}^{\infty} \frac{(n x)^{[k, \varphi(a)]}}{k!(1-\varphi(a))^{k}} \frac{k^{2}}{n^{2}}= \\
& =(1-\varphi(a))^{\frac{n x}{\varphi(a)}} \frac{1}{n^{2}} \sum_{k=1}^{\infty} \frac{(n x)^{[k, \varphi(a)]}}{(k-1)!(1-\varphi(a))^{k}} \cdot k= \\
& =\frac{x}{1-\varphi(a)}\left(P_{n} e_{1}\right)(x)-\frac{\varphi(a)}{1-\varphi(a)}\left(P_{n} e_{2}\right)(x)+ \\
& \quad+\frac{x}{n(1-\varphi(a))}-\frac{\varphi(a)}{n(1-\varphi(a))}\left(P_{n} e_{1}\right)(x) .
\end{aligned}
$$

Hence

$$
\left(P_{n} e_{2}\right)=x^{2}+\frac{1-\varphi(a)}{n} x .
$$

Theorem 3 If P_{n} is defined by (4) then one has

$$
\lim _{n \rightarrow \infty} P_{n} f=f
$$

uniformly on any compact $K \subset[0, \infty)$.
Proof: By making use the identities (5) we can write

$$
\lim _{n \rightarrow \infty}\left(P_{n} e_{k}\right)(x)=e_{k}(x), \quad k=0,1,2
$$

uniformly on any compact $K \subset[0, \infty)$.
Consequently, our assertion appears directly from the well known theorem of BohmanKorovkin.

Theorem 4 If P_{n} is defined by (4) then for each $x \geq 0$ the following inequality

$$
\left|\left(P_{n} f\right)(x)-f(x)\right| \leq
$$

$\leq\left(1+\min \left(\sqrt{1-\varphi(a)}, 1-\varphi(a)+\frac{1}{3 n x}\right)\right) \omega\left(f ; \sqrt{\frac{x}{n}}\right)$ holds, where $\omega(f ; \delta)=\sup _{0<h \leq \delta x \geq 0} \sup _{0}|f(x+h)-f(x)|$ is the first modulus of continuity.

Proof: We have

$$
\begin{gathered}
\left|\left(P_{n} f\right)(x)-f(x)\right| \leq \\
\leq(1-\varphi(a))^{\frac{n x}{\varphi(a)}} \sum_{k=0}^{\infty} \frac{(n x)^{[k, \varphi(a)]}}{k!(1-\varphi(a))^{k}}\left|f\left(\frac{k}{n}\right)-f(x)\right| .
\end{gathered}
$$

We consider

$$
\begin{align*}
& \left|f\left(\frac{k}{n}\right)-f(x)\right| \leq \sup _{x, t \geq 0}|f(x)-f(t)|= \\
= & \omega(f ;|x-t|)) \leq\left(1+\delta^{-2}(x-t)^{2}\right) \omega(f ; \delta) \tag{6}
\end{align*}
$$

For $|x-t|<\delta$ we have
$\omega(f ;|x-t|)<\omega(f ; \delta) \leq\left(1+\delta^{-2}(x-t)^{2}\right) \omega(f ; \delta)$
and the last inequality (6) is valid.
For $|x-t| \geq \delta$ we have

$$
\omega(f ; \lambda \delta) \leq(1+\lambda) \omega(f ; \delta) \leq\left(1+\lambda^{2}\right) \omega(f ; \delta),
$$

where $\lambda=\delta^{-1}|x-t|, \lambda \geq 1$.
Next we introduce the following integral method

$$
\begin{gathered}
\left|\left(P_{n} f\right)(x)-f(x)\right| \leq \\
\leq(1-\varphi(a))^{\frac{n x}{\varphi(a)}} \sum_{k=0}^{\infty} \frac{(n x)^{[k, \varphi(a)]}}{k!(1-\varphi(a))^{k}}\left|f\left(\frac{k}{n}\right)-f(x)\right|= \\
=\sum_{k=0}^{\infty} p_{n, k}^{a}(x)\left|f\left(\frac{k}{n}\right)-f(x)\right|= \\
=n \sum_{k=0}^{\infty} p_{n, k}^{a}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}}\left|f\left(\frac{k}{n}\right)-f(x)\right| d t
\end{gathered}
$$

where

$$
\begin{equation*}
p_{n, k}^{a}(x)=(1-\varphi(a))^{\frac{n x}{\varphi(a)}} \frac{(n x)^{[k, \varphi(a)]}}{k!(1-\varphi(a))^{k}} \tag{7}
\end{equation*}
$$

Using Lemma 1 and the inequality (6) we have

$$
\begin{gathered}
\left|\left(P_{n} f\right)(x)-f(x)\right| \leq \\
\leq n \sum_{k=0}^{\infty} p_{n, k}^{a}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}}\left(1+\delta^{-2}(x-t)^{2}\right) \omega(f ; \delta) d t= \\
=n \omega(f ; \delta)\left(\frac{1}{n}+\delta^{-2} \int_{\frac{k}{n}}^{\frac{k+1}{n}} \sum_{k=0}^{\infty} p_{n, k}^{a}(x)(x-t)^{2} d t\right)= \\
=\omega(f ; \delta)\left(1+\delta^{-2}\left(\frac{1-\varphi}{n} x+\frac{1}{3 n^{2}}\right)\right)
\end{gathered}
$$

For $\delta=\sqrt{\frac{x}{n}}$ we obtain

$$
\begin{gather*}
\left|\left(P_{n} f\right)(x)-f(x)\right| \leq \tag{8}\\
\leq\left(2-\varphi(a)+\frac{1}{3 n x}\right) \omega\left(f ; \sqrt{\frac{x}{n}}\right) .
\end{gather*}
$$

Now, we starting with the inequality

$$
\left|f\left(\frac{k}{n}\right)-f(x)\right| \leq \omega\left(f ;\left|\frac{k}{n}-x\right|\right)
$$

using the following property of the first modulus of continuity

$$
\omega(f ; \lambda \delta) \leq(1+\lambda) \omega(f ; \delta)
$$

we obtain for $\lambda=\delta^{-1}\left|\frac{k}{n}-x\right|$

$$
\left|f\left(\frac{k}{n}\right)-f(x)\right| \leq \omega\left(f ;\left|\frac{k}{n}-x\right|\right) \leq
$$

$$
\leq\left(1+\delta^{-1}\left|x-\frac{k}{n}\right|\right) \omega(f ; \delta)
$$

Hence

$$
\begin{gathered}
\left|\left(P_{n} f\right)(x)-f(x)\right| \leq \\
\leq\left(1+\delta^{-1} \sum_{k=0}^{\infty} p_{n, k}^{a}(x)\left|x-\frac{k}{n}\right|\right) \omega(f ; \delta)
\end{gathered}
$$

where $p_{n, k}^{a}(x)$ is defined by (8).
From the Cauchy - Schwarz - Buniakowski inequality we have

$$
\sum_{k=0}^{\infty} p_{n, k}^{a}(x)\left|x-\frac{k}{n}\right| \leq\left(\sum_{k=0}^{\infty} p_{n, k}^{a}(x)\left(x-\frac{k}{n}\right)^{2}\right)^{\frac{1}{2}}
$$

But

$$
\begin{gathered}
\sum_{k=0}^{\infty} p_{n, k}^{a}(x)\left(x-\frac{k}{n}\right)^{2}= \\
=x^{2}-2 x\left(P_{n} e_{1}\right)(x)+\left(P_{n} e_{2}\right)(x)=\frac{1-\varphi(a)}{n} x
\end{gathered}
$$

and hence

$$
\left|\left(P_{n} f\right)(x)-f(x)\right| \leq\left(1+\delta^{-1} \sqrt{\frac{1-\varphi(x)}{n} x}\right) \omega(f ; \delta)
$$

For $\delta=\sqrt{\frac{x}{n}}$ we obtain the following inquality

$$
\begin{equation*}
\left|\left(P_{n} f\right)(x)-f(x)\right| \leq \tag{9}
\end{equation*}
$$

$$
\leq(1+\sqrt{1-\varphi(x)}) \omega\left(f ; \frac{x}{n}\right)
$$

From (8) and (9) it results

$$
\begin{equation*}
\left|\left(P_{n} f\right)(x)-f(x)\right| \leq \tag{10}
\end{equation*}
$$

$\leq\left(1+\min \left(\sqrt{1-\varphi(a)}, 1-\varphi(a)+\frac{1}{3 n x}\right)\right) \omega\left(f ; \sqrt{\frac{x}{n}}\right)$.

Remark 4 For $a \rightarrow 0$ we get the well-known inequality for Mirakyan-Favard-Szász operator

$$
\begin{equation*}
\left|\left(M_{n} f\right)(x)-f(x)\right| \leq 2 \omega\left(f ; \sqrt{\frac{x}{n}}\right) \tag{11}
\end{equation*}
$$

3 Conclusion

The sequence (P_{n}) of linear and positive operators defined by (4) are obtained using the umbral calculus (further, using the formula for generating function of binomial polynomials) verify

$$
\lim _{n \rightarrow \infty} P_{n} f=f
$$

uniformly on any compact $K \subset[0, \infty)$ and $f \in \mathcal{C}([0, \infty))$ is a real and bounded function.

Is important the fact that the well-known sequences of approximation operators Mirakyan-Favard-Szász my be obtained as a limiting case of our operators.

References:

[1] O. Agratini, Aproximarea prin operatori liniari, Presa Universitara clujeana, 2000, pp. 354.
[2] M. Craciun, Approximation methods obtained using the umbral calculus, Doctoral thesis, Cluj-Napoca 2005.
[3] A. Lupas, Approximation operators of binomial type, Proc. IDoMAT 98, New developments in approximation theory, International Series of Numerical Mathematics, vol.132, Birkhäuser Verlag, 1999, pp. 175198.
[4] E.C. Popa, A certain class of approximation operators, Mathematical Inequalities \mathcal{B} Applications, Vol. 8, Nr. 4, 2005, pp. 693-703.
[5] S. Roman, The Umbral Calculus, Academic Press, Inc., 1984.
[6] G-C. Rota, D. Kahaner, A. Odlyzko, Finite operator calculus, Journal of Math. Analysis and Appl., vol. 42, Nr. 3, 1973, pp.685-760.
[7] D.D. Stancu, M.R. Occorsio, On approximation by binomial operators of Tiberiu Popoviciu type, Revue d'Analyse Num. et de Théorie de l'Approx., tome 27, nr. 1, 1998, pp. 167-181.

