
Basic Blocks and Traces for Intermediate Representation

Hunyadi Ioan Daniel
Department of Informatics

University “Lucian Blaga” of Sibiu
5-7 Dr. Ioan Ratiu Street, Sibiu

ROMANIA

Abstract: The semantic analyses phase of a compiler must translate abstract syntax into abstract machine code.
It can do this after type-checking, or at the same time. An intermediate representation is a kind of abstract
machine language that can express the target-machine operations without committing to too much machine-
specific details. But it is also independent of the details of the source language. The front-end of the compiler
does lexical analysis, parsing, semantic analyses, and translation to intermediate representation. The back-end
does optimization of the intermediate representation and translation to machine language.

Key-Words: compiler, lexical analysis, abstract syntax, intermediate representation, abstract machine language

1 Introduction

 The intermediate representation tree language is
defined by the package Tree, containing abstract
classes Stm and Exp and their subclasses.
 A good intermediate representation has several
qualities:

 It must be convenient for the semantic
analyses phase to produce.

 It must be convenient to translate into real
machine language, for all the desired target
machines.

 Each construct must have a clear and simple
meaning, so that optimizing transformations
that rewrite the intermediate representation
can easily be specified and implemented.

 Individual pieces of abstract syntax can be
complicated things, such as array subscripts,
procedure calls, and so on. And individual “real
machine” instructions can also have a complicated
effect. Unfortunately, it is not always the case that
complex pieces of the abstract syntax correspond
exactly to the complex instructions that a machine
can execute.
 The intermediate representation should have
individual components that describe only extremely
simple things: a single fetch, store, add, move, or
jump. Then any “chunky” piece of abstract syntax
can be translated into just the right set of abstract
machine instructions.

2 Problem Formulation

 The trees generated by the semantic analyses
phase must be translated into assembly or machine
language. The operators of the Tree language are
chosen carefully to match the compatibilities of
most machines. However, there are certain aspects
of the tree language that do not correspond exactly
with machine languages, and some aspects of the
Tree language interfere with compile-time
optimization analyses.
 For example, it’s useful to be able to evaluate the
subexpressions of an expression in any order. But
the subexpressions of Tree.exp can contain side
effects – ESEQ and CALL nodes that contain
assignment statements and perform input/output. If
tree expressions did not contain ESEQ and CALL
nodes, then the order of evaluation would not
matter.

package Tree;

abstract class Exp
CONST(int value)
NAME(Label label)
TEMP(Temp.Temp temp)
BINOP(int binop, Exp left,Exp right)
MEM Exp exp) (
CALL(Exp func, ExpList args)
ESEQ(Stm stm, Exp exp)

abstract class Stm
MOVE(Exp dst, Exp src)
EXT Exp exp) (
JUMP(Exp exp, Temp.LabelList targets)

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 172

mailto:daniel.hunyadi@ulbsibiu.ro

CJUMP(int rel, Exp left,Exp right,
 Label iftrue, Label iffalse)
SEQ(Stm left, Stm right)
LABEL(Label label)

 Here is a description of the meaning of each tree
operator. First, the expression (Exp), which stand for
the computation of some value (possibly with side
effects):

CONST(i) – The integer constant i.
NAME(n) – the symbolic constant n (corresponding
 to an assembly language label)
TEMP(t) – Temporary t. A temporary in the

abstract machine is similar to a register in a real
machine. However, the abstract machine has an
infinite number of temporaries.

BINOP(o,e1,e2) – The application of binary
operator o to operands e1, e2. Subexpression e1
is evaluated before e2. The integer arithmetic
operator are PLUS , MINUS, MUL, DIV; the
integer bitwise logical operators are AND, OR,
XOR; the integer logical shift operators are
LSHIFT, RSHIFT; the integer arithmetic right-
shift is ARSHIFT. The MiniJava language has
only one logical operator, but the intermediate
language is meant to be independent of any
source language; also, the logical operators
might be used in implementing other features
of MiniJava.

MEM(e) – The content of wordSize bytes of
memory starting at address e (where wordSize
is defined in the Frame module). Note that
when MEM is used as the left child of a
MOVE, it means “store”, but anywhere else it
means “fetch”.

CALL(f,l) – A procedure call: the application of
function f to argument list l. The subexpression
f is evaluated before the arguments which are
evaluated left to right.

ESEQ(s,e) – The statement s is evaluated for side
effects, then e is evaluated for a result.

 Some of the mismatches between Trees and
machine-language programs are:

• The CJUMP instruction can jump to either
of two labels, but real machines conditional
jump instructions fall through to the next
instruction if the condition is false.

• ESEQ nodes within expressions are
inconvenient, because they make different
orders of evaluating subtrees yield different
results.

• CALL nodes within expressions cause the
some problem.

• CALL nodes within argument-expressions
of other CALL nodes will cause problems
when trying to put arguments into a fixed
set of formal-parameter registers.

3 Problem Solution

 The transformation is done in three stages: First,
a tree is rewritten into a list of canonical trees
without SEQ or ESEQ nodes; then the list is grouped
into a set of basic blocks, which contain no internal
jumps or labels; then the basic blocks are ordered
into a set of traces in each every CJUMP is
immediately followed by its false label.
 Thus the module Canon has these tree-
rearrangement functions:

package Canon;
public class Canon{
 static public Tree.StmList

linearize(tree.Stm s);
}
public class BasicBlocks{
 pubic StmListList blocks;
 public temp.label done;
 public BasicBlocks
 (Tree.StmList stms);
}
StmListList(Tree.StmList
 head,StmListList tail);
public class TraceSchedule{
 public traceSchedule(BasicBlocks b);
 public Tree.StmList stms;
}

 Liniarize removes the ESEQs and moves
the CALL to top level. Then BasicBlocks groups
statements into sequences of straight-line code.
Finally, TraceSchedule orders the blocks so
that every CJUMP is followed by its false label.

3.1. Transformations on ESEQ
 How can the ESEQ nodes be eliminated? The
idea is to lift them higher and higher in the tree,
until they can become SEQ nodes.
 Figure 1 gives some useful identities on trees.
 Identity (1) is obvious. So is identity (2):
Statement s is to be evaluated; then e1, e2 and then
the sum of the expressions is returned. Is s has side
effects that affect e1 or e2, then either the left-hand
side or the right-hand side of the first equation will

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 173

execute those side effects before the expressions are
evaluated.
 Identity (3) is more complicated, because of the
need not to interchange the evaluations of s an e1.
For example, if s is MOVE(MEM(x),y) and e1 is
BINOP(PLUS,MEM(x),z), then the program will
compute a different result if s is evaluate before e1
instead of after. Our goal is simply to pull s out of
the BINOP expression. To do so, we assign e1 into a
new temporary t, and put t inside the BINOP.
 It may happen that s causes no side effects that
can alter the result produced by e1. This will happen
if the temporaries and memory locations assigned
by s are not referenced by e1.
 We cannot always tell if two expressions
commute. For example, whether MOVE(MEM(x),y)
commute with MEM(z) depends on whether x=z,
which we cannot always determine at compile time.

Figure 1.

 The comute function estimates (very naively)
whether a statement commutes with an expression:

static boolean commute(Tree.Stm a,
Tree.Exp b){
 return isNop(a)
 || b instanceof Tree.NAME
 || b instanceof Tree.CONST;
}

static boolean isNop(Tree.Stm a){

 Return a instanceof Tree.EXP
 &&((Tree.EXP)a).exp instanceof
 Tree.CONST;
}

 A constant commutes with any statement, and
the empty statement commutes with any expression.
Anything else is assumed not to commute.

3.2. General Rewriting rules
 In general, for each kind of Tree statement or
expression we can identify the subexpressions. Then
we can make rewriting rules, similar to the ones in
Figure 1, to pull the ESEQs out of the statement or
expression.
 For example, in [e1,e2,ESEQ(s,e3)], the statement s
must be pulled left-ward past e2 and e1. If they
commute, we have (s;[e1,e2,e3]). But suppose e2
does not commute with s. Then we must have

 (SEQ(MOVE(t1,e1),SEQ(MOVE(t2,e2)));
 [TEMP(t1),Temp(t2),e3])

Or if e2 commutes with s but e1 does not, we have

 (SEQ(MOVE(t1,e1),s);[TEMP(t1), e2, e3])

 The recorder function takes a list of
expressions and returns a pairs of (statement,
expression-list). The statement contains all the
things that must be executed before the expression-
list. As shown in these examples, this includes all
the statement-parts of the ESEQs, as well as any
expressions to their left with which they did note
commute. When there are no EXEQs at all we will
use EXP(CONST 0), which does nothing, as the
statement.

Algorithm. Step one is to make a “subexpression-
extraction” method for each kind. Step two is to
make a “subexpression-insertion” method: given an
ESEQ-clean version of each subexpression, this
builds a new version of the expression or statement.
 These will be methods of the Tree.Exp and
Tree.Stm classes:
package Tree;
abstract public class Exp{
 abstract public ExpList kids();
 abstract public Exp build
 (ExpList kids);
}
abstract public class Stm{
 abstract public ExpList kids();
 abstract public Stm build
 (ExpList kids);}

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 174

 Each subclass Exp or Stm must implement the
methods. For example:

package Tree;
public class BINOP extends Exp{
 public int binop;
 public Exp left, right;
 public BINOP(int b, Exp l, exp r)
 {
 binop=b;…
 }
 public final static int PLUS=0,
 MINUS=1,MUL=2,DIV=3,AND=4,OR=5,
 LSHIFT=6,RSHIFT=7,ARSHIFT=8,XOR=9;
 public ExpList kids();
 public Exp build(ExpList kids);
}

 Other subclasses have similar (or even simpler)
kids and build methods. Using these build
methods we can write functions

static Tree.Stm do_stm(Tree.Stm s)
static tree.ESEQ do_exp(Tree.Exp e)

that pull all the ESEQs out of a statement or
expression, respectively. That is, do_stm uses
s.kids() to get the immediate subexpressions of
s, which will be an expression-list l. It then pulls all
the ESEQs out of l recursively, yielding a clump of
side-effecting statements s1 and a cleaned–up list l’.
Then SEQ(s1,s.build(l’)) constructs a new
statement, like the original s but with no ESEQs.
These functions rely on auxiliary functions
reorder_stm and reorder_exp for help.
 The left-hand operand of the MOVE statement is
not considered a subexpressions, because is the
destination of the statement – its value is not used
by the statement. However, if the destination is a
memory location, then the address acts like a
source. Thus we have,

public class MOVE extends Stm{
 public Exp dst,src;
 public MOVE(Exp d, Exp s)
 {dst=d; src=s;}
 public ExpList kids();
 public Stm build (ExpList kids);
}

 Now, given a list of “kids”, we pull the ESEQs
out, from right to left.

3.3. Moving calls to top level
 The Tree language permits CALL nodes to be
used as expressions. However, the actual
implementation of CALL will be that each function

return its result in the same dedicated return-value
register TEMP(RV). Thus, if we have
 BINOP(PLUS,CALL(…),CALL(…))

the second call will overwrite the RV register before
the PLUS can be executed.
 We can solve this problem with a rewriting rule.
The idea is to assign each return value immediately
into a fresh temporary register, that is

 CALL(fun,args) →
 ESEQ(MOVE(TEMP t,CALL(fun,args)),TEMP t)

 Now the ESEQ-eliminator will percolate the
MOVE up outside of its containing BINOP
expressions. This technique will generate a few
extra MOVE instructions, which the register
allocator can clean up.
 The rewriting rule is implementing as follows:
reorder replaces any occurrence of CALL(f,
args) by

 ESEQ(MOVE(TEMP tnew,CALL(f,args)), TEMP tnew)

and calls itself again on the ESEQ. But do_stm
recognizes the pattern

 MOVE(TEMP tnew, CALL(f,args))

and does not call reorder on the CALL node in
that case, but treats the f and args as the children of
the MOVE node. Thus, reorder never “sees” any
CALL that is already the immediate child of
MOVE. Occurrences of the pattern
EXP(CALL(f,args)) are treated similarly.

3.4. A linear list of Statement
 Once an entire function body s0 is processed with
do_stm, the result is a tree where all the SEQ
nodes are near the top (never underneath any other
kind of node). The liniarize function repeatedly
applies the rule

'
0s

 SEQ(SEQ(a,b),c)=SEQ(a,SEQ(b,c))

The result is that is linearized into an expression
of the form

'
0s

 SEQ(s1,SEQ(s2,…,SEQ(sn-1,sn)...))

Here the SEQ nodes provide no structuring
information at all, and we can just consider this to
be a simple list of statements,

s1,s2,…,sn-1,sn

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 175

where none of the si contain SEQ or ESEQ nodes.
 These rewrite rules are implemented by
linearize, with an auxiliary function linear:

static Tree.StmList linear
 (Tree.SEQ s,Tree.StmList l){
return linear(s.left,linear(s.right,l));
}
static Tree.StmList linear
 (Tree.Stm s,Tree.StmList l){
 if(s istanceof Tree.SEQ)
 return linear((Tree.SEQ)s,l);
 else return new Tree.StmList(s,l);
}
static public Tree.StmList lineariaze
 (Tree.Stm s){
 return linear(do_stm(s),null);
}

3.5. Taming conditional branches
 Another aspect of the Tree language that has no
direct equivalent in most machine instruction sets is
the two-way branch of the CJUMP instruction. The
Tree language CJUMP is designed with two target
labels for convenience in translating into trees and
analyzing trees. On a real machine, the conditional
jump either transfers control (on a true conditions)
or “falls through“ to the next instruction.
 To make the trees easy to translate into machine
instructions, we will rearrange them so that every
CJUMP(cond,lt,lf) is immediately followed by
LABEL(lf), its “false branch”. Each such CJUMP
can be directly implemented on a real machine as a
conditional branch to label lt.
 We will make this transformation in two stages:
first, we take the list of canonical trees and form
them into basic blocks; then we order the basic
blocks into a trace.
 In determining where the jumps go in a program,
we are analyzing the program’s control flow.
Control flow is the sequencing of instructions in a
program, ignoring the data values in registers and
memory, and ignoring the arithmetic calculations.
Of course, not knowing the data values means we
cannot know whether the conditional jumps will go
to their true or false labels.
 In analyzing the control flow of a program, any
instruction that is not a jump has an entirely
uninteresting behavior. We can lump together any
sequence of nonbranch instructions into a basic
block and analyze the control flow between basic
blocks.
 A basic block is a sequence of statements that is
always entered at the beginning and exited at the
end, that is:

• The first statement is a LABEL.

• The last statement is a JUMP or CJUMP.
• There are now other LABELs, JUMPs, or

CJUMPs.

 The algorithm for dividing a long sequence of
statements into basic blocks is quite simple. The
sequence is scanned from beginning to end.
Whenever a LABEL is found, a new block is started
(and the previous block is ended). Whenever a JUMP
or CJUMP is found, a block is ended (and the next
block is started).If this leaves any block not ending
with a JUMP or CJUMP, then a JUMP to the next
block’s label is appended to the block. If any block
has been left without a LABEL at the beginning, a
new label is invented and stuck there.
 We will apply this algorithm to each function
body in turn. The procedure “epilogue” will not be
part of this body, but is intended to follow the last
statement. When the flow of program execution
reaches the end of the last block, the epilogue
should follow. But is inconvenient to have a
“special” block that must come last and that has no
JUMP at the end. Thus, we will invent a new label
done – intended to mean the beginning of the
epilogue – and put a JUMP(NAME done) at the end
of this block.

3.6. Traces
 Now the basic blocks can be arranged in any
order, and the result of executing the program will
be the same – every block ends with a jump to the
appropriate place. We can take advantage of this to
choose an ordering of the blocks satisfying the
condition that each CJUMP is followed by its false
label.
 At the same time, we can also arrange that many
of the unconditional JUMPS are immediately
followed by their target label. This will allow the
deletion of these jumps, which will make the
compiled program run a bit faster.
 A trace is a sequence of statement that could be
consecutively executed during the execution of the
program. It can include conditional branches. A
program has many different, overlapping traces. For
our purposes in arranging CJUMPs and false-labels,
we want to make a set of traces that exactly covers
the program: each block must be in exactly one
trace. To minimize the number of JUMPs from one
trace to another, we would like to have as few traces
as possible in our covering set.
 A very simple algorithm will suffice to find a
covering set of traces. The idea is to start with some
block – the beginning of a trace – and follow a
possible execution path – the rest of the trace.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 176

4 Conclusion

 An efficient compiler will keep the statements
grouped into basic blocks, because many kinds of
analysis and optimization algorithms run faster on
basic blocks than on individual statements. For the
MiniJava compiler we seek simplicity in the
implementation of later phases. So we will flatten
the ordered list of traces back into one long list of
statements.
 For some application of traces, it is important
that any frequently executed sequence of
instructions (such as a body of a loop) should
occupy its own trace. This helps not only to
minimize the number of unconditional jumps, but
also may help with other kinds of optimizations,
such as register allocation and instruction
scheduling.

Acknowledgements: The research was supported
by the Grant Agency of CNMP (grant No.
73-CEEX-II-03 from 31/07/2006).

References:

[1] Daniel Hunyadi, Translating Programming

Languages into executable cod, Wseas
Transactions on information science and
Applications, WSEAS Press, 2007, ISSN: 1790-
0832, pp. 145-152

 [2] Cattell R.G., Automatic derivation of code
generators from machine descriptions, ACM
Trans. on Programming Languages and Systems
2(2), 1980, pp.173-190

[3] Chambers C., Leavens G.T., Typechecking and
modules for multimethods, ACM Trans. on
Programming Languages and Systems 17(6),
1995, pp.805-843

[4] Chen W., Turau B., Efficient dynamic look-up
strategy for multi-methods, European
Conference an Object Oriented Programming
(ECOOP ‘94), 1994

[5] Burkl M.G., Fisher G.A., A practical method for
LR and LL syntactic error diagnosis and
recovery, ACM Trans. on Programming
Languages and Systems 9(2), 1987, pp.164-167

[6] Flanagan C., Sabry A., Duba B.F., Felleisen M.,
The essence of compiling with continuation,
Proceedings of the ACM SINGLAN
‘93Conference on Programming Language
Design and Implementation. ACM Press, New
York, 1993, 237-247

[7] Pelegri-Llopart E., Graham S.L., Optimal Code
generation for expression tree: An application of

BURS theory, 15th ACM Symp. on Principles of
Programming Languages, 1988, ACM Press,
New York , 294-308.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 177

