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Abstract: The semantic analyses phase of a compiler must translate abstract syntax into abstract machine code. 
It can do this after type-checking, or at the same time. An intermediate representation is a kind of abstract 
machine language that can express the target-machine operations without committing to too much machine-
specific details. But it is also independent of the details of the source language. The front-end of the compiler 
does lexical analysis, parsing, semantic analyses, and translation to intermediate representation. The back-end 
does optimization of the intermediate representation and translation to machine language. 
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1 Introduction 
 
   The intermediate representation tree language is 
defined by the package Tree, containing abstract 
classes Stm and Exp and their subclasses. 
     A good intermediate representation has several 
qualities: 

 It must be convenient for the semantic 
analyses phase to produce. 

 It must be convenient to translate into real 
machine language, for all the desired target 
machines. 

 Each construct must have a clear and simple 
meaning, so that optimizing transformations 
that rewrite the intermediate representation 
can easily be specified and implemented. 

     Individual pieces of abstract syntax can be 
complicated things, such as array subscripts, 
procedure calls, and so on. And individual “real 
machine” instructions can also have a complicated 
effect. Unfortunately, it is not always the case that 
complex pieces of the abstract syntax correspond 
exactly to the complex instructions that a machine 
can execute. 
     The intermediate representation should have 
individual components that describe only extremely 
simple things: a single fetch, store, add, move, or 
jump. Then any “chunky” piece of abstract syntax 
can be translated into just the right set of abstract 
machine instructions. 

 
 
 

2 Problem Formulation 
 
     The trees generated by the semantic analyses 
phase must be translated into assembly or machine 
language. The operators of the Tree language are 
chosen carefully to match the compatibilities of 
most machines. However, there are certain aspects 
of the tree language that do not correspond exactly 
with machine languages, and some aspects of the 
Tree language interfere with compile-time 
optimization analyses.  
     For example, it’s useful to be able to evaluate the 
subexpressions of an expression in any order. But 
the subexpressions of Tree.exp can contain side 
effects – ESEQ and CALL nodes that contain 
assignment statements and perform input/output. If 
tree expressions did not contain ESEQ and CALL 
nodes, then the order of evaluation would not 
matter.   
   
package Tree; 
 
abstract class Exp 
CONST(int value) 
NAME(Label label) 
TEMP(Temp.Temp temp) 
BINOP(int binop, Exp left,Exp right) 
MEM Exp exp) (
CALL(Exp func, ExpList args) 
ESEQ(Stm stm, Exp exp) 
 
abstract class Stm 
MOVE(Exp dst, Exp src) 
EXT Exp exp) (
JUMP(Exp exp, Temp.LabelList targets) 
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CJUMP(int rel, Exp left,Exp right,  
      Label iftrue, Label iffalse) 
SEQ(Stm left, Stm right) 
LABEL(Label label)      
 
     Here is a description of the meaning of each tree 
operator. First, the expression (Exp), which stand for 
the computation of some value (possibly with side 
effects): 
 
CONST(i) – The integer constant i.  
NAME(n) – the symbolic constant n (corresponding  
                     to an assembly language label) 
TEMP(t) – Temporary t. A temporary in the       

abstract machine is similar to a register in a real       
machine. However, the abstract machine has an       
infinite number of temporaries. 

BINOP(o,e1,e2) – The application of binary     
operator o to operands e1, e2. Subexpression e1 
is     evaluated before e2. The integer arithmetic     
operator are PLUS , MINUS, MUL, DIV; the     
integer bitwise logical operators are AND, OR,     
XOR; the integer logical shift operators are     
LSHIFT, RSHIFT; the integer arithmetic right-    
shift is ARSHIFT. The MiniJava language has     
only one logical operator, but the intermediate     
language is meant to be independent of any     
source language; also, the logical operators 
might be used in implementing other features 
of MiniJava. 

MEM(e) – The content of wordSize bytes of      
memory starting at address e (where wordSize 
is defined in the Frame module). Note that 
when MEM is used as the left child of a 
MOVE, it means “store”, but anywhere else it 
means “fetch”. 

CALL(f,l) – A procedure call: the application of    
function f to argument list l. The subexpression 
f is evaluated before the arguments which are    
evaluated left to right. 

ESEQ(s,e) – The statement s is evaluated for side 
effects, then e is evaluated for a result.   

 
     Some of the mismatches between Trees and 
machine-language programs are: 

• The CJUMP instruction can jump to either 
of two labels, but real machines conditional 
jump instructions fall through to the next 
instruction if the condition is false. 

• ESEQ nodes within expressions are 
inconvenient, because they make different 
orders of evaluating subtrees yield different 
results. 

• CALL nodes within expressions cause the 
some problem. 

• CALL nodes within argument-expressions 
of other CALL nodes will cause problems 
when trying to put arguments into a fixed 
set of formal-parameter registers. 

 
 
3 Problem Solution 
      
     The transformation is done in three stages: First, 
a tree is rewritten into a list of canonical trees 
without SEQ or ESEQ nodes; then the list is grouped 
into a set of basic blocks, which contain no internal 
jumps or labels; then the basic blocks are ordered 
into a set of traces in each every CJUMP is 
immediately followed by its false label. 
     Thus the module Canon has these tree-
rearrangement functions: 
 
package Canon; 
public class Canon{ 
  static public Tree.StmList  

linearize(tree.Stm s); 
} 
public class BasicBlocks{ 
  pubic StmListList blocks; 
  public temp.label done; 
  public BasicBlocks 
             (Tree.StmList stms); 
} 
StmListList(Tree.StmList  
       head,StmListList tail); 
public class TraceSchedule{ 
  public traceSchedule(BasicBlocks b); 
  public Tree.StmList stms; 
} 
 
     Liniarize removes the ESEQs and moves 
the CALL to top level. Then BasicBlocks groups 
statements into sequences of straight-line code. 
Finally, TraceSchedule orders the blocks so 
that every CJUMP is followed by its false label. 
 
3.1. Transformations on ESEQ 
     How can the ESEQ nodes be eliminated? The 
idea is to lift them higher and higher in the tree, 
until they can become SEQ nodes. 
     Figure 1 gives some useful identities on trees. 
     Identity (1) is obvious. So is identity (2): 
Statement s is to be evaluated; then e1, e2 and then 
the sum of the expressions is returned. Is s has side 
effects that affect e1 or e2, then either the left-hand 
side or the right-hand side of the first equation will 
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execute those side effects before the expressions are 
evaluated.  
     Identity (3) is more complicated, because of the 
need not to interchange the evaluations of s an e1. 
For example, if s is MOVE(MEM(x),y) and e1 is 
BINOP(PLUS,MEM(x),z), then the program will 
compute a different result if s is evaluate before e1 
instead of after. Our goal is simply to pull s out of 
the BINOP expression. To do so, we assign e1 into a 
new temporary t, and put t inside the BINOP. 
     It may happen that s causes no side effects that 
can alter the result produced by e1. This will happen 
if the temporaries and memory locations assigned 
by s are not referenced by e1.  
    We cannot always tell if two expressions 
commute. For example, whether MOVE(MEM(x),y) 
commute with MEM(z) depends on whether x=z, 
which we cannot always determine at compile time.  
 

 
 

 
 

 
Figure 1. 

      
     The comute function estimates (very naively) 
whether a statement commutes with an expression: 
 
static boolean commute(Tree.Stm a, 
Tree.Exp b){ 
   return isNop(a)  
     || b instanceof Tree.NAME 
     || b instanceof Tree.CONST; 
} 
 
static boolean isNop(Tree.Stm a){ 

  Return a instanceof Tree.EXP 
   &&((Tree.EXP)a).exp instanceof  
       Tree.CONST; 
} 
    
     A constant commutes with any statement, and 
the empty statement commutes with any expression. 
Anything else is assumed not to commute.  
 
3.2. General Rewriting rules 
     In general, for each kind of Tree statement or 
expression we can identify the subexpressions. Then 
we can make rewriting rules, similar to the ones in 
Figure 1, to pull the ESEQs out of the statement or 
expression. 
     For example, in [e1,e2,ESEQ(s,e3)], the statement s 
must be pulled left-ward past e2 and e1. If they 
commute, we have (s;[e1,e2,e3]). But suppose e2 
does not commute with s. Then we must have   
 
      (SEQ(MOVE(t1,e1),SEQ(MOVE(t2,e2))); 
                     [TEMP(t1),Temp(t2),e3]) 
   
Or if e2 commutes with s but e1 does not, we have 
      
     (SEQ(MOVE(t1,e1),s);[TEMP(t1), e2, e3]) 
 
     The recorder function takes a list of 
expressions and returns a pairs of (statement, 
expression-list). The statement contains all the 
things that must be executed before the expression-
list. As shown in these examples, this includes all 
the statement-parts of the ESEQs, as well as any 
expressions to their left with which they did note 
commute. When there are no EXEQs at all we will 
use EXP(CONST 0), which does nothing, as the 
statement.  
 
Algorithm. Step one is to make a “subexpression-
extraction” method for each kind. Step two is to 
make a “subexpression-insertion” method: given an 
ESEQ-clean version of each subexpression, this 
builds a new version of the expression or statement.  
     These will be methods of the Tree.Exp and 
Tree.Stm classes: 
package Tree; 
abstract public class Exp{ 
   abstract public ExpList kids(); 
   abstract public Exp build 
                    (ExpList kids);  
} 
abstract public class Stm{ 
   abstract public ExpList kids(); 
   abstract public Stm build 
                    (ExpList kids);}  
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     Each subclass Exp or Stm must implement the 
methods. For example:  
 
package Tree; 
public class BINOP extends Exp{ 
  public int binop; 
  public Exp left, right; 
  public BINOP(int b, Exp l, exp r) 
  { 
     binop=b;… 
  }  
  public final static int PLUS=0, 
    MINUS=1,MUL=2,DIV=3,AND=4,OR=5, 
    LSHIFT=6,RSHIFT=7,ARSHIFT=8,XOR=9; 
  public ExpList kids(); 
  public Exp build(ExpList kids);  
} 
 
     Other subclasses have similar (or even simpler) 
kids and build methods. Using these build 
methods we can write functions  
 
static Tree.Stm do_stm(Tree.Stm s) 
static tree.ESEQ do_exp(Tree.Exp e) 

 
that pull all the ESEQs out of a statement or 
expression, respectively. That is, do_stm uses 
s.kids() to get the immediate subexpressions of 
s, which will be an expression-list l. It then pulls all 
the ESEQs out of l recursively, yielding a clump of 
side-effecting statements s1 and a cleaned–up list l’. 
Then SEQ(s1,s.build(l’)) constructs a new 
statement, like the original s but with no ESEQs. 
These functions rely on auxiliary functions 
reorder_stm and reorder_exp for help. 
     The left-hand operand of the MOVE statement is 
not considered a subexpressions, because is the 
destination of the statement – its value is not used 
by the statement. However, if the destination is a 
memory location, then the address acts like a 
source. Thus we have,  
 
public class MOVE extends Stm{ 
  public Exp dst,src; 
  public MOVE(Exp d, Exp s) 
    {dst=d; src=s;} 
  public ExpList kids(); 
  public Stm build (ExpList kids); 
} 
  
     Now, given a list of “kids”, we pull the ESEQs 
out, from right to left. 
 
3.3. Moving calls to top level 
     The Tree language permits CALL nodes to be 
used as expressions. However, the actual 
implementation of CALL will be that each function 

return its result in the same dedicated return-value 
register TEMP(RV). Thus, if we have  
   BINOP(PLUS,CALL(…),CALL(…)) 
 
the second call will overwrite the RV register before 
the PLUS can be executed.  
     We can solve this problem with a rewriting rule. 
The idea is to assign each return value immediately 
into a fresh temporary register, that is 
 
     CALL(fun,args) →  
     ESEQ(MOVE(TEMP t,CALL(fun,args)),TEMP t)  
 
     Now the ESEQ-eliminator will percolate the 
MOVE up outside of its containing BINOP 
expressions. This technique will generate a few 
extra MOVE instructions, which the register 
allocator can clean up. 
     The rewriting rule is implementing as follows: 
reorder replaces any occurrence of CALL(f, 
args) by  
 
   ESEQ(MOVE(TEMP tnew,CALL(f,args)), TEMP tnew) 
 
and calls itself again on the ESEQ. But do_stm 
recognizes the pattern  
 
   MOVE(TEMP tnew, CALL(f,args)) 
 
and does not call reorder on the CALL node in 
that case, but treats the f and args as the children of 
the MOVE node. Thus, reorder never “sees” any 
CALL that is already the immediate child of 
MOVE. Occurrences of the pattern 
EXP(CALL(f,args)) are treated similarly. 
 
3.4. A linear list of Statement 
     Once an entire function body s0 is processed with 
do_stm, the result is a tree  where all the SEQ 
nodes are near the top (never underneath any other 
kind of node). The liniarize function repeatedly 
applies the rule 

'
0s

 
   SEQ(SEQ(a,b),c)=SEQ(a,SEQ(b,c)) 
 
The result is that  is linearized into an expression 
of the form  

'
0s

 
   SEQ(s1,SEQ(s2,…,SEQ(sn-1,sn)...)) 
 
Here the SEQ nodes provide no structuring 
information at all, and we can just consider this to 
be a simple list of statements, 

s1,s2,…,sn-1,sn   
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where none of the si contain SEQ or ESEQ nodes. 
     These rewrite rules are implemented by 
linearize, with an auxiliary function linear: 
 
static Tree.StmList linear 
         (Tree.SEQ s,Tree.StmList l){ 
return linear(s.left,linear(s.right,l)); 
} 
static Tree.StmList linear 
         (Tree.Stm s,Tree.StmList l){ 
  if(s istanceof Tree.SEQ) 
    return linear((Tree.SEQ)s,l); 
  else return new Tree.StmList(s,l); 
} 
static public Tree.StmList lineariaze 
         (Tree.Stm s){ 
    return linear(do_stm(s),null); 
} 
 

3.5. Taming conditional branches 
     Another aspect of the Tree language that has no 
direct equivalent in most machine instruction sets is 
the two-way branch of the CJUMP instruction. The 
Tree language CJUMP is designed with two target 
labels for convenience in translating into trees and 
analyzing trees. On a real machine, the conditional 
jump either transfers control (on a true conditions) 
or “falls through“ to the next instruction. 
     To make the trees easy to translate into machine 
instructions, we will rearrange them so that every 
CJUMP(cond,lt,lf) is immediately followed by 
LABEL(lf), its “false branch”. Each such CJUMP 
can be directly implemented on a real machine as a 
conditional branch to label lt.  
     We will make this transformation in two stages: 
first, we take the list of canonical trees and form 
them into basic blocks; then we order the basic 
blocks into a trace.  
     In determining where the jumps go in a program, 
we are analyzing the program’s control flow. 
Control flow is the sequencing of instructions in a 
program, ignoring the data values in registers and 
memory, and ignoring the arithmetic calculations. 
Of course, not knowing the data values means we 
cannot know whether the conditional jumps will go 
to their true or false labels.  
     In analyzing the control flow of a program, any 
instruction that is not a jump has an entirely 
uninteresting behavior. We can lump together any 
sequence of nonbranch instructions into a basic 
block and analyze the control flow between basic 
blocks.  
     A basic block is a sequence of statements that is 
always entered at the beginning and exited at the 
end, that is: 

• The first statement is a LABEL. 

• The last statement is a JUMP or CJUMP. 
• There are now other LABELs, JUMPs, or 

CJUMPs. 
 
     The algorithm for dividing a long sequence of 
statements into basic blocks is quite simple. The 
sequence is scanned from beginning to end. 
Whenever a LABEL is found, a new block is started 
(and the previous block is ended). Whenever a JUMP 
or CJUMP is found, a block is ended (and the next 
block is started).If this leaves any block not ending 
with a JUMP or CJUMP, then a JUMP to the next 
block’s label is appended to the block. If any block 
has been left without a LABEL at the beginning, a 
new label is invented and stuck there.  
     We will apply this algorithm to each function 
body in turn. The procedure “epilogue” will not be 
part of this body, but is intended to follow the last 
statement. When the flow of program execution 
reaches the end of the last block, the epilogue 
should follow. But is inconvenient to have a 
“special” block that must come last and that has no 
JUMP at the end. Thus, we will invent a new label 
done – intended to mean the beginning of the 
epilogue – and put a JUMP(NAME done) at the end 
of this block. 
 
3.6. Traces 
     Now the basic blocks can be arranged in any 
order, and the result of executing the program will 
be the same – every block ends with a jump to the 
appropriate place. We can take advantage of this to 
choose an ordering of the blocks satisfying the 
condition that each CJUMP is followed by its false 
label.  
     At the same time, we can also arrange that many 
of the unconditional JUMPS are immediately 
followed by their target label. This will allow the 
deletion of these jumps, which will make the 
compiled program run a bit faster.  
     A trace is a sequence of statement that could be 
consecutively executed during the execution of the 
program. It can include conditional branches. A 
program has many different, overlapping traces. For 
our purposes in arranging CJUMPs and false-labels, 
we want to make a set of traces that exactly covers 
the program: each block must be in exactly one 
trace. To minimize the number of JUMPs from one 
trace to another, we would like to have as few traces 
as possible in our covering set.  
     A very simple algorithm will suffice to find a 
covering set of traces. The idea is to start with some 
block – the beginning of a trace – and follow a 
possible execution path – the rest of the trace.  
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4  Conclusion 
 
     An efficient compiler will keep the statements 
grouped into basic blocks, because many kinds of 
analysis and optimization algorithms run faster on 
basic blocks than on individual statements. For the 
MiniJava compiler we seek simplicity in the 
implementation of later phases. So we will flatten 
the ordered list of traces back into one long list of 
statements.  
     For some application of traces, it is important 
that any frequently executed sequence of 
instructions (such as a body of a loop) should 
occupy its own trace. This helps not only to 
minimize the number of unconditional jumps, but 
also may help with other kinds of optimizations, 
such as register allocation and instruction 
scheduling.   
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