
Comparative evaluation of the recent Linux and Solaris kernel
architectures

STERGIOS PAPADIMITRIOU
TEI of Kavala

Dept of Information Management
Agios Loukas, 65404 Kavala

GREECE

KONSTANTINOS TERZIDIS
TEI of Kavala

Dept of Information Management
Agios Loukas, 65404 Kavala

GREECE

Abstract: The paper compares core kernel architecture and functionality of two modern open source systems.
The subsystems examined are scheduling, memory management, and file system architecture. These subsystems
are common to any operating system (not just Unix and Unix-like systems), and they tend to be the most well-
understood components of the operating system. One of the more interesting aspects concerning the Linux and
Solaris Operating Systems (OS), is the amount of similarities between them. Ignoring the different naming con-
ventions, both of them utilize similar approaches toward implementing the different concepts. Each OS supports
time-shared scheduling of threads, demand paging with a not-recently-used page replacement algorithm, and a
virtual file system layer to allow the implementation of different file system architectures. The paper concludes
that both the Linux and the OpenSolaris kernel can offer robust and powerful computing environments both at the
server application areas and as well at the desktop and workstation ones.

Key–Words:Scheduling, memory management, threads, file systems, paging

1 Introduction
In this paper we examine comparatively three core
subsystems of two modern open source operating sys-
tems. The first one is the GNU-Linux operating sys-
tem [3, 6]. The current 2.6 Linux kernel incorporates
many advanced features [4, 5] and stands well com-
pared to the also state of the art OpenSolaris kernel
[1, 2, 12].

The three subsystems examined arescheduling,
memory management, and file systemarchitecture.
These subsystems are common to any operating sys-
tem (not just Unix and Unix-like systems), and they
tend to be the most well-understood components of
the operating system.

An interesting aspect revealed by our compar-
ison is the amount of similarities between the two
OSes. Even with different naming conventions, each
OS takes fairly similar paths toward implementing the
different concepts. Also the performance, scalabil-
ity and robustness of the two systems are at similar
levels. Both systems offer strong computing environ-
ments, capable of supporting demanding applications
with similar performances, as for example illustrated
in [10].

Both Linux and Solaris support time-shared
scheduling of threads and state of the art schedulers
[1, 3]. They can support effectively both batch, inter-

active and even real-time processing demands. Also,
they offer extensive symmetric multiprocessing sup-
port and both own fully preemptive kernels. At the
area of memory management both OSes implement
demand paging with a not-recently-used page replace-
ment algorithm [6, 7]. Also both Linux and OpenSo-
laris implement a virtual file system layer to allow the
implementation of different file system architectures.
Ideas that originate in one OS often find their way into
the other. For instance, Linux also uses the concepts
behind Solaris’s slab memory allocator. The recent
open sourcing of the OpenSolaris kernel code by Sun
Microsystems, offers the potentiality for fruitful inter-
change of ideas between the Linux and OpenSolaris
communities. The paper concludes that both systems
are modern and effective UNIX realizations, capable
of accomplishing effectively demanding application
requirements and at the same time their UNIX phi-
losophy offers to them many similarities [14].

The paper proceeds as follows: Section 2 stud-
ies the scheduling approaches of the two systems and
compares them. Section 3 deals with their memory
management systems and it takes the same compar-
ative approach. The file system frameworks are dis-
cussed in section 4. Finally, the paper concludes with
the results of this comparative study.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 460

2 Scheduling and Schedulers

The basic unit of scheduling in Solaris is thekthreadt
structure [1]; and in Linux, thetask struct structure
[3]. Solaris represents each process as aproc t, and
each thread within the process has akthreadt. Linux
represents both processes and threads bytask struct
structures. A single-threaded process in Linux has a
single task struct. A single-threaded process in So-
laris has aproc t, a singlekthreadt, and aklwp t
structure. Theklwp t structure provides a save area
for threads switching between user and kernel modes.
Effectively, both operating systems schedule threads.
In Linux a thread corresponds to atask structstruc-
ture and in Solaris a thread is akthreadt.

Scheduling decisions are based onpriority. In
Linux, the lower the priority value, the better, i.e.
a value closer to 0 represents a higher priority. In
Solaris, the higher the value, the higher the prior-
ity. For Linux, the priority range0 - 99 corresponds
to theSystem Threads, Real-TimeScheduling Class
(SCHEDFIFO, SCHEDRR) and the priority range
100 - 139to User priorities(SCHEDNORMAL). In
Solaris, the priority range0 - 59 corresponds to the
Time Shared, Interactive, Fixed, Fair Share Scheduler
class, the range60-99 to theSystem Class, the range
100-159to theReal-Timeand finally the highest pri-
ority range160-169to theLow level Interrupts[3, 1].

Both OSes favor interactive threads/processes.
Interactive threads run at better priority than compute-
bound threads, but tend to run for shorter time slices.
Both Solaris and Linux use a per-CPUrunqueue.

Linux uses anactivequeue and anexpiredqueue.
Threads are scheduled in priority from the active
queue. A thread moves from the active queue to the
expired queue when it uses up its time slice (and pos-
sibly at other times to avoid starvation). When the
active queue is empty, the kernel swaps the active and
expired queues.

Solaris uses adispatch queueper CPU. If a thread
uses up its time slice, the kernel gives it a new priority
and returns it to the dispatch queue.

The runqueuesfor both operating systems have
separate linked lists of runnable threads for different
priorities. Both Solaris and Linux use aseparate list
for each priority. Linux uses an arithmetic calculation
based on run time versus sleep time of a thread (as a
measure ofinteractiveness) to arrive at a priority for
the thread. Solaris performs a table lookup.

Both OSes schedule the one next thread to run,
instead of attempting to derive a schedule for a whole
group ofn threads. Also, both have mechanisms to
take advantage of caching (warm affinity) and load
balancing. For hyperthreaded CPUs, Solaris has a
mechanism to help keep threads on the same CPU

node. This mechanism is under control of the user
and application.

One of the big differences between Solaris and
Linux is the capability to support multipleschedul-
ing classeson the system at the same time. Both
OSes support PosixSCHEDFIFO, SCHEDRR,
and SCHEDOTHER (or SCHEDNORMAL).
SCHEDFIFO and SCHEDRR typically result in
realtimethreads. Both Solaris and Linux implement
kernel preemption in support of realtime threads.
Solaris has support for afixed priority class, asystem
classfor system threads (such as page-out threads),
an interactive class used for threads running in a
windowing environment under control of the X
server, and theFair Share Schedulerin support of
resource management.

The ability to add new scheduling classes to the
system comes with a price. Everywhere in the ker-
nel that a scheduling decision can be made (except for
the actual act of choosing the thread to run) involves
an indirect function call into scheduling class-specific
code. For instance, when a thread is going to sleep, it
calls scheduling-class-dependent code that does what-
ever is necessary for sleeping in the class. On Linux
the scheduling code simply does the needed action.
There is no need for an indirect call. The extra layer
means there is slightly more overhead for scheduling
on Solaris, but more supported features.

3 Memory Management and Paging

In Solaris, every process has an ”address space” made
up of logical section divisions calledsegments. The
segments of a process address space are viewable via
pmap(1). Solaris divides the memory management
code and data structures intoplatform-independent
and platform-specificparts. The platform-specific
portions of memory management is in the HAT, or
Hardware Address Translation, layer [7, 1].

Linux uses a memory descriptor that divides the
process address space into logical sections called
memory areasto describe process address space.
Linux also has apmap command to examine pro-
cess address space. Linux divides machine-dependent
layers from machine-independent layers at a much
higher level in the software. On Solaris, much of
the code dealing with, for instance, page fault han-
dling is machine-independent. On Linux, the code to
handle page faults is pretty much machine-dependent
from the beginning of the fault handling. A conse-
quence of this is that Linux can handle much of the
paging code more quickly because there is less data
abstraction (layering) in the code. However, the cost
is that a change in the underlying hardware or model

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 461

requires more changes to the code [3, 5]. Solaris iso-
lates such changes to the HAT and pmap layers re-
spectively. Segments, regions, and memory areas are
delimited by:

• Virtual address of the start of the area.

• Their location within an object/file that the seg-
ment/region/memory area maps.

• Permissions.

• Size of the mapping.

For instance, the text of a program is in a seg-
ment/region/memory area. The mechanisms in the
two OSes to manage address spaces are very similar,
but the names of data structures are completely differ-
ent.

Both operating systems use a variation of a
Least Recently Used (LRU) algorithm for page steal-
ing/replacement. They both have a daemon pro-
cess/thread to do page replacement. Solaris has apa-
geout daemonthat runs periodically and in response
to low-free-memory situations. Paging thresholds in
Solaris are automatically calibrated at system startup
so that the daemon does not overuse the CPU or flood
the disk with page-out requests.

Linux also uses an LRU algorithm that is dynami-
cally tuned while it runs. On Linux, there can bemul-
tiple kswapd daemons, as many as one per CPU. Both
OSes use a global working set policy (as opposed to
per process working set). Linux uses several page lists
for keeping track of recently used pages. The different
linked lists of pages to facilitate an LRU-style algo-
rithm. Linux divides physical memory into (possibly
multiple sets of) three ”zones:” one for DMA pages,
one for normal pages, and one for dynamically allo-
cated memory. These zones seem to be very much
an implementation detail caused by x86 architectural
constraints. Pages move between ”hot”, ”cold” and
”free” lists. Frequently accessed pages will be on the
”hot” list. Free pages will be on the ”cold” or ”free”
list.

Solaris uses afree list, hashed list, and vnode
page listto maintain its variation of an LRU replace-
ment algorithm. Instead of scanning the vnode or hash
page lists, Solaris scans all pages with a”two-handed
clock” algorithm. The two hands stay a fixed distance
apart. The front hand ages the page by clearing refer-
ence bit(s) for the page. If no process has referenced
the page since the front hand visited the page, the back
hand will free the page (first asynchronously writing
the page to disk if it is modified). Both operating sys-
tems take NUMA locality into account during pag-
ing. The I/O buffer cache and the virtual memory page

cache is merged into one system page cache on both
OSes. The system page cache is used for reads/writes
of files as well as mmapped files and text and data of
applications.

Although the memory management systems of
the two systems are similar, there are some subtle dif-
ferences. A brief example to highlight differences is
page fault handling. In Solaris, when a page fault oc-
curs, the code starts in a platform-specific trap han-
dler, then calls a generic asfault() routine. This rou-
tine determines the segment where the fault occurred
and calls a ”segment driver” to handle the fault. The
segment driver calls into file system code. The file
system code calls into the device driver to bring in
the page. When the page-in is complete, the segment
driver calls the HAT layer to update page table entries
(or their equivalent). On Linux, when a page fault
occurs, the kernel calls the code to handle the fault.
You are immediately into platform-specific code. This
means the fault handling code can be quicker in Linux,
but the Linux code may not be as easily extensible or
ported.

4 File Systems

The data abstraction layerin both Linux and Solaris
hide file system implementation details from applica-
tions. In both OSes, the developer usesopen, close,
read, write, stat, etc. system calls to access files, re-
gardless of the underlying implementation and organi-
zation of file data. Solaris calls this mechanismVFS
(”virtual file system”) and the principle data structure
is thevnode, or ”virtual node.” [11] Every file being
accessed in Solaris has a vnode assigned to it. In ad-
dition to generic file information, the vnode contains
pointers to file-system-specific information.

Linux also uses a similar mechanism, also called
VFS (for virtual file switch). In Linux, the file-
system-independent data structure is aninode. This
structure is similar to thevnodeon Solaris [8]. Note
that there is an inode structure in Solaris, but this
is file-system-dependent data for UFS file systems.
Linux has two different structures, one forfile opera-
tionsand the other forinode operations. Solaris com-
bines these asvnode operations.

VFS allows the implementation of many file sys-
tem types on the system. This means that there is no
reason that one of these operating systems could not
access the file systems of the other OSes. Of course,
this requires the relevant file system routines and data
structures to be ported to the VFS of the OS in ques-
tion. Both OSes allow the stacking of file systems.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 462

5 Conclusions

Solaris, and Linux are obviously benefiting from each
other. With Solaris going open source, we can expect
this to continue at a faster rate. Solaris uses more data
abstraction layering, and generally could support ad-
ditional features quite easily because of this. How-
ever, most of the layering in the kernel is undocu-
mented. Probably, source code access will change
this.

The application level interface to these systems is
very similar, typical of the modern UNIX system pro-
gramming interface [12, 13]. The recent open sourc-
ing of the OpenSolaris kernel code by Sun Microsys-
tems, offers the potentiality for valuable interchange
of ideas between the Linux and OpenSolaris commu-
nities. The paper concludes that both systems are
modern and effective UNIX realizations. They are ca-
pable of accomplishing effectively demanding appli-
cation requirements and at the same time their UNIX
philosophy offers to them many similarities [14].

References:

[1] Richard McDougall and Jim Mauro,So-
laris(TM) Internals: Solaris 10 and OpenSolaris
Kernel Architecture (2nd Edition) (Solaris Se-
ries), Sun Microsystems Press, 2006

[2] Richard McDougall, Jim Mauro, Brendan
Gregg,Solaris Performance and Tools, Sun Mi-
crosystems Press, 2006

[3] Daniel Plerre Bovet and Marco Cesati,Under-
standing the Linux Kernel, O’ Reilly, 2005

[4] Christian Benvenuti, Understanding LINUX
Network Internals, O’ Reilly, 2005

[5] Jonathan Corbet, Alessandro Rubini, Creg
Kroah-Hartman,LINUX Device Drivers, 3nd
Edition, O’Reilly 2005

[6] Linux Kernel Development (2nd Edition) (Nov-
ell Press) by Robert Love (Paperback - Jan 12,
2005)

[7] J. L. Bertoni, Understanding Solaris Filesys-
tems and Paging, Technical Report TR-98-55,
Sun Microsystems Research, November 1998,
http://research.sun.com
/research/techrep/1998/abstract-55.html.

[8] Rmy Card, Theodore Tso, Stephen Tweedie,
Design and Implementation of the Second Ex-
tended Filesystem, First Dutch International
Symposium on Linux. Amsterdam (December,
1994)

[9] M. K. McKusick, W. N. Joy, S. J. Leffler, and
R. S. Fabry. [PDF] A Fast File System for
UNIX ACM Transactions on Computer Sys-
tems, 2(3):181-97, August 1984.

[10] MySQL AB New OLTP Benchmark Re-
sults for MySQL on Solaris 10, April 21,
2006, URL: http://www.mysql.com/news-and-
events/press-release/release2006 19.html

[11] Sun Microsystems File System Performance:
The Solaris OS, UFS, Linux ext3, and ReiserFS,
www.sun.com/software/whitepapers/ so-
laris10/fsperformance.pdf, 2004

[12] Rich Teer, Solaris System Programming,
Addison-Wesley, 2005

[13] Stevens, W. Richard, Fenner, Bill, and Rud-
off, Andrew M. 2004, UNIX Network Pro-
gramming, Volume 1, Third Edition, The Sock-
ets Networking API, Addison-Wesley, Reading,
MA

[14] Vahalia, U.,UNIX Internals - The New Fron-
tiers, Prentice Hall, 1996

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 463

