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Abstract:This paper studies identification of systems in which the system output is quantized, transmitted through
a communication channel, and observed afterwards. The problem is motivated by real-time remote monitoring and
control of anesthesia patients in which patient models must be established in real time. When system resources are
limited such as the transmission bandwidth of a wireless communication channel, appropriate utility of available
resources to enhance information accuracy becomes imperative. This paper analyzes the impact of quantization
on identification accuracy and communication errors. A complexity relationshipis established that allows optimal
selection of quantization to minimize the overall errors of system identification.

Key–Words:Anesthesia, Wiener models, identification, quantization, transmission channels, efficient estimation,
space and time complexity.

1 Introduction

Real-time anesthesia decisions are exemplified by
general anesthesia for attaining an adequate anesthetic
depth (consciousness level of a patient), ventilation
control, etc. One of the most critical requirements in
this decision process is to predict the impact of the
inputs (such as drug infusion rates) on the outcomes
(such as consciousness levels). This prediction capa-
bility can be used for control, display, warning, pre-
dictive diagnosis, decision analysis, outcome compar-
ison, etc. The core function of this prediction capabil-
ity is embedded in establishing a reliable model that
relates the drug inputs to the outcomes in real-time
and in individual patients. The underlying problem is
a real-time identification problem.

Rapid development in telecommunication tech-
nologies, especially wireless communications, has
made remote monitoring and control of anesthesia and
surgical procedures feasible. This leads to an identifi-
cation problem of systems in which the system output
must be quantized, transmitted through a digital com-
munication channel, and observed afterwards. Com-
munication errors introduce additional uncertainty
that influences identification accuracy. This paper
aims to characterize communication channels, estab-
lish impact of quantization, and derive identification
algorithms. The problem of fundamental tradeoff of
space and time complexities in identification prob-
lems with constrained communication resources are

investigated. Optimal resource allocation problems
are discussed. The main findings of this paper indi-
cate that effective utility of communication resources
is essential when communication bandwidth is shared
by many users, and hence is very limited for each con-
nection.

2 Wiener Models and Anesthesia Pa-
tient Modeling

A basic information-oriented model structure for pa-
tient responses to drug infusion was introduced in
[12]. Propofol (a common anesthesia drug) titration
is administered by an infusion pump. The patient’s
anesthesia depth is measured by a BIS (bi-spectrum)
monitor (Aspect Medical Systems, Inc.). The mon-
itor provides continuously an index in the range of
[0, 100] such that the lower the index value, the deeper
the anesthesia state. The response from the titration
command to the drug infusion at the needle point is
the infusion pump dynamics and can be represented
by a transfer functionGi(s). Similarly, the BIS mon-
itor dynamics can be represented by a transfer func-
tion Gm(s). The patient dynamics is a nonlinear sys-
tem. We characterize the patient response to propofol
titration with three basic components: (1) Initial time
delay τp after drug infusion. (2) Dynamic reaction:
This reflects how fast the BIS value will change once
it starts to respond, and is modeled by a transfer func-
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tion Gp(s). (3) A nonlinear static function for sensi-
tivity of the patient to a drug dosage at steady state.
This is represented by a function or a look-up tablef .
Consequently, a model structure for titration response
is shown in Figure 1, which is called Wiener models
in the control community. To verify the utility of
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Figure 1: Titration Model Structure
the Wiener model structure in anesthesiology, clinical
data were collected. The actual BIS response is com-
pared to the model response over the entire surgical
procedure, shown in Figure 2. The model captures
the key trends and magnitudes of the BIS variations in
the surgical procedure. This indicates that the model
structure contains sufficient freedom in representing
the main features of the patient response.
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Figure 2: Patient Model Responses

3 Identification of Wiener Systems
with Binary-Valued Observations

Consider a Wiener system





x(k) =
n−1∑

i=0

aiu(k − i),

y(k) = H(x(k), η) + d(k),

(1)

whereu(k) is the input,x(k) the intermediate vari-
able, andd(k) the measurement noise.H(·, η): DH ⊆
IR → IR, is a parameterized static nonlinear func-
tion with domainDH and vector-valued parameter
η ∈ Ωη ⊆ IRm. Both n and m are known. By

definingφ(k) = [u(k), . . . , u(k − n + 1)]T andθ =
[a0, . . . , an−1]

T , the linear dynamics can be expressed
compactly asx(k) = φ(k)T θ.

Assumption A.

1. The noise{d(k)} is a sequence of independent
and identically distributed (i.i.d.) random vari-
ables with finite variance. The distribution func-
tionF (·) of d(1) is known, which is continuously
differentiable together with a continuously dif-
ferentiable inverseF−1(·) and a bounded density
f(·) with f(x) 6= 0 for x 6= 0.

2. For any givenη ∈ Ωη, H(x, η) is bounded for
any finitex, continuous and invertible inx.

The outputy(k) is measured by a binary sensor
with thresholdC. That is, the sensor outputs(k) =
S(y(k)) is a function ofy(k) indicating only whether
y(k) ≤ C, whereC is known. We use the indicator
function

s(k) = S(y(k)) = I{y(k)≤C} =

{
1, if y(k) ≤ C,
0, otherwise

(2)
to represent the sensor.

Under appropriate input design, identification of
a Wiener system can be reduced to a set of much
simplified core identification problems. The input
signal, that will be used to identify the system, is a
2n(m+1)-periodic signalu whose one-period values
are (ρ0v, ρ0v, ρ1v, ρ1v, . . . , ρmv, ρmv), wherev =
(v1, . . . , vn) is to be specified. The scaling factors
{ρ0, ρ1, . . . , ρm} are assumed to be nonzero and dis-
tinct.

If under the2n input valuesu = (v, v), the lin-
ear subsystem has the followingn consecutive out-
put values atn, . . . , 2n − 1,δi = a0u(n + i) + · · · +
an−1u(1 + i), i = 0, . . . , n−1, then the output un-
der the scaled input(qv, qv) is x(n + i) = qδi, i =
0, . . . , n− 1. Without loss of generality, assumeδ0 6=
0. The output of the linear subsystem contains the fol-
lowing (m + 1)-periodic subsequence with its single
period values{ρ0δ0, ρ1δ0, . . . , ρmδ0}:

x(n) = ρ0δ0, . . . x((2m + 1)n) = ρmδ0, . . .

By concentrating on this subsequence ofx(k), under
a new indexl with l = 1, 2, . . ., the corresponding
output of the nonlinear part may be rewritten as

ỹ(l(m + 1)) = H(ρ0δ0, η) + d̃(l(m + 1)),

ỹ(l(m + 1) + 1) = H(ρ1δ0, η) + d̃(l(m + 1) + 1),
...

ỹ(l(m + 1) + m) = H(ρmδ0, η) + d̃(l(m + 1) + m).
(3)

The equations in (3) form the basic observation rela-
tionship for identifyingη andδ0.

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007         267



Forρ = [ρ0, . . . , ρm]T and a scalarδ, we denote

H(ρδ, η) = [H(ρ0δ, η), . . . , H(ρmδ, η)]T . (4)

Then, (3) can be expressed as

Ỹ (l) = H(ρδ, η) + D̃(l), l = 0, 1, . . . , (5)

whereδ 6= 0, Ỹ (l) = [ỹ(l(m+1)), . . . , ỹ(l(m+1)+

m)]T and D̃(l) = [d̃(l(m + 1)), . . . , d̃(l(m + 1) +
m)]T . Correspondingly, the outputs of the binary-
valued sensor oñY (l) are S̃(l) = S(Ỹ (l)), l =
0, 1, . . .. Let τ = [τ0, . . . , τm]T = [δ, ηT ]T . We in-
troduce the following identification problem.
Core Identification Problem: Estimate the parame-
ter τ from observations oñS(l).

Denoteζi = H(ρiδ, η), i = 0, 1, . . . , m. Then
ζ = [ζ0, . . . , ζm]T = H(ρδ, η) and (5) can be rewrit-
ten asỸ (l) = ζ + D̃(l), l = 0, 1, . . . The main idea of
solving the core identification problem is first to esti-
mateζ, and then to solve the interpolation equations

ζi = H(ρiδ, η), i = 0, 1, . . . , m (6)

for δ andη.
Since the equations (6) can be solved whenζi are

estimated, the remainder of the paper will concentrate
on identification ofζi, which is an unknown constant.

4 Identification with Quantized Ob-
servations

4.1 Identification Accuracy
Consider a constant systemyk = θ+dk, k = 1, 2, . . .,
wheredk is the disturbance andθ is to be identified.
The outputyk is measured by a sensor ofm thresholds
−∞ < C1 < · · · < Cm < ∞. The sensor is repre-
sented by a linear combination of indicator functions

sk = S(yk) =
m+1∑

i=1

isi
k, (7)

wheresi
k = I{yk∈(Ci−1,Ci]} with i = 1, . . . , m+1 and

I{yk∈A} =

{
1, if yk ∈ A,
0, otherwise.

Hence,sk = i, for i = 1, . . . , m + 1, implies that
yk ∈ (Ci−1, Ci] with C0 = −∞ andCm+1 = ∞.

Under Assumption A,{yk} is an i.i.d. sequence
that has the accumulative distribution functionF (· −
θ). A sensor ofm thresholdsC1, . . . , Cm divides
the output range intom + 1 intervals (−∞, C1],

(C1, C2], . . . , (Cm,∞). The probability of{si
k = 1}

is
pi = P{Ci−1 < yk ≤ Ci}

= F (Ci − θ) − F (Ci−1 − θ) := F̃i(θ).

The premise of our approach is that although the sen-
sor thresholdCi only indicates if the output is in
(Ci−1, Ci], the probabilitypi may provide more in-
formation about the unknown parameterθ.

Let

hi(θ) =
dpi

dθ
=

dF̃i(θ)

dθ

= −f(Ci − θ) + f(Ci−1 − θ), i = 1, . . . , m + 1

wheref(·) is the density function. Then, the sensi-
tivity of θ with respect topi is dθ/dpi = 1/hi(θ).
Denoteh(θ) = [h1(θ), . . . , hm+1(θ)]

T .

Lemma 1 [11] The Craḿer-Rao Lower Bound for
estimating θ based on observations of{sk} is

σ2
CR(N, m) =

(
N

m+1∑

i=1

h2
i

pi

)−1
.

4.2 Communication Channels
Two scenarios of system configuration shown in Fig-
ure 3 are considered. System identification with quan-
tized observations is depicted in Figure 3(a) in which
the observations onuk andsk are used. On the other
hand, when the outputs of a system are transmitted
through a communication channel and observed af-
ter transmission, the system parameters must be es-
timated by observinguk andwk, as shown in Figure
3(b).
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(a) system identification with set-valued observations

(b) system identification with communication channels

Figure 3: System Configurations

When the sensor outputsk ∈ {1, . . . , m + 1} is
transmitted through a communication channel, the re-
ceived sequencewk ∈ {1, . . . , m + 1} is subject to
channel noise and other uncertainties. When the com-
munication channel is time invariant and memory-
less, the relationship betweensk andwk is character-
ized by the conditional probabilitiesπij = P{wk =
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i|sk = j}, i, j = 1, . . . , m + 1. It follows that with
pj := P{sk = j} for j = 1, . . . , m + 1,

ri = P{wk = i} =

m+1∑

j=1

P{wk = i|sk = j}P{sk = j}

=

m+1∑

j=1

πijpj .

Let r = [r1, . . . , rm+1]
T , p = [p1, . . . , pm+1]

T . Then

r =




π11 · · · π1,m+1
...

...
πm+1,1 · · · πm+1,m+1


 p := Πp, (8)

where

Π =




π11 · · · π1,m+1
...

. ..
...

πm+1,1 · · · πm+1,m+1


 . (9)

Assumption B. (a) Π is invertible. (b) All pi’s are
strictly positive.

Remark 1 Assumption B (a) ensures that proba-
bility information obtained at the receiver of the com-
munication channel can be used to deduce the proba-
bilities of the sensor thresholds, which are then used to
estimate the system parameters. Sincedp/dr = Π−1,
the variance of the estimation error depends propor-
tionally on the operator norm ofΠ−1. Under Assump-
tion B, (8) yields thatp = Π−1r. If pi = 0, the corre-
sponding sensor threshold is not used. Suchpi can be
eliminated from our consideration and the resultingp
will satisfy Assumption B (b).

Let h̃i(θ) = dri(θ)/dθ and h̃(θ) =

[h̃1(θ), . . . , h̃m+1(θ)]
T . Thenh̃ = dr

dθ
= Πdp

dθ
= Πh.

Lemma 2 [11] The Craḿer-Rao Lower Bound
for estimating θ with observations onwk is

σ̃2
CR(N, m) =

(
N

m+1∑

i=1

h̃2
i

ri

)−1
.

4.3 CR Ratio of Communication Channels
Define Dp = diag(p1, . . . , pm+1), Dr =
diag(r1, . . . , rm+1), Sp =

√
Dp, and

Sr =
√

Dr. Then,
∑m+1

i=1 h2
i /pi = hT D−1

p h,
∑m+1

i=1 h̃2
i /ri = h̃T D−1

r h̃ = hT ΠT D−1
r Πh. It

follows that

m+1∑

i=1

h2
i

pi

−
m+1∑

i=1

h̃2
i

ri

= hT (D−1
p − ΠT D−1

r Π)h

= hT S−1
p [I − (SpΠ

T S−1
r )(S−1

r ΠSp)]S
−1
p h

= vT (I − MT M)v,

wherev = S−1
p h, M = S−1

r ΠSp.

From σ2
CR = 1/(NhT D−1

p h), σ̃2
CR =

1/(NhT ΠT D−1
p Πh), we define the error ratio of a

communication channel by

η(p, h,Π) =
σ̃2

CR

σ2
CR

=
hT D−1

p h

hT ΠT D−1
r Πh

. (10)

h depends on actual function forms which satisfy only
11T h = 0. Sinceh is not part of the communication chan-
nel, we introduce the following concept to characterize the
worst-case impact of a communication channel on identifi-
cation accuracy.

The CR ratio of a communication channel is defined
as the worst-case error ratio

η(p,Π) = max
h6=0

η(p, h,Π) s.t. 11T h = 0. (11)

A communication channel is said to bedegenerateif all
singular values ofM are equal to1.

Theorem 1 Under Assumption B, if the channel is not de-
generate, thenη(p,Π) = γ2(M−1) whereγ is the largest
singular value.

5 Impact of Quantization on Com-
munication Channels

The quantized signal will be transmitted through a WLAN
(wireless local area network) channel. At a system level,
the channel is modelled by (9)

Π =




π11 · · · π1,m+1

...
. . .

...
πm+1,1 · · · πm+1,m+1


 .

The physical-level channels may vary. For instance, if
the underlying modulation scheme is a BPSK (bi-phase
shift keying) modulation, then a binary memoryless chan-
nel model may be used in representing the physical-level
channel, with a probability matrix

Π0 =

[
π0

11 π0
12

π0
21 π0

22

]
. (12)

In this case,sk, that takesm + 1 possible values, will be
represented by a binary sequence of lengthl = log2(m+1)
for transmission. The matrixΠ can be derived fromΠ0.
For example, supposem + 1 = 23 andsk takes values in
{1, 2, . . . , 8}. Let 1 is coded by000, 2 by 001, etc. If the
binary sequences are independent, thenπ21 = P{wk =
1|sk = 2} = P{000|001} = π0

11π
0
11π

0
12.

In general, if l = log2(m + 1) is an integer, the
corresponding probability transition matrixΠ in (9) under
DBPSK modulation can be expressed as

Π = Π0 ⊗ Π0 ⊗ · · · ⊗ Π0︸ ︷︷ ︸
l times
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where⊗ is the Kronecker product.
Similar discussions can be made for DBPSK (differen-

tial bi-phase shift keying), DQPSK (differential quandary
phase shift keying) modulation, or other modulation
schemes which are used in IEEE 802.11b WLAN.

Communication errors increase when the signal/noise
ratio decreases, or the transmission rate increases, or the
assigned bandwidth decreases. The impact of signal power
and bandwidth on the transmission channels is typically
summarized in the normalized signal-to-noise ratioEs/N0,
whereEs is energy per symbol andN0 is average noise
power per unit bandwidth. This parameter defines the re-
source requirements since signal power and bandwidth are
the key resources in a communication system. For a given
physical level modulation, the transmission matrixΠ de-
fined in (9) depends onEs/N0 and may be expressed as
Π(Es/N0). Roughly speaking, the larger the signal-to-
noise ratioEs/N0 is, the closer the matrixΠ is to the iden-
tity matrix.

6 Quantization Design
Impact of quantization on identification can be explained in
terms of identification accuracy and channels uncertainty.

6.1 Identification Accuracy
When one increases the number of quantization levels,m
increases. The following result claims that the identifica-
tion error will decrease.

Assume[ymin, ymax] is the range of values of the se-
quence{yk}.

Definition 1. A placement ofm sensors is a partition
Sm = (ymin, C1, . . . , Cm, ymax) with ymin < C1 < · · · <
Cm < ymax of the interval [ymin, ymax] by m division
pointsCi, whereCi for i = 1, . . . ,m are the correspond-
ing threshold values. In what follows, we also use the nota-
tion Sm = {C1, . . . , Cm} to denote the set of points of the
threshold values.

Definition 2. Supposem1 and m2 are two positive
integers, andSm1

= (ymin, C1
1 , . . . , C1

m1
, ymax) and

Sm2
= (ymin, C2

1 , . . . , C2
m2

, ymax) are two place-
ments of sensors. We say thatSm2

is a refinement
of Sm1

, if {ymin, C1
1 , . . . , C1

m1
, ymax} is a subset of

{ymin, C2
1 , . . . , C2

m2
, ymax}.

Remark 1. In the definition of placement of sensors,
[ymin, ymax] can be either finite or infinite. In case one of
these values is∞ or −∞, it is understood that we work
with the extended real number system. For practical utility,
we have assumed that no sensor is placed at eitherymin or
ymax, otherwise they do not provide any useful information
for system identification.

Note that the statement “Sm2
is a refinement ofSm1

”
means thatSm2

can be obtained by starting with the thresh-
old pointsC1

1 < · · · < C1
m1

and interposingm2 − m1

points between them to form a finer subdivision.

Theorem 2. Suppose thatSm1
and Sm2

are two place-
ments of sensor thresholds such thatSm2

is a refinement of
Sm1

. For ι = 1, 2, denote the corresponding quantities by
ηmι

, 11mι
, Λmι

, γmι
, andMmι

, respectively. Then given
in satisfiesηm2

≤ ηm1
, which implies a reduction of error

variance by increasing space complexity.

6.2 Quantization Design under Fixed Band-
width

Bandwidth resources that limit data-flow rates will be de-
noted byR in bps.R is related to space and time complex-
ities byR = N log(m + 1).

To express the dependence ofσ2
CR on the space com-

plexity m, time complexityN , and the unknown parameter
θ we shall denote it byσ2

CR(m,N, θ). The following two
optimal resource allocation problems, which are dual prob-
lems in nature, are introduced:ZZ+ will denote the set of
positive integers. Suppose that the priori information onθ
is thatθ ∈ Ω.

1. Optimal Uncertainty Reduction: This aims at re-
ducingσ2

CR(m,N, θ) for a given resourceR.

ε(R) = min
m∈ZZ+

max
θ∈Ω

σ2
CR(m,N, θ)

subject toN log(m + 1) ≤ R.

2. Optimal Resource Allocation: This aims at re-
ducing R for a given error tolerance levelε, i.e.,
σ2

CR(m,N, θ) ≤ ε for a given resourceR.

R(ε) = min
m,N∈ZZ+

N log(m + 1)

subject tomax
θ∈Ω

σ2
CR(m,N, θ) ≤ ε.

One typical design result is shown in Figure 4. For this
example, the optimal number of quantization thresholds is
m = 3.
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Figure 4: Space Complexity: Error variance vs.
log(m + 1) (Top Plot); Error variance× log(m + 1)
vs. log(m + 1) (Bottom Plot)
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6.3 Quantization Design without Bandwidth
Limitations

Assume that the channel bandwidth is not limited (or the
data rates are far below the assigned bandwidth limit). In
this case, the data rates will ber = N log(m + 1). As a
result, when one increasesm, the rater will increase.

We use IEEE 802.11b WLAN with DBPSK modula-
tion as a typical communication environment for further
development. The probability transition matrixΠ0 in (12)
under DBPSK modulation is

Π0 =

[
1 − pe pe

pe 1 − pe

]
.

where by [6]

pe = Q

(√
2Es

N0

)
(13)

whereQ is the complementary distribution function of a
gaussian random variable. As a result,pe will increase.
Consequently,η(p,Π) will increase. The tradeoff between
decreased identification errorsσ2

CR and increasedη(p,Π)
provide a performance index that can be used to select op-
timally the number of quantization levels.

A typical case of transmission errors as functions of
signal-to-noise ratios with four WLAN transmission rates
(1Mbps, 2Mbps, 5.5Mbps, 11Mbps) is shown in curve Fig-
ure 5.
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7 Conclusions
Relationships between identification accuracy of patient
dynamics and wireless communication channels are dis-
cussed using Wiener models as a typical model struc-
ture for methodology development. There is a fundamen-
tal trade-off between identification accuracy improvements
and limitations in communication channels. For example,
the more the quantization levels become, the higher the
data rates will result in. Consequently, the data must be
transmitted at a higher transmission speed, either consum-
ing more bandwidth resources and/or increasing commu-
nication errors. For a given resource such as bandwidth

and signal-to-noise ratio, there exists an optimal design on
quantization that maximizes overall information accuracy
after information processing and communications.
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