
Real - Time Implementation of Petri Nets into PLC

PETR PIVOŇKA, LUDĚK CHOMÁT
Department of Automatic Control and Instrumentation

Brno University of Technology
Kolejní 2906/4, 612 00 Brno

CZECH REPUBLIC
pivonka@feec.vutbr.cz, xchoma00@phd.feec.vutbr.cz

Abstract: - Petri net is a graphic and mathematical tool for discrete and continuous system simulation and analysis. It is
mostly used in domain of sequential control. Network states are often interconnected with inputs and outputs
programmable logic controller that allows controlling the real technological process. This document describes how to
implement Petri net into the programmable logic controller. In this essay we introduce one of many available tools used
to create Petri nets. This system allows design, simulation, visualization and immediate Petri net implementation into
any platform. Our goal is to find out essential improvement in controlling algorithms.

Key-Words: - Petri net, PLC, Implementation, Hybrid Petri net, Real – Time, Sketcher, Control algorithm hybrid
dynamic System.

1 Introduction
We will deal with immediate hybrid Petri net [2]
implementation into programmable automat. This
automat is manufactured by B&R, but Petri net can be
imported into any existing platform. This
implementation can be done with several ways, e.g.:
Existing Petri net is in PC, and only requested
inputs/outputs are synchronized with programmable
automat. Part of Petri net is stored in computer, the other
part is in PLC, and meanwhile PC and PLC cooperate.
Other possibility how to implement into PLC is
comparative model and transfer model. Implementation
method into programmable automat can be described in
four steps. Next, simulation core for straight Petri net
implementation into PLC will be described in detail. The
Sketcher program, used to create Petri nets and
implement it into programmable automat, is introduced
furthermore. Following chapter deals with experimental
verification of hybrid Petri net shown on an example. In
the closing part we will summarize research results and
outline further work orientation.
 There are two possibilities to implement Petri net
into programmable automat. First option is to transfer
the model as depicted on figure 1. Second selected Petri
net implementation is comparative model, shown on
Figure 2.

1.1 Transfer Model
Model created on PC is transformed by an appropriate
way into data structure that is transferred into the
memory of programmable logic controller. After this, a
command is sent to activate the service program that is
implemented into programmable logic controller. Then

this program performs Petri nets simulation
automatically. Because the simulation consists in fact
only of integer number vectors addition, it is easy to
program it on programmable logic controller.

Figure 1: Hybrid system with Petri net verification

1.2 Comparative Model
The comparative model serves for control and
comparison of theoretical and real result. The model is
loaded both on programmable logic controller and on
PC. Results are compared in certain intervals. Thanks to
this comparison, we can avoid some collapses that could
rise from a wrong controllers function

Figure 2: Hybrid system with Petri net verification

mailto:pivonka@feec.vutbr.cz
mailto:xchoma00@phd.feec.vutbr.cz

2 Direct Implementation into PLC
This chapter describes how to implement Petri nets into
programmable automat. As mentioned before, the
programmable automat is manufactured by B&R system
2005 Company, but in its principle Petri net can be
implemented into any existing platform. As result, we
are not connected to any company, not even on
programmable automats. We can implement Petri net
into some microchip or industrial computer etc. Before
we can implement Petri net into PLC, it must be
designed and tested. This prevents errors, which could
later arise during real process administration. This
process also increases the speed of fine-tuning in future
hybrid Petri net control. We will use the Sketcher
program, described in next chapter.
 Next step is connecting PC with PLC through
Ethernet or RS232 using PVI [7]. PVI is a modular
environment for MS Windows supplied with B&R
AUTOMATION NET framework. It provides
communication interface between programmable
automat B&R and user applications. It is possible to
import data into other programs, like MS Excel, Word,
even C++, Delphi etc. Nearly all external applications
which use PVI, also communicate through basic library
PVICOM (PVI Client/server). This interface is capable
to react immediately and send many requests to
manipulate into PVI Manager. PVI Manager is essential
part of the system and is responsible for correct
processing of all processed data and for correct task
timing and their direction.

Figure 3: Hybrid implementation of Petri net

 In third step we will send created hybrid Petri net
with help of Sketcher program into programmable
automat. In this programmable automat the Petri net is
stored into memory and the simulation core reads this
simple script and executes it. Simulation core description
is the main topic of chapter 4. Now, the Petri net is
activated and ready to manage any real process through
the programmable automat inputs/outputs.
 The last step was created to increase security and

reliability. This means synchronization between PC and
PLC because there is a reason to read physical input and
output data. These values are sent in certain interval into
PC, where we can handle them, for example to visualize
controlled process or to compare measured data with
estimated data etc.

3 Sketcher Development Environment
 Description
This chapter deals with the simulation program used to
design Petri nets, its simulation and visualization.
Program Sketcher is based on work [1]. Simulation
program was created in MICROSOFT VISUAL C++
.NET 2003, where is also possible to use libraries MFC
[3]. This library helped us to create better environment
for hybrid Petri net creation. I’m sure this will be
appreciated by every user of this system. Program
Sketcher is a graphical tool on PC which is used to
create Petri nets. The Sketcher program was basically
produced to design simple Petri net. Next development
was adding more options and applications, for example
Petri net options broadening, communication between
PC and PLC, PC and PP etc. Next chapters describe
Sketcher in detail.

3.1 Program Description and Control
Main objects during the graphical user interface
programming were transparency and controls simplicity.
To control the program we can use main menu or to
work faster there is also variety of icons in „Control
panel“. Keyboard shortcuts are also suitable. User
interface is projected to be similar to any common
program. Thanks to this, common users do not have
problems with introduction with the program and are
quickly able to create Petri net and implement it into
programmable automat. Figure 4 describes Sketcher
showing Petri net designed to control traffic lights.

Figure 4: Draft, simulation and Petri net visualization
 program

3.2 Possible Petri Net Properties Implemented
into PLC

Table 1 shows overview of all possible Petri nets
implementations into programmable logic controller
created in Sketcher simulation program. All properties
are fully functional and simulation core is designed to
easily extend Petri net options.

Property Autonomous Non – Autonomous
Realized YES YES
Property Bounded Non – Bounded
Realized YES YES
Property Safe Live
Realized YES YES
Property Generalized Inhibitor
Realized YES NO
Property P – timed T – timed
Realized YES YES
Property Effective conflict Discrete PN
Realized YES YES
Property Continuous PN Hybrid PN
Realized YES YES

Table 1: Petri net simulation core properties

3.3 Sketcher Modes
There are three available modes in the simulation
program which allow working with Petri net. First is the
Petri net design mode which allows creation of any Petri
net based on our specifications. Other mode is the Petri
net simulation mode where we can simulate the Petri net
before it gets implemented into the target platform.
Thanks to this mode user can reveal errors before they
appear in a real process. The last mode is used for Petri
net visualization. The Sketcher program is connected to
the target platform and is synchronized. In certain
interval it reads the input and output values of the PLC.
Read information’s are displayed on the desktop and the
user can watch or fine-tune the program according to his
requests. (Figure 5 – bold area and transition are active
physical PLC inputs/outputs).

Figure 5: Petri net visualization with PLC inputs/outputs

4 Simulation Core Description
As mentioned, for implementation into PLC we picked
the transfer model variant and comparative model. We
will devote to the first variant (transfer model), because
comparative model is only extension to the first variant.
Petri net created in Sketcher is saved into *.pnd file.
Created file carries all information’s about properties
and Petri net connections [4]. This data structure can be
called as simple script language. This script can be taken
as special program language for Petri net description. An
example of the created file’s content is shown in chapter
5. Very important part of Sketcher is its simulation core,
which processes created Petri net script. Simulation core
is designed to be imported into any platform. Before we
copy the created file into PLC’s memory, we must
compile the simulation core into the target platform,
which will run the Petri net. Simulation core is copied
into the target platform only once and PLC is ready to
read from file script for Petri net creation. If we want to
change the Petri net, we have to copy file with new data
into PLC. Picture 6 shows simulation core
developmental diagram. Simulation core performs all
necessary calculations for transition firing, placing
tokens into places, starting P – timed, T – timed and
firing transitions.

Figure 6: Simulation core flow diagram

Table 2 describes all functions necessary to create
continuous, discrete or hybrid Petri net. Left column
shows the name of the function, in the right column we
can see detailed function description. Function and every
element in the function are described under the table.

Near the function we can see an example of record in
created script. Complete script for created hybrid Petri
net is shown in created example in chapter 5.

Function Function description
AddPlace Create place in net
AddTrans Create transition in net
AddToken Create token in place
AddFP Set for place

AddFT Set under which condition can be
transition fired

Connect Connect places and transitions

Table 2: Petri net scripting language functions list

Description of Petri net scripting language functions:

AddPlace(EN, *Plc, Capacity, PN), where:

EN is number of place (P1, P2 . . . , P99)
*Plc connection on real output from PLC
(DO_01, DO_02 ... , DO_20)
Capacity – maximum number of tokens in place
(-1, 0, 1 . . . 99)
PN – discrete or continuous Petri net (D, C)

AddPlace 5 &DO_04 -1 C – Created place P5 is
connected with digital output 4 can have random
number of tokens and it is continuous.

AddTrans(EN, *Fev, Nega, PN), where:
 EN is number of transition (T1, T2 . . . , T99)

*Fev connection on real input of PLC (DI_01,
DI_02 . . . DI_20)

 Nega is negation of real input (0, 1)
 PN – discrete or continuous Petri net (D, C)

AddTrans 3 N 0 D– Created transition T3 is not
connected with any input and is discrete.

AddToken(P, C, N), where:
 P presents number of transition (1 – 99)
 C is color of net (0 – 3)
 N number of tokens (0 – 99)

AddToken 5 0 2 – Two tokens are placed into place
P5.

AddFP(P, C, PConst), where :
 P presents number of transition (1 – 99)
 C is color of net (0 – 3)
 PConst is time constant
 AddFP 8 0 520 – Place P8 is P-timed on 520 ms.

AddFT(T, C, P, TConst), where:
 T presents number of transition (1 – 99)
 C is color of net (0 – 3)

P is priority transition (0 – 2
 TConst is time constant

AddFT 2 0 2 200 – Transition T2 has the biggest
priority and is P-timed on 200 ms.

 Connect (Dir, P, T, C, G), where:

Dir connection of place with transition or vice
versa (-1, 1)

 P is number of place (1 – 99)
 T is number of transition (1 – 99)
 C is color of net (0 – 3)
 G is generalized Petri net (0 – 99)

Connect 1 9 2 0 3 – Place P9 is connected with
transition T2 a edge has weight 3.

5 Example
This chapter shows the usage of all previously
mentioned information’s. For simple understanding we
chose easy example, which is completely analyzed. Our
goal is to create hybrid Petri net able to manipulate
bottle filling. We have a 30 l tank, and we want to fill
0.25 l or 0.5 l bottles. In the beginning of every cycle we
choose which content we want to fill. The bottles are
filled in one working cycle after one chosen selection.
Figure 7 describes simplified bottle filling model. Table
3 shows complete hybrid Petri net data structure. Figure
8 shows this created hybrid Petri net.

Figure 7: Selection based bottle filling model

Now we will explain bottle filling control. Thanks to
transition T1 and T2 we can choose which bottle content
we will fill. Let’s say we activate input &DI_01 which is
connected with transition T1. Token gets from P1 to P2.
After transition P2 is activated necessary traffic stripes
are launched to move the smaller bottles. After 4 s
transition T3 is launched, because every needed
condition for transition are complete. That means P4
shows the number of available bottles, P6 means the
production line is ready to fill the bottles, and P9 that
there is desired content of liquid for the bottle. After 10 s
the bottle is filled and the token moves to place P7,
where it signalizes number of full bottles. One working
cycle finished and everything can start again.

AddPlace 1 N 1 D
AddPlace 2 DO_01 -1 D
AddPlace 3 DO_02 -1 D
AddPlace 4 N -1 D
AddPlace 5 N -1 D
AddPlace 6 N -1 D
AddPlace 7 N -1 D
AddPlace 8 N -1 D
AddPlace 9 N -1 S

AddTrans 1 DI_01 0 D
AddTrans 2 DI_02 0 D
AddTrans 3 N 0 D
AddTrans 4 N 0 D

AddToken 1 0 1
AddToken 4 0 3
AddToken 5 0 4
AddToken 8 0 2
AddToken 9 0 30

AddFT 1 0 1 0
AddFT 2 0 1 0
AddFT 3 0 1 400
AddFT 4 0 1 800

AddFP 1 0 0
AddFP 2 0 0
AddFP 3 0 0
AddFP 4 0 0
AddFP 5 0 0
AddFP 6 0 800
AddFP 7 0 1000
AddFP 8 0 1000
AddFP 9 0 0

Connect 1 1 1 0 1
Connect 1 1 2 0 1
Connect 1 2 3 0 1
Connect 1 3 4 0 1
Connect 1 4 3 0 1
Connect 1 5 4 0 1
Connect 1 6 3 0 1
Connect 1 6 4 0 1
Connect 1 9 3 0 025
Connect 1 9 4 0 05
Connect -1 2 1 0 1
Connect -1 3 2 0 1
Connect -1 1 3 0 1
Connect -1 7 3 0 1
Connect -1 1 4 0 1
Connect -1 8 4 0 1

Table 3: Data structure for implementation into PLC

Figure 8: Hybrid Petri net used to control bottle filling

6 Conclusion
In this article we described how to implement Petri net
into programmable logic controller. We chose two
variants for direct implementation. First variant was
selected because its simple and reliable Petri net
implementation from PC into PLC. Second variant was
chosen that we can control the Petri net during regulation
in real process. By putting together these two variants
we guaranteed safe and reliable Petri net performance,
which nowadays is the most important priority in real
process administration. We also described graphical
program used to design Petri nets and also depicted its
simulation core. Simulation core manages complete Petri
net process no t only in PC, but also in target platform,
where the Petri net is being implemented. In the end we
described simple example just to understand the whole
course of study. Of course, in real the Petri net would be
much more comprehensive, but this was not the goal of
this work. We wanted to point on created hybrid Petri
net and equal data structure. As we can see in Table 3,
this data structure is quite simple and well arranged. The
object of this and following work is to find out
substantial improvement in controlling algorithms
options usable in real process

Acknowledgement:
The paper has been prepared as a part of the solution of
Czech Science Foundation GAČR project No.
102/06/1132 Soft Computing in Control and by the
Czech Ministry of Education in the frame of MSM
MSM0021630529 Intelligent Systems in Automation

References:
[1] CHOMÁT, L., Petri nets in environment of

programmable logic controller B&R, Diploma
thesis. In Czech, VUT BRNO, 2006

[2] ALLA, H., Discrete, Continuous and Hybrid Petri
Nets, France, 2005

[3] POSISE, J., Programming Windows with MFC,
Computer Press Praha, 2000

[4] Automation Studio Programming, B&R Automation,
2001

[5] IEC (International Electrotechnical Commission),
IEC Standard 61131-3, Programmable Controllers –
Part 3, 1993

[6] PURI, A., Theory of hybrid systems and event
systems, Phd thesis, Department of electrical
engineering, Berkeley, 1995

[7] B&R Documentation. Automation Net/PVI Online
Help, AS240Ee, 1997-2007

