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Abstract: - The new approach to analysis of on-line identification methods based on one-step-ahead prediction clears 
up their sensitivity to disturbances in control loop and explain why should be neural network based identification better 
then classical by using of short sampling period. The use of short sampling period in adaptive control has not been 
described properly when controlling the real process by adaptive controller. On one hand faster disturbance rejection 
due to short sampling period can be an advantage but on the other hand it brings us some practical problems. 
Particularly, quantization error and finite numerical precision of industrial controller must be considered in the real 
process control. We concentrate our attention on dealing with adverse effects that work on real-time identification of 
process, especially quantization. It is shown; that a neural network applied to on-line identification process produces 
more stable solution in the rapid sampling. 
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1   Introduction 
The correct choice of the sampling period is a top-
priority task in adaptive control. It is important to keep 
in mind, that long sampling period results problem with 
aliasing. On the other hands, rapid sampling causes 
problem with numerical stability. The most advantages 
of fast sampling are faster disturbances cancellation and 
smaller overshoot in the control process. 
     When we use the classical identification method with 
a rapid sampling rate for a real time identification of a 
real dynamic plant, this method fails, though simulation 
(even with simulated disturbances) behaves differently. 
This fact is caused by existence of quantization in an 
A/D converter. The quantization effect, the real noise 
and other nonlinearities of the plant make on-line 
identification more complex than could be expected. We 
will show that a possible solution of this problem is 
using of an identification method based on neural 
networks. 
 
2   On-Line Identification 
The basic idea of on-line identification is to compare the 
output of estimated system with the output of model 
during some time. The model is describable as a 
parameter vector. The aim is to adjust parameter until 
the model output is similar to the observed system 
output. The classical Recursive Least mean Square 
(RLS) identification method and gradient method 
compares only actual model output to system output, 

while the identification method based on neural 
network-approaches compares outputs over some 
interval of time defined by length of a training set 

2.1   Linear regression 
The predicted output can be expressed as a linear 
function of vector ( )kθ ; that is 
    ( ) ( ) ( )kkky θTˆ ϕ=           (1) 
where ( )kTϕ  is the vector of measured variables. We use 
a discrete time shift operator model ARX expressed in 
form 
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   ( ) ( ) ( ) ( ) ( )[ ]T11 kakakbkbk nm LL=θ    (3) 
In accordance with (1) we write 
( ) ( ) ( ) ( ) ( )[ ]T1111 nkykymkukuk −−−−−−−−= LLϕ  

                   (4) 

2.2   Classical RLS Identification 
RLS is a widely used method. It is often used in case that 
data comes continuously in time (e.g. on-line 
estimation). In each sampling period vector θ is updated 
by 
   ( ) ( ) ( ) ( ) ( ) ( )( )kkkykkk θKθθ T11 ϕ−++=+     (5) 
It is interesting to note that the model  is updated 
through a prediction error that has a very small value 
even if inaccurate vector  is used. This problem 
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cause that RLS is sensitive to disturbances. 
     The posterior information of the model errors is 
incorporated in covariance matrix  that is updated 
too 
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Vector of correction  is computed by applying 
covariance matrix 

( 1+kK

  (7) ( ) ( ) ( ) ( ) ( ) ( )[ 1T 11111 −
++++=+ kkkkkk ϕϕϕ PPK

2.3   Simple Gradient Identification 
Simple gradient identification is an older method, which 
become more popular by expansions of neural network 
techniques. It is suitable especially for fluently perturbed 
system identification. It has the worst quality for 
identification of unknown processes (from described 
methods), but its advantage is simplicity and small time-
consuming computation. 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )kkkkykkkk θθθθθθ 1111 T +−++−−+=+ ϕµη

         (8) 
You can note similarly to the RLS method that the 
model is updated by the same principle. That affects the 
similar problems like the RLS method. Parameter η is 
momentum constant and parameter µ is learning-rate 
constant. 

2.4   Identification Based on Neural Network 
with Levenberg-Marquardt Training Method 
The Levenberg-Marquardt iterative algorithm, gives a 
numerical solution to the problem of minimizing a sum 
of squares of generally nonlinear functions. We can 
consider a real dynamic system to be nonlinear because 
it contains nonlinear saturation, A/D (D/A) converters 
with constrained inputs (outputs) and quantization. The 
L-M identification works in accordance to the principle 
of searching of global minima of an error between the 
plant last outputs and model outputs through entire a 
states buffer 
    ( ) ( ) ( )[ pkkkk −−= ]ϕϕϕ ...1)(X   (9) 
     The states buffer (training set) contains a certain 
number of last states of the plant, where p is a length of 
buffer. It is desirable to set the length of buffer that the 
buffer contains a time period invariant to the sampling 
rate. 
     The minimization algorithm iterate certain number of 
iterations i at each identification step k 
( ) ( ) ( ) ( )[ ] ( ) ( )kikikikikiki |||||1| T1T EJIJJθθ −

+−=+ λ
       (10) 
where ( )kiE  is a vector of errors (11) between model 
output and estimated system output T  in (12): ( )k
      (11) ( ) ( ) ( )kkkk θXTE TT)( −=
    ( ) ( ) ( ) ( )[ pkykykyk −−= ...1 ]T   (12) 
     The Jacobian matrix ( )kiJ  represents the best linear 

approximation to a differentiable vector-valued function 
near a given point and is evaluated at each of iteration. 

    ( ) ( )
( )

( ) ( ) ( )( )
( ) ( )k
k

kkk
k
kk T

TT

X
θ

θXT
θ
EJ   (13) −=

∂
−∂

=
∂
∂

=

     The (non-negative) damping factor λ is adjusted at 
each of iteration by evaluation of a quadratic error.  

3   Quantization Effect 
The quantization effect is more known for example in 
instrumentation theory or signal processing theory than 
in control theory. Furthermore, in control theory the 
phenomenon has been usually disregarded. It is due to 
the fact that the conditions used in process control allow 
the quantization effect to be ignored. Nowadays, when 
the sampling period is demanded to be very short and the 
requirements for the control precision are higher than 
before, the quantization effect plays considerable role in 
the practical control. 

3.1   Quantization Error 
The process control of continuous time system and the 
control of sampled continuous time system are two 
different fields. It happens that the controller design is 
created without precise knowledge of sampling, shaping 
and quantization effect. 
   The A/D and D/A converters are necessary parts of 
each real-time system [2]. The basic feature of the 
converters is to convert continues signal to discrete 
values and back (see Fig. 1). 
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Fig. 1.  The real model with A/D and D/A 
converters represented as quantizer.
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he quantization error e is limited to quantization band ≡ 
LSB. The quantization range Q  and the 

antization resolution Q  are basic parameters for 
finition of the quantization band. For example 

 number of codes is given forQ . Next, 
r bipolar converters ±10 V the quantization band is 

= 10/256 = 39.1 mV≈ ≈ 0.04 V. Therefore the 
lue in finite word-length precision is numerically 
unding off to the three valid places divisible 
 ≈ 0.04 V. 
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The quantization error may be modelled as 
terministic or stochastic signal in linear analysis. In 
terministic model, the error is modelled as constant 
ving the size of quantization errors and with the 
solution in the arithmetic calculation. In the stochastic 
odel, the error introduced by rounding or quantization 



is than described as additive white noise with rectangular 
distribution [1]. Next paper [3] deals with quantization 
analysis and shows cases where after linearization the 
round off quantization error is uncorrelated with 
quantizer input. 
   Let us consider the modelling of quantizer. The model 
can be built from quantization effect description to show 
the disturbance properties of quantization effect. The 
model can be seen in Fig. 2, where the linear part of 
value  is disturbed by non-linear part represented as 
quantization error e. This point of view is very simple, 
given from description of quantization effect and it gives 
us the beginning point for explanation of quantization 
effect. 

Lu

   It can be written that 
      (15) )(ufueuu qLq =+=
where f(·) is exact non-linear function. The idea to derive 
presented equation explains answer to the question how 
the quantization error arises. It is shown that 
quantization error is dependent on quantizer input signal. 
This dependence is negligible as long as the sampling 
period is not too short and the numerical precision of 
quantizer error added to output is insignificant. In our 
case where the process control needs short sampling 
period, it is clearly shown that quantization error e is not 
independent from quantizer input u and hence cannot be 
treated as the independent additive noise [4], [5]. Next 
the quantization error cannot be treated as the Gaussian 
or even white noise because it is directly derived from 
quantizer input. It means that the noise is deterministic 
and it can be predicted. For example the quantization 
error is bigger when the amplitude of quantizer input is 
smaller. 

3.2   The Limitation of Sampling Rates 
The limitation of sampling rates in identification based 
on prediction error method. The correct setting of a 
sampling period in case of identification is described in 
[6]. The authors advise, without detailed analysis, setting 

of the sampling period empirically by the bandwidth  
of a close loop. The domain, where is the sampling faster 
than the recommended one, is called Rapid Sampling. 

Bw

   A typical adaptive controller works with an 
unchangeable sampling period (the operating system 
doesn’t allow a change of cycle time without a new 
initialization of the system), thus, when we demand 
high-adaptive algorithm, we get to rapid sampling 
domain easily. It will be shown; the boundaries of the 
domain are fuzzy and depending on disturbances in 
control loop. 
   We have cleared up that the sampling period is set, so 
the performance of identification will consider to the 
relative time constant. In this case it holds that with 
rising relative time constant of plant identification 
became more difficult. 
We define the relative time constant as follows: 
   

S
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where  is a global time constant of plant.  is a 
sample time. 

GT ST

Prediction error methods (PEM) updates the model of a 
plant by prediction error : ( )θ,ke
   ( ) ( ) ( ) ( )kkkyke θθ T, ϕ−=    (17) 
where y(k) is an actual output of plant and part 

( ) ( )kk θTϕ  is a predicted output by model ( )kθ  with 
values of last plant inputs and outputs. 
We define quadratic prediction error  
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tT  is computation interval by lasting simulation; for (19) 

we used 100=tT s. Prediction error ( )θ,ke  falls 
exponentially to noise level by rising (16). The 
main disadvantage of PEM methods is obvious form Fig. 
3. The figure shows relation between quadratic 
prediction error  and relative time constant. The 
predicted system had transfer function (19). His 
predictors i  (the parameters of predictor model iF ) 
was discrete equivalents of systems (20): Predictor 1 –
 F1(s); Predictor 2 – F2(s); Predictor 3 – F3(s) – only for 
comparison very bad estimation of (19).  
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Fig. 2.  Principal model of quantization effect. 
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The theoretic boundary of T  is given by levels of 
quantization noise of A/D converters (10-bit and 16 bit 
one is shown in the Fig. 3). 
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Fig. 4.   The influence of sampling period and 
quantization (from 10-bit to 20-bit converter) on 
the performance of a RLS algorithm 

4   The Influence of Rapid Sampling and 
Quantization 
In this section is the influence of rapid sampling and 
quantization on the applicability of identification 
methods described. In the last section, we explained that 
there is an upper bound of a sampling rate (or relative 
time constant) at prediction error methods. Now, we will 
show, that the identification method based on a neural 
networks approach with Levenberg-Marquardt training 
algorithm provides better estimate of a model dynamics 
than the gradient method and RLS method. This is 
caused by an accumulation of prediction error by 
training set (13). 
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Fig. 3.   The relation between prediction error PEi  
and relative time constant for different predictors 
Fi(s).
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Fig. 5.   The influence of sampling period and 
quantization (from 10-bit to 20-bit converter) on 
the performance of a Simple Gradient Algorithm 
identification.

   The validation of the trained model by one-step 
prediction error is insufficient (see last section), 
therefore we validate similarity between plant and its 
model by cumulating difference between output of plant 
and free model. In each step we compute free prediction 
error: 
   e .   (21) ( ) ( ) ( ) (kkkyk )θθθ ,, T

V ϕ−=  
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Fig. 6.  The influence of sampling period and 
quantization (from 10-bit to 20-bit converter) on the 
performance of an Identification based on neural 
network with Levenberg-Marquardt training method. 

Now, the content of the regression vector ( )θ,T kϕ  
depend on the model  which is adjusted in each 
step by a tested method. 

( )kθ

   The criterion of similarity between plant and model:  
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Each identification method estimates parameters of plant 
(19). The gain of plant is perturbed by 50%. 
The values of (22) are shown in next Fig. 4, Fig. 5 and 
Fig. 6 for each identification method and depend on 
sampling rates and quantization. Note that the 
identification based on a neural network gives less 
accurate solution, but it produces the most stable 
solution in the rapid sampling domain. This feature is 
more obvious in real system control (see Fig. 6). 



5   Adaptive Control  
Application that on-line parameter identification can be 
put to is in adaptive control. The idea of adaptive 
controllers (or self-tuning controllers) is to combine an 
on-line identification with on-line control law synthesis. 
Many of control law synthesis approaches are based on 
two methods – pole placement and inversion of dynamic. 
Both of the methods are numerically sensitive to the bad-
estimated model of a plant.  
   The requirement for correctly computed vector θ  is 
not often fulfilled during controlling of a real system 
with a higher order. Therefore, we use simple heuristic 
synthesis based on modified Z-N 1 method. The basis 
architecture of the adaptive controller we discussed is 
shown in Fig. 7.  

The step response generator generates the sequence  
of a step response of the estimated model . Then, the 
state machine finds characteristic points ,  and 

 in the sequence  (Fig. 8). These values are used 
to design the PID discrete controller according 

modification [10] – (23), (24). 
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5.1 Real Process Control Results  
The comparison of a controller that uses RLS 
identification method with a controller that uses 
identification based on neural network with Levenberg-
Marquardt training method is shown. The real process 
control proves the advantages of the second 
identification method. The transfer function of controlled 
dynamic system was 
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Fig. 7.  The architecture of the adaptive heuristic 
controller based on modified Ziegler-Nichols 
open loop method. 

with interval of linearity <-6, 7> (V). 
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Fig. 9.  Real process control; RLS identification 
method (12–bit A/D and D/A converter)
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Fig. 8.  The characteristic points used for a 
tuning of the adaptive heuristic controller based 
on modified Ziegler-Nichols open loop method. 
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Fig. 10. Real process control – identification method 
based on neural network (12–bit A/D and D/A 
converter) 



   Fig. 9 and Fig. 10 shows the both methods of 
identification applied in an adaptive control. Both 
controllers work with the same settings. The sampling 
period was set to T s. The short sampling period is 
used in order to reduce an overshot and mainly for a 
disturbance cancellation. 

1.0S =  

 
6   Conclusion 
This paper discus influences affecting the process of 
identification at rapid sampling domain. We compared 
three methods of on-line identification: the recursive 
least square method, the gradient identification method 
and the identification method based on neural network 
approach with Levenberg-Marquardt minimization. On 
the basis of section 5 we applied the neural estimator for 
an adaptive control. 
   The real process control shows the advantage of using 
identification based on neural networks in the real 
application against the classical identification methods. 
The identification based on a neural network gives less 
accurate solution, but it produces the most stable 
solution in the rapid sampling domain. 
   It was shown that: 

• Quantization deeply affects a performance of 
identification.  

• Neural networks based identification enables 
plants with greater  to be used in adaptive 
control process (with shorter sampling period). 

RELT

• On-line control law synthesis with step response 
generator provides stable coefficients of discrete 
PID controller. 

   Application that on-line parameter identification can 
be put to is in adaptive control. The idea of adaptive 
controllers (or self-tuning controllers) is to combine an 
on-line identification with on-line control law synthesis. 
The basis architecture for the adaptive controller is 
discussed in [9]. We used some variant of this 
architecture. 
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