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Abstract: A finite-element approach combined with an efficient iterative method have been used to provide a
numerical solution of the nonlinear Poisson-Boltzmann equation. The iterative method solves the nonlinear equa-
tions arising from the FE discretization procedure by a node-by-node calculation. The performance of the proposed
method is illustrated by applying it to the problem of two identical colloidal particlesin a symmetric electrolyte.
My numerical results are found in good agreement with the previous published results.
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1 Introduction

The nonlinear Poisson-Boltzmann (PB) equation de-
scribes, in some approximation, the electric poten-
tial and charge distribution in colloidal systems [2, 7].
Knowing the electrostatic potential, one can calculate
other quantities such as the free energy of a colloidal
system and the force of particle-particle interaction.
Features of inter-particle interaction are of great im-
portance in studying the stability of colloidal disper-
sions, the formation of colloidal crystals and mem-
brane separation processes [11].

To obtain numerical solutions of the PB equa-
tion, one must solve a system of nonlinear algebraic
equations resulting from a discretization by, for ex-
ample, the finite-element (FE) method. The standard
method for the solution is Newton’s method or its
variant [1]. Newton’s method is a local method that
converges quadratically in a sufficiently small neigh-
borhood of the exact solution. It is very sensitive to
initial guesses due to its local convergence property.
We propose here an iterative method which is glob-
ally and monotonically convergent with simple upper
or lower solutions of the PB equation as initial guesses
[5]. Picard, Gauss-Seidel and Jacobi monotone itera-
tive methods are completely presented for the FE so-
lutions.

2 Description of the Problem

Owing to the symmetry, all of the problems consid-
ered have the same two-dimensional domainΩ which
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Figure1: Thedomain for theproblem of two interact-
ing identical spherical particles.

is shown in Fig. 1. Segments CD is the wall of a
cylindrical vessel, segment DE is the outlet, segment
BC represents a midplane for the problems with two
particles, segment AB is half the separation distance
L and segment BE is theaxis of rotational symmetry.

The dimensionless PB equation for electrostatic
potential Ψ outside the spheres in cylindrical coordi-
nates takes the form

∂2Ψ

∂R2
+

1

R

∂Ψ

∂R
+
∂2Ψ

∂Z2
= sinhΨ (1)

Length, electrostatic potential, and force are respec-
tively measured in units of Debye length κ−1 =
(2nq2e/εkT )−1/2, kT/qe, and ε(kT/qe)2, where n is
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the concentration of any of the species in the elec-
trolyte, qe is the absolute value of electronic charge,
ε is the absolute permittivity of the electrolyte,k is
the Boltzmann constant,T is the absolute tempera-
ture, and the rationalized SI is used to express the fac-
tors.

The electric field is related to the potential by the
equationE = −∇Ψ. The force of interaction of the
particles is obtained by means of direct integration
of the total stress tensor over the appropriate surface.
There are at least two possible ways of integrating:
over the surface of the particle and over the midplane.
The dimensionless force obtained by integrating over
the surface of the particle is calculated according to
the expression

Fs = (κa)
2
∫ π

0
|∇Ψ|2 cos θ sin θ dθ, (2)

whereκa is the dimensionless sphere radius. For the
integration over the midplane, sayM , the dimension-
less force is

Fm =

∫

M

[

2(cosh Ψ − 1) +

(

∂Ψ

∂R

)2

−

(

∂Ψ

∂Z

)2
]

R dR, (3)

The latter case is more accurate since different pieces
of the midplane contribute with the same sign.

3 Monotone Iterative Methods
Let T be a FE partition of the domainΩ such that
T = { τj : j = 1, ...,M , Ω̄ = ∪M

j=1τ̄j} and the sys-
tem of nonlinear algebraic equations resulting from
FE discretization is

ηiψi −
∑

k∈V (i)

ηkψk = −Ri(ψi) +R∗

i (4)

where the setV (i) of degrees of freedom satisfies
ηk 6= 0 , ∀k ∈ V (i), k 6= i, the functionR(·,Ψ)
is nonlinear inΨ describing the PB equation andR∗

is prescribed in the boundary∂Ω. The diagonal domi-
nance of the resulting matrices (i.e., M-matrices [12])
of the model problems provides not only stability of
numerical solutions (i.e., no non-physical oscillations)
but also convergence of iterative procedures. This
is a basic hypothesis for the development of various
monotone iterative schemes for (4).

Definition 1 A vectorΨ̃ ≡ (ψ̃1, . . . , ψ̃N ) ∈ IRN is
called an upper solution of (4) if it satisfies the fol-
lowing inequality

ηiψ̃i −
∑

k∈V (i)

ηkψ̃k ≥ −Ri(ψ̃i) +R∗

i , (5)

andΨ̂ ≡ (ψ̂1, . . . , ψ̂N ) ∈ IRN is called a lower solu-
tion if

ηiψ̂i −
∑

k∈V (i)

ηkψ̂k ≤ −Ri(ψ̂i) +R∗

i , (6)

for 1 ≤ i ≤ N whereN is the total number of node
points.

3.1 Jacobi Method
Now we introduce the maximal and minimal se-
quences. LetV

(0)
= Ψ̃ be an initial iterate. We

construct a sequence{V
(m+1)

} by solving the linear
system

ηiv̄
(m+1)
i −

∑

k∈V (i)

ηkv̄
(m)
k + γ̄

(m+1)
i v̄

(m+1)
i

= γ̄
(m+1)
i v̄

(m)
i −Ri(v̄

(m)
i ) +R∗

i , (7)

for m = 0, 1, 2, . . . , 1≤ i ≤ N and the monotone
parameter̄γ(m+1)

i is defined by

γ̄
(m+1)
i ≡

∂Ri(v̄
(m)
i )

∂ψi
. (8)

Similarly, by usingV (0) = Ψ̂ as another initial iter-
ate, we obtain a sequence{V (m+1)} from the linear
system

ηiv
(m+1)
i −

∑

k∈V (i)

ηkv
(m)
k + γ(m+1)

i
v

(m+1)
i

= γ(m+1)
i

v
(m)
i −Ri(v

(m)
i ) +R∗

i , (9)

for m = 0, 1, 2, . . ., 1 ≤ i ≤ N and the monotone
parameterγ(m+1)

i is defined by

γ(m+1)
i

≡
∂Ri(v

(m)
i )

∂ψi
. (10)

For the maximal and minimal sequences we have
the following properties [6, 10].

Lemma 2 Assume the nonlinear functionRi(ψi) is
monotone increasing and concave up with respect to
ψi, i.e.,∂2Ri/∂ψ

2
i > 0. Then the maximal sequence

{V
(m)

} given by (7) withV
(0)

= Ψ̃ possesses the
monotone property

Ψ̂ ≤ V
(m+1)

≤ V
(m)

≤ Ψ̃, m = 0, 1, 2, . . . . (11)

Theorem 3 Assume conditions in Lemma 2 hold.
Then the sequence{V

(m)
} generated by solving (7)

with V
(0)

= Ψ̃ converge monotonically to the solu-
tion V of (4). Moreover

Ψ̂ ≤ V ≤ V
(m+1)

≤ V
(m)

≤ Ψ̃, m = 1, 2, . . . .
(12)
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Lemma 4 Assume the nonlinear functionRi(ψi) is
monotone increasing and concave down with respect
toψi, i.e.,∂2Ri/∂ψ

2
i < 0. Then the minimal sequence

{V (m)} given by (9) withV (0) = Ψ̂ possesses the
monotone property

Ψ̂ ≤ V (m+1) ≤ V (m) ≤ Ψ̃, m = 0, 1, 2, . . . . (13)

Theorem 5 Assume conditions in Lemma 4 hold.
Then the sequence{V (m)} generated by solving (9)
with V (0) = Ψ̂ converge monotonically to the solu-
tion V of (4). Moreover

Ψ̂ ≤ V ≤ V (m+1) ≤ V (m) ≤ Ψ̃, m = 1, 2, . . . .
(14)

3.2 Picard and Gauss-Seidel Methods
Let A be the matrix obtained by FE discretization. It
can be written in the split formA = D − L − U ,
whereD,L andU are the diagonal, lower-off diago-
nal and upper-off diagonal matrices ofA, respectively.
The elements ofD are positive and those ofL andU
are nonnegative. UsinĝΨ and Ψ̃ as the initial iter-
ates we can construct the three maximal and minimal
sequences by the three iterative schemes defined as
follows:

(a) Picard method

(A+Λ
(m+1)
P )V

(m+1)
P

= Λ
(m+1)
P V

(m)
P −R(V

(m)
P ) +R∗, (15)

(A+Λ
(m+1)
P )V

(m+1)
P

= Λ
(m+1)
P V

(m)
P −R(V

(m)
P ) +R∗, (16)

(b) Gauss-Seidel method

(D − L+Λ
(m+1)
G )V

(m+1)
G = UV

(m)
G

+Λ
(m+1)
G V

(m)
G −R(V

(m)
G ) +R∗, (17)

(D − L+Λ
(m+1)
G )V

(m+1)
G = UV

(m)
G

+Λ
(m+1)
G V

(m)
G −R(V

(m)
G ) +R∗, (18)

(c) Jacobi method

(D+ Λ
(m+1)
J )V

(m+1)
J = (L + U) V

(m)
J

+Λ
(m+1)
J V

(m)
J −R(V

(m)
J ) +R∗, (19)

(D+Λ
(m+1)
J )V

(m+1)
J = (L + U) V

(m)
J

+Λ
(m+1)
J V

(m)
J −R(V

(m)
J ) +R∗, (20)

where

Λ
(m+1)
P ≡ diag(γ

(m+1)
P,i ), γ

(m+1)
P,i ≡

∂Ri(v
(m)
P,i )

∂ψi
,

(21)

Λ
(m+1)
P ≡ diag(γ(m+1)

P,i
), γ(m+1)

P,i
≡
∂Ri(v

(m)
P,i )

∂ψi
,

(22)

Λ
(m+1)
G ≡ diag(γ

(m+1)
G,i ), γ

(m+1)
G,i ≡

∂Ri(v
(m)
G,i )

∂ψi
,

(23)

Λ
(m+1)
G ≡ diag(γ(m+1)

G,i
), γ(m+1)

G,i
≡
∂Ri(v

(m)
G,i )

∂ψi
,

(24)

Λ
(m+1)
J ≡ diag(γ

(m+1)
J,i ), γ

(m+1)
J,i ≡

∂Ri(v
(m)
J,i )

∂ψi
,

(25)

Λ
(m+1)
J ≡ diag(γ(m+1)

J,i
), γ(m+1)

J,i
≡
∂Ri(v

(m)
J,i )

∂ψi
.

(26)
and the initial guesses areV

(0)
P = V

(0)
G = V

(0)
J = Ψ̃

andV (0)
P = V

(0)
G = V

(0)
J = Ψ̂. The following lemma

gives the monotone property of these sequences.

Lemma 6 Assume the conditions of Lemma 2 hold.

Then the maximal sequence{V
(m)

} given by either
one of the iterative schemes (15),(17) and (19) with

V
(0)

= Ψ̂ possesses the monotone property (11).

Theorem 7 Assume the conditions of Lemma 2
hold. Then each of the maximal sequences

V
(m)
G , V

(m)
J , V

(m)
P converges monotonically to the so-

lution V of (4) and satisfies the relation (12). More-
over,

V
(m)
P ≤ V

(m)
G ≤ V

(m)
J , (27)

for everym = 1, 2, 3, . . ..

4 Results and Discussions

4.1 Interaction of Two Identical Charged
Spherical Particles

This problem deals with two identical colloidal par-
ticles immersed in symmetrical 1:1 electrolyte. It
was studied in several works and can serve as a test
[2, 4, 8]. In the present paper, the force of interaction
of two particles of the radiusκa = 10.0 and5.0 were
calculated for the separation distanceL = 1.0 and 0.5
respectively. The constant potentialΨS on the sur-
faces of both particles was equal to 2.0. The Neumann
boundary conditions∂Ψ/∂n = 0 are implied on the
other boundaries of the domain.
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Figure 2: The mesh for the problem of two interacting
identical charged spherical particles.

A typical mesh and solution are shown in Fig. 2
and 3 for a case of two interacting spherical particles
with κa = 5,Ψs = 2 andL = 0.25. Table 1 shows re-
sults for the dimensionless electrostatic force between
two identical spherical particles for given conditions,
which compared with some previously published pa-
pers. The results are in good agreement of my results.

Table 1
The Dimensionless Force between Two Particles

κa Fm Fp1 Fp2 Fp3

10.0 19.852 20.101 19.892 20.048
5.0 15.509 15.509 15.476 15.545

Note thatFm is the force on the midplane,Fp1 is the force
from previous results [2],Fp2 is the force from previous
results [9], andFp3 is the force from previous results [4].

4.2 Interaction of Two Identical Charged
Spherical Particles Confined within a
Charged Cylindrical Pore

This problem deal with the long-range electrostatic in-
teraction of two charged spheres confined in a like-
charged cylindrical pore. The same parameters are
used, e.g., the 1:1 electrolyte, the constant potential
on the cylindrical poreΨP = 5.0, and the constant
potential on the spheresΨS = 3.0. The radius of the
particles isκa = 1.185 and the sphere radius to pore
radius ratio isλ = 0.13. Fig. 4 shows the isopoten-
tial plot for two isolated spheres (ΨS = 3.0) and two
spheres confined in a pore (ΨS = 3.0 andΨP = 5.0).
They are found in good agreement with the published
results, see, e.g., [3].

In order to observe the behavior of the er-
ror reduction for various iterative schemes the error
||e(m)||∞ ≡ ||v(m) − v(m−1)||∞ is defined and the
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Figure 3: The numerical solution for the problem of
two interacting identical charged spherical particles.

stopping criterion for these iterations is determined
from the condition||e(m)||∞ ≤ 1.0E−6. Fig. 5 shows
the typical phenomena of monotone convergence in
various schemes. The convergence of Picard method
is the fastest, and then Gauss-Seidel method and Ja-
cobi method follow accordingly. This phenomenon
verifies Theorem 5. On the one hand the iterative be-
havior of Picard method is remarkable for its fast con-
vergence. It is finished after ninth iterative step and
more faster than Gauss-Seidel and Jacobi methods.
On the other hand the memory storage and the CPU
time consuming in Gauss elimination are the draw-
backs of Picard method.
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