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Abstract: A finite-element approach combined with an efficient iterative method hage bsed to provide a
numerical solution of the nonlinear Poisson-Boltzmann equation. The iteratithod solves the nonlinear equa-
tions arising from the FE discretization procedure by a node-by-nddelation. The performance of the proposed
method is illustrated by applying it to the problem of two identical colloidal partitiess symmetric electrolyte.
My numerical results are found in good agreement with the previous pedligsults.
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1 Introduction

The nonlinear Poisson-Boltzmann (PB) equation de-
scribes, in some approximation, the electric poten-
tial and charge distribution in colloidal systems [2, 7]. Tz
Knowing the electrostatic potential, one can calculate
other quantities such as the free energy of a colloidal
system and the force of particle-particle interaction.
Features of inter-particle interaction are of great im-
portance in studying the stability of colloidal disper-
sions, the formation of colloidal crystals and mem-
brane separation processes [11].

To obtain numerical solutions of the PB equa-
tion, one must solve a system of nonlinear algebraic s a F
equations resulting from a discretization by, for ex-
ample, the finite-element (FE) method. The standard Figure 1: The domain for the problem of two interact-
method for the solution is Newton’s method or its ingidentical spherical particles.
variant [1]. Newton’'s method is a local method that
converges quadratically in a sufficiently small neigh- o )
borhood of the exact solution. It is very sensitive to IS shown in Fig. 1. Segments CD is the wall of a
initial guesses due to its local convergence property. Cylindrical vessel, ssgment DE is the outlet, segment
We propose here an iterative method which is glob- BC _representsam|dpla_1nefor the probler_nSW|_th two
ally and monotonically convergent with simple upper  Particles, ssgment AB is half the separation distance
or lower solutions of the PB equation as initial guesses L and segment BE is the axis of rotational symmary.
[5]. Picard, Gauss-Seidel and Jacobi monotone itera- ~ The dimensionless PB equation for electrostatic
tive methods are completely presented for the FE so- Potential ¥ outside the spheres in cylindrical coordi-

lutions. nates takes the form
0?v N 10w N 0?w
OR?2  ROR 022
Length, electrostatic potential, and force are respec-

Owing to the symmetry, all of the problems consid- tively measured in units of Debye length x=! =
ered have the same two-dimensional donfaiwhich (2nq2 /ekT) /2 kT /q., and e(kT/q.)?, where n is

=sinh ¥ D
2 Description of the Problem
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the concentration of any of the species in the elec-
trolyte, ¢. is the absolute value of electronic charge,
€ is the absolute permittivity of the electrolytg,is

the Boltzmann constanf]’ is the absolute tempera-

ture, and the rationalized Sl is used to express the fac-

tors.

The electric field is related to the potential by the
equationE = —V V. The force of interaction of the
particles is obtained by means of direct integration

of the total stress tensor over the appropriate surface.

There are at least two possible ways of integrating:
over the surface of the particle and over the midplane.
The dimensionless force obtained by integrating over
the surface of the particle is calculated according to
the expression

(2)

wherex, is the dimensionless sphere radius. For the
integration over the midplane, s&y, the dimension-
less force is

F, = (na)Q/ |VU|? cos O sin @ db,
0

F, = /M [2(cosh\I/ 1)+ (2;1;)2

_ (g;ﬂ R dR, 3)

104

and¥ = (¢, ..
tion if

., ¥n) € RN is called a lower solu-

miti— Y mebk < —Ri(ds) + R},

keV (i)

(6)

for 1 < ¢ < N whereN is the total number of node
points.

3.1 Jacobi Method

Now we introdyce the maximal and minimal se-
qguences. Let™”’ = U be an initial iterate. We

construct a sequenc{é7(m+1)} by solving the linear
system

m@(erl) Z nk@](fm)+fy(m+l)@§m+l)
keV (i)
~(m+1) - (m)

— Ri(o"™) + R}, (7)
form = 0,1,2,..., 1< ¢ < N and the monotone
parameter™ ™ is defined by
_(m+1) OR(7\")
! i
Similarly, by usingV’ (") = ¥ as another initial iter-
ate, we obtain a sequené® ™1} from the linear

% Y;

(8)

The latter case is more accurate since different pieces system

of the midplane contribute with the same sign.

3 Monotone lterative Methods

Let 7 be a FE partition of the domaift such that
T={m:j=1.,MQ=UM 7} and the sys-
tem of nonlinear algebraic equations resulting from
FE discretization is

mvi — Y Mk = —Ri(y) + R}

keV (i)

(4)

where the sel/(i) of degrees of freedom satisfies
ne # 0, Vk € V(i), k # i, the functionR(-, ¥)

is nonlinear in¥ describing the PB equation arkf

is prescribed in the boundaéf2. The diagonal domi-
nance of the resulting matrices (i.e., M-matrices [12])
of the model problems provides not only stability of
numerical solutions (i.e., no non-physical oscillations)
but also convergence of iterative procedures. This
is a basic hypothesis for the development of various
monotone iterative schemes for (4).

Definition 1 A vector¥ = (¢y,...,¢n) € RN is
called an upper solution of (4) if it satisfies the fol-
lowing inequality

mvi — Y. mtk > —Ri(Ys) + R},

keV (i)

(5)

il S ey AN
keV (3)
= "™ — Ri(]™) + B;. (9)
form =0,1,2,...,1 < ¢ < N and the monotone
parameteggm“) is defined by
OR; (™)
(m+1) = Z20=i ) 10
" 50 (10)

For the maximal and minimal sequences we have
the following properties [6, 10].

Lemma 2 Assume the nonlinear functioR;(1);) is
monotone increasing and concave up with respect to
Py, i.e.,0%R;/0vy? > 0. Then the maximal sequence
(V™1 given by (7) with?'” = ¥ possesses the
monotone property

b<7mD <y <G o =0,1,2,.... (11)

Theorem 3 Assume conditions in Lemma 2 hold.
Then the sequenc{d/(m)} generated by solving (7)

withy(o) = U converge monotonically to the solu-
tion V of (4). Moreover

<V™ <@ m=12,....
(12)
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Lemma 4 Assume the nonlinear functioR; (1) is where
monotone increasing and concave down with respect (m)
to;, i.e.,0°R;/0vy? < 0. Then the minimal sequence A(m—H) dia (,(m—s—l)) ~(m+1) _ OR;(vp;)
{vm1 given by (9) withV® = ¥ possesses the I AR AR A W
monotone property (21)
) - ATTD = ¢ <m+1) (m+1) — OR; @g?)
<yt <V <@ m=0,1,2,.... (13) or a9y ) 21 o]
(22)
Theorem 5 Assume conditions in Lemma 4 hold. (v )
m—+1 . —(m+1)y —(m+1 G,i
Then the sequencgd/ (™} generated by solving (9) AgY = dwg(V(G,i+ ))»VE;,;F )= 87’
with V(©) = I converge monotonically to the solu- (23)
tion V of (4). Moreover (4, (T)
Lol (m+1) _ rebD) D) = OFi(vg,)
~ ~ AG - d’Lag( ) VG 7 aw Y
U<y <ym <y <, m=1.2,.... " (29
(14) (m)
_ OR;(vY.”)
m+1 . __(m _(m %
K"V = diag(757 ), 75 = ij,
3.2 Picard and Gauss-Seidel Methods (25)
Let A be the matrix obtained by FE discretization. It A+ — g (m+1) (mt1) _ aRi(yS’;L))
can be written in the split formd = D — £ — U, =7 tag(yy; )2y = I
whereD, £ andl{ are the diagonal, lower-off diago- (26)
nal and upper-off diagonal matrices.df respectively. and the initial guesses ate?) — Vg’) = V((JO) =0

The elements ob are positive and those @f andi/

are nonnegative. Using and U as the initial iter-
ates we can construct the three maximal and minima

andV¥ = v — v© — §. The following lemma
| gives the monotone property of these sequences.

sequences by the three iterative schemes defined as| emma 6 Assume the conditions of Lemma 2 hold.

follows: Then the maximal sequen¢® ™} given by either

(a) Picard method —(0)
V" = U possesses the monotone property (11).

(A+A(m+1))v(m+l)

= RAOTE Rty 4 RY, (15) hold.  Then each of the maximal sequences
(A+AHD)p (mtD vim ylm yim) converges monotonically to the so-

(m1)+,(m) (m) lution V' of (4) and satisfies the relation (12). More-
= Ap "Vp' - R(Vp")+ R, (16) over,

Ve < Vg <V, (27)
(b) Gauss-Seidel method for everym = 1,2, 3

(D - L+ R VE = vl

FASIYEY VM) + RY, (17)

(D-L +A(m+1))v(m+1) uv(m) 4.1 Interaction of Two Identical Charged
Spherical Particles

This problem deals with two identical colloidal par-
ticles immersed in symmetrical 1:1 electrolyte.

4 Results and Discussions

FALOYI ROy 4+ R* (18)

(c) Jacobi method was studied in several works and can serve as a test
[2, 4, 8]. In the present paper, the force of interaction
(D+ AT = ) 7O of two particles of the radius, = 10.0 and5.0 were
—(mt1)=(m) —(m) . calculated for the separation distance- 1.0 and 0.5
+A; V=RV, + R, (19) respectively. The constant potentifily on the sur-
(DJFASWH))KSWH) = (L+U) K(Jm) faces of both particles was equal to 2.0. The Neumann

(m+1)+,(m) (m) . boundary condition®¥/0n = 0 are implied on the
+A; V=RV T) + R (20) other boundaries of the domain.

one of the iterative schemes (15),(17) and (19) with

Theorem 7 Assume the conditions of Lemma 2
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Figure 2: The mesh for the problem of two interacting

identical charged spherical particles.

A typical mesh and solution are shown in Fig. 2
and 3 for a case of two interacting spherical particles
with k, = 5, ¥y, = 2andL = 0.25. Table 1 shows re-
sults for the dimensionless electrostatic force between
two identical spherical particles for given conditions,
which compared with some previously published pa-
pers. The results are in good agreement of my results.

Table 1

The Dimensionless Force between Two Particles

Ra Fm Fpl Fp2 Fp3

10.0 19.852 20.101 19.892 20.048
5.0 15509 15.509 15.476 15.545

Note thatF’,, is the force on the midplané,,; is the force
from previous results [2]F). is the force from previous
results [9], andF,3 is the force from previous results [4].

4.2

Charged Cylindrical Pore

This problem deal with the long-range electrostatic in-
teraction of two charged spheres confined in a like-
charged cylindrical pore. The same parameters are
used, e.g., the 1:1 electrolyte, the constant potential
on the cylindrical porelp = 5.0, and the constant
potential on the sphereis = 3.0. The radius of the
particles isk, = 1.185 and the sphere radius to pore
radius ratio is\ = 0.13. Fig. 4 shows the isopoten-
tial plot for two isolated sphered(s = 3.0) and two
spheres confined in a por& ¢ = 3.0 and¥p = 5.0).
They are found in good agreement with the published

results, see, e.g., [3].

In order to observe the behavior of the er-
ror reduction for various iterative schemes the error
el = |[7™ — B(m=D||,, is defined and the

Interaction of Two Identical Charged
Spherical Particles Confined within a
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Figure 3: The numerical solution for the problem of
two interacting identical charged spherical particles.

stopping criterion for these iterations is determined
from the conditior|e(™) ||, < 1.0E—6. Fig. 5shows

the typical phenomena of monotone convergence in
various schemes. The convergence of Picard method
is the fastest, and then Gauss-Seidel method and Ja-
cobi method follow accordingly. This phenomenon
verifies Theorem 5. On the one hand the iterative be-
havior of Picard method is remarkable for its fast con-
vergence. It is finished after ninth iterative step and
more faster than Gauss-Seidel and Jacobi methods.
On the other hand the memory storage and the CPU
time consuming in Gauss elimination are the draw-
backs of Picard method.
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Figure 5: The error versus the number of iteration for
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dashed line: Picard method.
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