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Abstract: The problem of change detection and data segmentation has received considerable attention in a research
context and appears to be the central issue in various application areas. The change detection and segmentation
model used in this paper is the simplest extension of the linear regression models to data with abruptly chang-
ing properties. Usually, a change detection algorithm consists in two stages: residual generation and decision
making. The residuals are analytical redundancy generated data representing the difference between the observed
and expected system behavior. In the stage of decision making, the residuals are processed and analyzed under
certain decision rules to determine the system change status. The following techniques are investigated: filtering
techniques with a whiteness test, techniques based on sliding windows and distance measures, and maximum like-
lihood techniques for change point estimation. The results of some Monte-Carlo simulations for change detection
and segmentation in signals with changes in the mean value and in the AR model parameters are presented.
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1 Introduction
The problem of change detection or segmentation of
data has received considerable attention during the
last two decade in a research context and appears to
be the central issue in various application areas.

The analysis of the behavior of such real data re-
veals the most of the changes that occur are either
changes in the mean level, or changes in spectral char-
acteristics. In this framework, the problem of segmen-
tation between ”homogenous” parts of the data (or de-
tection of changes in the data) arises more or less ex-
plicitly. Actually, two main types of problems can be
distinguished:

1. Segmentation of the data, the true model of
which is not known, and where the model used
for change or jump detection is simply a tool to
locate the boundaries.

2. Segmentation of the data which are approxi-
mately represented by a large amount of models:
the analysis is then of an artificial intelligence
type, the changes may be not really abrupt.

The proposed problem formulation assumes off-
line or batch-wise data processing, although the solu-
tion is sequential in data and an on-line data process-
ing can be used. The change detection and segmen-

tation model is the simplest possible extension of lin-
ear regression models to data with abruptly changing
properties. It is assumed that the data can be described
by one linear regression model within each segment
with distinct parameter vector and noise variance.

2 Problem Formulation
The following problem is addressed: Let{Y1} and
{Y2} two sets of stationary data, and one want to test
the null hypothesis:

H0 : {Y1} and{Y2} are generated by the same rule.
H1 : {Y1} and{Y2} are generated by different rules.

Concerning the data generating mechanism, it is
assumed that underH0, data sets{Y1} and{Y2} are
generated by an autoregressive AR(p) process, whose
parameters may jump at some unknown time, i.e.,

yt =
p∑

k=1

a
(t)
k yt−k + εt, var(εt) = σt (1)

where

a
(t)
k = a

(1)
k , 1 ≤ k ≤ p, for t < τ

σt = σ1, for t < τ
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Figure 1: Change detection based on a whiteness test
for filter residuals

a
(t)
k = a

(2)
k , 1 ≤ k ≤ p, for t ≥ τ

σt = σ2, for t ≥ τ

andεt is a white noise sequence.
This assumption is not too restrictive since many

stationary processes encountered in practice can be
closely approximated by AR models. The advantage
of this assumption consists of the computational sim-
plicity of the resulted test procedures.

The change detection problem consists in the se-
quential detection of the change, and the estimation
of the change time,τ , with few false alarms, short
delay for detection and symmetrical detection (com-
parable performances when detecting a change from
model (1) to model (2), or inverse).

There are different approaches to detect the
changes in non-stationary signals. In this paper will
be given the conceptual description of some methods
for sequential detection of changes in non-stationary
data, based on filtering and a whiteness test, sliding
windows and distance measures and a MAP technique
for segmentation.

3 Change Detection Based on Filter-
ing

One useful approach for change detection consists in
filtering of the observed data through a known or iden-
tified AR filter, and in looking for changes in the
residual signal of innovations,{εt}. Actually, the
use of cusum techniques based upon the innovations
(one-step prediction errors) ,{εt}, or the squared in-
novations,{ε2

t }, is a standard approach for change
detection in AR models. Such a technique, using
{ε2

t } is based upon the fact that, before the change
E(ε2

t ) = σ1 and thus:E(ε2
t /σ1 − 1) = 0.

To conclude, statistical whiteness tests can be
used to test if the residuals are white noise as they
should be if there is no change. Figure 1 shows the ba-
sic structure, where the filter residuals are transformed
to a distance measure, that measures the deviation
from the no-change hypothesis. Thestopping rule de-

cides whether the deviation is significant or not. The
most natural distances are listed below, [1]:

• Change in the mean. The residual itself is used
in the stopping rule andst = εt.

• Change in variance. The squared residual sub-
stracted by a known residual varianceλ is used
andst = ε2

t − λ.

• Change in correlation. The correlation between
the residual and past outputs and/or inputs are
used andst = εtyt−k or st = εtut−k for some
k.

• Change in sign correlation. For instance, one
can use the fact that the white residuals should
change sign every second sample in the average
and usest = sign(εtεt−1).

The main problem in statistical change detection
is now to decide what ”large” are these distances.
Many change detection algorithms can be recast into
the problem of deciding on the following two hy-
potheses:

H0 : E(st) = 0,
H1 : E(st) > 0,

wherest is a distance measure. A stopping rule is
essentially achieved by low-pass filteringst and com-
paring this value to a threshold. Below, two such low-
pass filters are given:

• The CUmulative SUM (CUSUM) test of Page,
[2]:

gt = max(gt−1 + st − ν, 0), change if gt > h

Thedrift parameter ν influences the low-pass ef-
fect, and thethreshold h (and alsoν) influences
the performance of the detector.

• The Geometric Moving Average (GMA) test in
Roberts, [3].

gt = λgt−1 + (1 − λ)st, change if gt > h.

Here, the forgetting factorλ is used to tune the
low-pass effect, and the thresholdh is used to
tune the performance of the detector. Using no
forgetting at all (λ =0), corresponds to directly
thresholding, which is one option.

It seems that classical approach consisting in test-
ing how much the sequence of innovations ,{εt} is far
from hypothesis ”zero-mean white noise” is not suffi-
cient for change detection in practice.
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4 Change Detection Based on Sliding
Windows

The main idea underlying this approach consists of
comparison of two models: a model (M2), based on
data from a sliding window of sizeL (yt−L+1, . . . , yt)
is compared to a model (M1) based on all data or
a substantially larger sliding window (y1, y2, . . . , yt),
[4]. If the model based on the larger data window
gives larger residuals

‖ε1
t ‖ > ‖ε2

t ‖,

then a change is detected. The problem here is to
choose a norm that corresponds to a relevant statis-
tical measure. Some norms that have been proposed
are:

• The Generalized Likelihood Ratio (GLR).

• The divergence test.

• Change in spectral distance. There are many
methods to measure the distance between two
spectra. One approach would be to compare the
spectral distance of two models.

These criteria provide anst to be put into a stop-
ping rule for instance, the CUSUM test. The choice of
window sizeL is very critical here. On the one hand,
a large value is need to get an accurate model in the
sliding window and, on the other hand, a small value
is needed to get quick detection.

Concerning the distance functions presented
above, we will give in the following their expressions.
In a linear regression model, AR(p),yt can be written:

yt = φT
t θ + εt (2)

with

φt = (yt−1, yt−2 . . . , yt−p)T

θ = (a1, a2, . . . , ap)T

In [5], two different test statistics for the case of
two different models are given. A straightforward ex-
tension of the generalized likelihood ratio test leads
to:

dGLR = L log
σ1

σ2
+

(yt − φT
t θ1)2

σ1
− (yt − φT

t θ2)2

σ2
(3)

This test statistic was as the same time proposed
in Appel and Brandt, [6] and will be referred as
Brandt’s GLR method.

To measure the distance between two models, any
norm can be used. So, the Kullback discrimination in-
formation, [7] between two probability density func-
tionsp1 andp2 is defined as:

I(1, 2) =
∫

p1(x) log
p1(x)
p2(x)

dx ≥ 0 (4)

In the special case of Gaussian distribution, we
get

pi(x) = N(θ̂i, Pi)

I(1, 2) =
1
2

tr(P−1
2 P1 − I) +

+
1
2
(θ̂1 − θ̂2)T P−1

2 (θ̂1 − θ̂2) −

− 1
2

log
(

detP1

detP2

)

The Kullback information is not a norm (it is not
symmetric) and is not suitable as a distance measure.
Instead, Kullback divergence is used:

V (1, 2) = I(1, 2) + I(2, 1) ≥ 0 (5)

From Kullback divergence, the divergence test
can be derived and it equals:

dDIV = L

(
σ1

σ2
− 1

)
+

(
1 +

σ1

σ2

)
(yt − φT

t θ1)2

σ1
−

− 2
(yt − φT

t θ1)(yt − φT
t θ2)

σ2
(6)

The corresponding algorithm will be called the di-
vergence test.dGLR anddDIV start to grow when a
jump produced, and again the task of the stopping rule
is to decide whether the growth is significant.

Concerning the parameter estimation of the mod-
els can be used the lattice implementation of the ap-
proximate least squares method, [8], for the long-term
filter M1, and the covariance method, [9], for the cur-
rent filterM2.

5 Change Detection Based on Seg-
mentation

In segmentation, the goal is to find a sequencekn =
(k1, k2, . . . , kn) of time indices, where both then and
the locationski are unknown, such that the signal can
be accurately described as piecewise constant, i.e.

yt = θi + εt, when ki−1 < t < kt (7)
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is a good description of the observed signalyt. The
noise variance will be notedE(ε2

t ) = σ.
One way to guarantee that the best possible solu-

tion found is to consider all possible segmentationkn,
estimate the mean in each segment, and then choose
the particularkn that minimizes an optimality criteria:

k̂n = arg min V (kn)
0 < k1 < . . . < kn = N

(8)
wheren ≥ 1.

The procedure is illustrated below:

y1, y2, . . . , yk1 . . . ykn−1+1, . . . , ykn

Segment 1 . . . Segment n
θ̂1, σ̂1 . . . θ̂n, σ̂n

Note that the segmentationkn hasn − 1 degrees
of freedom. Two types of optimality criteria have been
proposed:

• Statistical criteria: The maximum likelihood or
maximum a posteriori estimate (MAP) ofkn

• Information based criteria: The information of
data in each segment isVi (the sum of squared
residuals) and the total information is the sum of
these. Since the total information is minimized
for the degenerated solutionkn = 1, 2, . . . , N ,
giving Vi = 0, a penalty term is needed.

The main problem in segmentation is the dimen-
sionality. The number of segmentationkn is 2N (can
be a change or no change at each time instant). Sev-
eral strategies have been proposed:

• Numerical searches based on dynamic program-
ming or Markov chain Monte Carlo (MCMC)
techniques.

• Recursive local searches schemes.

5.1 ML Change Time Sequence Estimation
Consider first an off-line problem, where the sequence
of change timeskn = k1, k2, . . . , kn is estimated from
the data sequenceyt. We will use the likelihood for
the data, given that the vector of change points is
p(yt|kn).

y1, y2, . . . , yk1 . . . ykn−1+1, . . . , ykn = yN

p
(
yk1
1

)
. . . p

(
ykn

kn−1+1

)

Repeatedly using independence ofθ in different
segments gives:

p(yt|kn) =

{
p(yt)
p(yk1

1 )
∏n=1

i=1 p
(
y

ki+1

ki+1

)
p

(
yt

kn+1

)

(9)
for n = 0 andn > 0, respectively.

Themaximum likelihood (ML) estimate is

(n̂, kn) = arg max p(yt|kn)
(n, kn)

(10)

In the Bayesian case, the change time has to be
interpreted as a random variable, and the idea is to
assign a probabilityq for a change at each time instant,
and assuming independence:

P (change at timei) = q, 0 < q < 1. (11)

Bayes’rule gives

p(kn|yt) =
p(kn)
p(yt)

p(yt|kn) (12)

The maximing argument is called themaximum a
posteriory (MAP) estimate, which is not influenced by
the scaling factorp(yt)

(n̂, kn) = arg max p(yt|kn)p(kn)
(n, kn)

= arg max p(yt|kn)qn(1 − q)t−n

(n, kn)
(13)

Note that withq = 0.5 the MAP and ML esti-
mates coincide.

5.2 Information Based Segmentation
A natural estimation approach to segmentation would
be to form a loss function. An off-line formulation for
N observations is:

VN (θn+1, kn) =
n∑

i=0

Vi(θi) (14)

Vi(θi) =
ki+1∑

t=ki+1

(yt − θi)2 (15)

wherek0 = 0 andkn+1 = N are used to define the
first and the last segments. Straightforward minimiza-
tion of Vi(θi) gives:
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(n̂, kn) = arg min VN (kn)
(n, kn)

= arg min
∑n

i=0(ki+1 − ki)σ̂i

(n, kn)
(16)

It can be noted that the loss function is
monotonously decreasing inn for all segmentation
and this motivated the use of a penalty term for the
number of change points. Penalty term occuring in
model order selection problems can be used in this
case:

• Akaike′s AIC, [10], with penalty term2n(p + 1)

• The asymptotic equivalent criteria: Akaike′s
BIC, [11], Rissanen’s Maximum Description
Length (MDL) approach, [12], and Schwartz cri-
terion, [13]. The penalty term isn(p + 1) log N .

wherep refers the number of parameters in the model.
Both AIC and BIC are based on an assumption on
a large number of data and tend to over segment the
data.

6 Experimental Results
In the next subsections we present two case studies for
change detection and segmentation in simulation, for
changes in the mean of a signal and in the parameters
of an AR model.

6.1 Change detection in the mean of a signal

The results obtained by Monte-Carlo simulation in the
case of a change in the signal mean for 1000 noise re-
alizations are presented. The signal contains a jump
from 1 to 2 value at the instant 100. The experiments
were performed for different values of the noise vari-
ance.

The results obtained forσ = 0.01 are presented
in Fig. 2, Fig. 3 and Fig. 4 under the form of the his-
togram of the change detection instants, for the meth-
ods and stopping rules used.

6.2 Change detection in parameters of an
AR model

The AR model used is a piecewise constant model of
order 1:

yt = φ1yt−1 + εt (17)

with the values of theφ1 parameter given in Table 1,
when the first 300 samples ofyt were used.
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0

200

400
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800

1000
MC Jump times − One model GMA
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1000
MC Jump times − One model CUSUM

Figure 2: Histogram of the change instants for the fil-
tering approach, with one model, GMA and CUSUM
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Figure 3: Histogram of the change instants for the
sliding windows approach, with two models, GLR-
CUSUM and DIV-CUSUM

The change detection results obtained by Monte-
Carlo simulation, for sliding windows approach and
MAP segmentation, and 0 delay in detection, are
given in Fig. 5, Fig. 6 and Fig. 7 under the form of
histogram of the change detection instants for a noise
level ofσ = 0.01.

Concerning the computation effort it is significant
for segmentation MAP and reduced for the sliding
windows and filtering approaches.

7 Conclusions

The paper gives the conceptual description of some
change detection and data segmentation methods
based on filtering, sliding windows and likelihood
techniques and presents some Monte-Carlo simula-
tion in two cases: change in the mean of a signal and
change in the parameters of an AR model. Based on
the obtained results it can be noted that the perfor-

t [1-100) [100-200) [200-300]
φ1 -0.4 0.8 -0.5

Table 1: Values ofφ1 parameter
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Figure 4: Histogram of the change instants for the seg-
mentation MAP approach
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Figure 5: Histogram of the change instants for sliding
windows approach and Brand GLR stopping test

mances of the MAP technique are superior to the other
methods investigated, but with the price of the compu-
tation effort. The performances of the first approaches
depend to a great extend of the choosing of the design
parametersν andh. The further evaluation,, in Monte
Carlo simulation, of the methods, as well as their ap-
plication in practice with real data and possibilities to
validate the results are necessary.
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