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Abstract: - Novel transform domain formulations and implementations of PCA techniques will be given. It will be 
shown that this new approach results in considerable computational and storage savings while yielding very high 
accuracy. Useful applications such as Facial and Automatic Target Recognition are given confirming the 
considerable performance improvement. 
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1. Introduction 
 
Many algorithms based on Principal Component 
Analysis (PCA) [1] have been applied to the facial 
recognition problem. Recently, a 2DPCA method was 
reported [2]. A Transform Domain Two-Dimensional 
Principal Component Analysis algorithm (TD2DPCA) 
applied to facial recognition is presented. By dealing 
with the images in the transform domain, this 
algorithm maintains the excellent high recognition 
accuracy of the recently reported methods. In addition, 
by reducing the number of coefficients representing 
the images, the TD2DPCA reduces the storage 
requirements and computational complexity by 90% 
and 50 % respectively, compared to the spatial 2DPCA 
method. Experimental results employing existing 
facial databases confirm these excellent properties [3]. 
 
Quadratic Correlation Filters (QCFs) have been used 
successfully to detect and recognize targets embedded 
in background clutter, [6], [7]. Recently, ATR using a 
Rayleigh Quotient Quadratic Correlation Filter 
(RQQCF) was proposed that formulates the class 
separation metric as a Rayleigh quotient that is 
optimized by the QCF solution, [8], [9]. Consequently, 
the means of the two classes are well separated while 
simultaneously ensuring that the variance of each class 
is small. The RQQCF technique involves the 

Eigenvalue Decomposition (EVD) or PCA of target 
and clutter autocorrelation matrices. In this paper, a 
recently proposed transform domain RQQCF 
(TDRQQCF). [10], [11], is presented. The technique 
formulates the autocorrelation matrices in the 
transform domain that enables a considerable 
reduction in computational and storage requirements 
while retaining the high recognition accuracy of the 
spatial domain RQQCF. The advantages of the scheme 
are illustrated using sample results obtained from 
experiments on Infrared (IR) imagery 
 
This paper is organized as follows:  Section 2 
describes the TD2DPCA method for facial 
recognition. Section 3 describes the TDRQQCF 
method for Automatic Target Recognition. Section 4 
presents the conclusions. 

 
2. Facial Recognition 

 
Several excellent algorithms based on Principal 
component analysis (PCA) have been developed and 
applied to facial recognition. The PCA approach is 
based on finding the vectors that best account for the 
distribution of facial images within the entire image 
space. In 1991 Turk and Pentland [1] developed the 
Eigenfaces method based on the principal component 
analysis (PCA) [4]. Recently Yang et al [2] proposed 
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the two dimensional PCA (2DPCA) technique, which 
has many advantages over the PCA method. It is 
simpler for image feature extraction, better in 
recognition rate and more efficient in computation. 
However, it is not as efficient as PCA in terms of 
storage requirements. Here, we present the transform 
domain two-dimensional principal component 
analysis, TD2DPCA, algorithm that represents the 
images in an appropriate transform domain. 
Consequently, the computational and storage 
requirements are greatly simplified as will be shown. 
 
2.1 The TD2DPCA Algorithm 
 
In the TD2DPCA method the covariance matrix S’ for 
N training images Ai of dimensions mxn (where i=1 to 
N) is formed in the transform domain using 2DPCA. 
The proposed algorithm is described as follows. 
 
Training mode: 
 
In the training mode the features of the training images 
are extracted and stored as the feature matrices, Bi’s 
(where i=1 to N). 
 
Step 1: A suitable transform (Tr), such as the 2D-DCT, 
is applied to each  m x n image Ai of the N training 
images, yielding Ti    (i=1 to N). 
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where  is the mean matrix of all the N training 
images. 
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Step 2: The transform (Tr) is chosen such that the 
significant coefficients of Ti are contained in a 
submatrix, Ti’, (upper left part of Ti) of dimension n’ x 
n’. Thus Ti’ is used to replace Ai in our algorithm. 
 
Step 3:  The covariance matrix S’ for the N training 
images is calculated as follows.          
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S’ is obtained by retaining the upper left submatrix of 
S containing its significant coefficients. S’ is of 
dimensions  n’ x n’.  
 
Step 4: A set of k eigenvectors, V= [V1 , V2 … Vk ] 
corresponding to the largest k eigenvalues of S’ is 

obtained.  The dimension of each eigenvector Vj   ( j 
=1..k) is  n’x1.   
 
Step 5:  The feature matrices BBi of the training images 
are then calculated as  
 BBi = [Y1,i ,Y2,i ,…Yk,i ]                                         (3) 
where 
Yj,i = Ti’Vj       j =1,2,….k  and   i = 1,2,..N       (4)              
The Bi   matrices are stored.                                  
 
Testing mode: 
 
In the testing mode, a facial image At is presented to 
the system to be identified. The following steps are 
followed 
 
Step 1  The same transform used in the training mode 
is applied to At which yields Tt. 
 
Step 2  The sub matrix Tt’  containing the significant 
coefficients of Tt is obtained (dimension n’ x n’ ) 
 
Step 3  The feature matrix BBt for the testing image is 
then calculated  
B t= [Y1,t ,Y2,t  ,…Yk,t ]                                         (5)              
where 
Yj,t = Tt’ Vj                        j =1,2,….k                 (6)           
 
Step 4 Distance measures, such as the Euclidean 
distances, between the feature matrix of the testing 
image and the feature matrices of the training images 
are measured. The image corresponding to the 
minimum distance is identified. 
 
2.2 Simulation Results 

 
The TD2DPCA algorithm was applied to the ORL 
database [5]. The ORL database consists of 400 
images of 40 different individuals (10 images each), 
where pose and facial expressions are varying, Fig.1. 
Two experiments, I and II, have been applied to the 
ORL dataset, where all the images are grayscale with 
112 x 92 pixels each. 
 
In experiment I, 40 images of 40 different individuals 
are used for training, and the remaining 360 images are 
used for testing. A two-dimensional discrete cosine 
transform (DCT) is applied to the N training images. 
The dimensions of T'i and the covariance matrix S’ are 
20x20. The 5 largest eigenvectors of S’ corresponding 
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to the 5 largest eigenvalues are obtained. In our 
approach k of only 5 was needed relative to k = 10 in 
other approaches, while even achieving better 
recognition accuracy. The feature matrices for all the 
training images are obtained using (3) and (4). The 
procedure for the testing mode is followed for the 360 
testing images. Results are listed in Tables 1. 
 
In experiment II, 5 images per individual are used for 
training, and the remaining 200 images are used for 
testing. The Dimensions of T’i and S’ are the same as 
in the first experiment. Results are listed in Tables 1. 
 
Table 1 shows that the proposed algorithm yields good 
recognition accuracy compared to the 2DPCA method.  
In addition, it illustrates the storage requirements, in 
terms of the dimensions of the feature matrix. It is seen 
that, for the TD2DPCA, the amount of storage is 
drastically reduced (by approximately 90%), compared 
with one of the best available algorithm, 2DPCA. Also 
it is worthwhile to note that the computational 
requirements in the training and testing modes 
compared to number of multiplications are reduced by 
a factor of 2. Similar results were obtained when the 
TD2DPCA was applied to the YALE and FERET 
databases. 
 

 
 

   Fig.1. Five samples for 3 individuals in the ORL database.  
 

3. Automatic Target Recognition (ATR) 
 
This section describes the spatial domain RQQCF 
technique briefly for the sake of completeness. This is 
followed by a description of the TDRQQCF 
technique for an ATR application. In the following 
subsections, quantities in lowercase with an 
underscore are vectors, and quantities in upper case 
are matrices. Quantities in the transform domain are 
distinguished by a‘t’ in the subscript. 
 

3.1 The RQQCF Technique 
 
In the RQQCF technique, the QCF coefficient matrix 
T is assumed to take the form, 

∑
=

=
n
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T
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where, iw , ni ≤≤1 , form an orthonormal basis set. 
The objective of the technique is to determine these 
basis functions such that the separation between the 
two classes, say X and Y, is maximized. The output 
of the QCF to an input vector u is given by, 

uTuT=ϕ  (8) 
The objective is to maximize the ratio, 
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where, is the expectation operator over the j{.}jE th 
class, and and are the correlation matrices for 
targets and clutter respectively. Taking the derivative 
of (9) with respect to

xR yR

iw , we get 

iiiyxyx wwRRRR λ=−+ − )()( 1  (10) 
Let, 

)()( 1
yxyx RRRRA −+= −  (11) 

Thus  is an eigenvector of A with eigenvalueiw iλ . It 
should be noted that )(wJ is in the form of a Rayleigh 
Quotient, which is maximized by the dominant 
eigenvector of A .  
 
In practice, M target and M clutter training sub-
images, referred to as chips, are obtained from IR 
imagery. Each chip, having dimensions n x n , is 
converted into a 1-D vector of dimensions n x 1 by 
concatenating its columns. Target and clutter training 
sets of size n x M each, are obtained by placing the 
respective vectors in matrices. The n x n 
autocorrelation matrices of the target and clutter sets, 

 and  are computed, and used to obtain A 
according to (10). As a result, the eigenvalues of A 
vary from –1 to +1. The dominant eigenvalues for 
clutter,

xR yR

ciλ , are close to or equal to -1 and those for 
targets, tiλ , are close to or equal to +1. The RQQCF 
coefficients,  and , are mapped to the 
corresponding eigenvalues. The spatial domain 

ciw tiw
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RQQCF is then correlated with an input scene to 
obtain a correlation surface from which the existence 
and location of the target is deduced. An efficient 
method to perform the correlation is discussed in the 
original paper, [8]. In the TDRQQCF though, to 
identify a data point as target or clutter, the sum of the 
absolute value of the k inner products of a data point 
with  and , ptiw ciw t and pc, are calculated. If pt > pc, 
the data point is identified as a target. Otherwise, it is 
identified as clutter. We will refer to the absolute 
values of these inner products as the ‘response’ of that 
particular data point. 
 
3.2 The Transform Domain RQQCF 
(TDRQQCF) 
 
The RQQCF technique operates on spatial domain 
data. Furthermore, each two-dimensional data chip in 
the spatial domain is converted into a one-
dimensional vector by the lexicographical ordering of 
the columns of the chip. This leads to two interrelated 
issues. Firstly, the spatial structure in the two-
dimensional chip is lost by converting it into a vector 
as described above. Secondly, the dimensionality of 
the system is increased considerably. One way to 
tackle both these issues simultaneously is to 
synthesize the RQQCF in the transform or frequency 
domain. Transforms capture the spatial correlation in 
images, and de-correlate the pixels. Consequently, if 
the transforms are appropriately selected, they 
compact the energy in the image in relatively few 
coefficients. Thus spatial domain data is transformed 
into an efficient and compact representation. 
 
The TDRQQCF technique proceeds as follows: 
1. Each target chip, , and clutter chip, , is first 
transformed using the Discrete Cosine Transform 
(DCT) to obtain and . It is seen that most of 
the energy in and  is concentrated in the top 
left corner. In addition, the distribution of energy for 
targets and clutter differ from each other. 

xC yC

xtC ytC

xtC ytC

2. Each and  is truncated to an appropriate size 
and converted to a one-dimensional vector by 
lexicographically ordering the columns. Thus, vectors 
of reduced dimensionality compared to the spatial 
domain case, are obtained. In addition, these vectors 
are very efficient representations of the spatial 
domain chips. 

xtC ytC

3. The autocorrelation matrices, and are 
computed, and used to obtain  according to (5). We 
note that since the dimensions of the target and clutter 
vectors are much smaller than in the spatial domain 
case, the dimensionality of the autocorrelation 
matrices, and , and therefore , are 
correspondingly reduced. 

xtR ytR

tA

xtR ytR tA

4. The EVD is performed on  to obtain the QCF 
coefficients. The QCF coefficients thus obtained are 
in the DCT domain.  

tA

 
In addition to reduced dimensionality, there is another 
advantage to the TDRQQCF. Often, in practice, in 
applications of techniques such as the RQQCF, one 
encounters low rank matrices, which give rise to 
numerical problems. This is because the number of 
data points available for training is much smaller than 
the dimensionality of each data point. On the other 
hand, TDRQQCF overcomes this problem by 
reducing the dimensionality of the data points. 
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Fig. 2 Sample frame 

3.3   Simulation Results 
 
The TDRQQCF was tested on various Infrared video 
sequences provided by Lockheed Martin, Missile and 
Fire Control, (LMMFC). Sample results are presented 
from one video sequence to illustrate the performance 
of the proposed technique. Figure 2 shows sample 
frame from the video. The video has 778 frames from 
which 763 target and clutter chips are extracted. The 
size of each chip is 16x16, i.e., n =16 and n=256. 
Table 2 shows the average energy in sub-images of 
different sizes, retaining the low spatial frequency 
region, of the transformed 16x16 chips. From this 
table, 85% to 95% of the energy is concentrated in 
25% of the transformed chips. Also, the target energy 
is slightly more compressed in the transform domain. 
In addition, the energy distribution for target chips is 
different from that for clutter chips. At this point, if 
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no truncation is performed, and the original RQQCF 
technique is applied, the same set of eigenvalues as in 
the case of the spatial domain RQQCF is obtained. 
For example, twelve dominant eigenvalues (six 
positive and six negative) for both cases are listed 
below. 

iλ (Spatial domain) 
-0.9975   -0.9641   -0.9559   -0.9378   -0.9283   -0.9221    
0.9934    0.9938    0.9962    0.9971    0.9981    0.9985 

iλ (DCT domain) 
-0.9975   -0.9641   -0.9559   -0.9378   -0.9283   -0.9221    
0.9934    0.9938    0.9962    0.9971    0.9981    0.9985 
 
Sample results are presented for the case when the 
transformed target and clutter chips, and  
respectively, are truncated to a 8x8 size. This means 
that 

xtC ytC

n =8 and n=64. The twelve dominant 
eigenvalues (six positive and six negative) among the 
64 are listed below.  
 

iλ (DCT domain) 
-0.9930   -0.8648   -0.7825   -0.7642   -0.7472   -0.6427    
0.9642    0.9722    0.9746    0.9878    0.9943    0.9952 
 
Figure 2 shows the response of representative target 
and clutter vectors versus the index of the 
eigenvectors in the spatial domain. Figure 3 shows the 
response of the same representative target and clutter 
vectors versus the index of the eigenvectors in the 
DCT domain. A close look at the plots reveals the 
following: i) The magnitude of each of the responses, 
inner products, in the DCT domain is much higher 
than the corresponding magnitude in the spatial 
domain, ii) The magnitude of (pt - pc ) is also much 
higher in the DCT domain than in the spatial domain. 
In other words, separation between targets and clutter 
is also much higher in the DCT domain than in the 
spatial domain. This means that the requirements on 
the threshold to decide if a chip is target or clutter can 
be relaxed considerably. Although the plots shown are 
for a randomly chosen data point from the video, it 
was found that the TDRQQCF consistently produces 
much larger responses and target-clutter separation 
than the spatial domain RQQCF for all data points. 
Similar results are obtained for other test videos as 
well. This is achieved while maintaining the excellent 
recognition accuracy of the spatial domain RQQCF - 
all target and clutter chips in the video are identified 
correctly. 
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Fig. 2: Response of (a) a representative target vector, and 
(b) a representative clutter vector, versus the index of the 

dominant eigenvectors (spatial domain) 
 

The RQQCF involves the inversion and Eigenvalue 
Decomposition (EVD) of large matrices. The 
computational complexity for each of these operations 
is of the order O(n3), where ‘n’ is the dimensionality 
of the autocorrelation matrices. On the other hand, by 
using the TDRQQCF, where compressed 
representations are used for target and clutter, large 
savings are obtained. Table 3 compares the spatial 
domain RQQCF with the TDRQQCF in terms of 
storage and computational complexity. The 
computational complexity for the 2j x 2j DCT is 
approximately 2j x (2j+1- j - 2), [12]. From Table 2, it 
can be easily shown that the overall computational 
complexity including computing the DCT and the 
storage requirements of the TDRQQCF are still much 
smaller than the spatial domain RQQCF. In addition, 
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for the TDRQQCF, the storage and computational 
savings increase as the chip size increases. 
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Fig.3 Response of (a) a representative target vector, and (b) 

a representative clutter vector, versus the index of the 
dominant eigenvectors (DCT domain) 

 
4. Conclusion: 
 
Transform domain formulations, namely, the 
TD2DPCA and the TDRQQCF, were given. It was 
shown using sample results from useful applications 
such as Facial and Automatic Target Recognition that 
these formulations result in considerable 
computational and storage savings while yielding 
very high accuracy.  
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Experimen

 

 
 

Experimen
 
 

t I: ORL database t II: ORL database 

 TD2DPCA 2DPCA TD2DPCA 2DPCA 

Recognition 
accuracy 73.61 % 72.77 % 92% 91% 

Dimensions of 
feature matrix 

per image 
 

 
(20x5) 

 
(112x10) 

 
(20x5) 

 
(112x10) 

Storage 
requirements for 

N  images 
 

 
(20x5)xN 

 
(112x10)xN 

 
(20x5)xN 

 
(112x10)xN 

Table 1:  Recognition accuracy,  Dimensions of feature matrix and number of computations required 
for experiments  I , II. on ORL database.  

 

Avg. Energy 
in → 8x8 9x9 10x10 11x11 12x12 13x13 14x14 15x15 16x16 

Target chips 95.3762 96.409 97.35 97.9219 98.4602 98.8663 99.2888 99.5657 100 

Clutter chips 87.2741 89.2236 90.841 92.2614 93.6029 94.8183 96.5067 98.578 100 

 
Table 2: Avg. energy in different transformed and truncated matrices of the target and clutter sets 

 

 RQQCF TDRQQCF % of savings using 
TDRQQCF*

No. of storage locations for 
chips 2 x M x n x n  2 x M x k x k , < 

 
k

n
75% 

No. of storage locations for 
autocorrelation matrices 2 x x  n n 2 x k x  k 93.75% 

Complexity of Inversion** O(n3) O(k3) 98%***

Complexity of EVD** O(n3) O(k3) 98%***

* For M=763, n=256, k=64; ** # of multiplications; ***approximately 

Table 3: Storage and computational complexity of the spatial domain RQQCF versus that for the 
TDRQQCF, [12]. 
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