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Abstract:We consider a plate infinite in extent, bounded by two parallel planes, filled by a heat-conducting piezoe-
lectric material with hexagonal symmetry. It is completely coated by electrodes which are infinitesimally thin, so
that all their mechanical effects may be ignored. On the lower face the displacement is prescribed, as when e.g. the
panel is welded above a fixed rigid body, and on the upper face the stress vanishes. We study quasi-static processes
controlled by a thermic exposure on the upper plane, which varies very slowly with the time, e.g. solar exposure.
The difference of electric potential between the two bounding planes is computed in terms of the temperature on
the upper face.
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1 Introduction
The constitutive equations for the mechanical Cau-
chy stress tensort , electric displacement vectorD,
heat flux vectorq, and specific entropyη in a linear
thermo piezoelastic material write as

tp = cpq Sq − eip Ei − βp T , (1)

Di = eiq Sq + εik Ei + ω̃i T , (2)

qi = κij T, j + κE
ij Ej , (3)

η = η0 +
γ

T0
T +

1
ρo

(βp Sp + ω̃i Ei) , (4)

with p, q = 1, 2, . . . , 6, i, j = 1, 2, 3,
Ei = − ∂φ

∂xi
electric displacement vector,

φ electrostatic potential,
T incremental absolute temperature.
The above linear constitutive equations are speci-

fied in terms of the material constantscpq = elastic
moduli, eikl = piezoelectric moduli,βkl = thermic
stress moduli,κE

kl = dielectric susceptibility,ω̃k =
pyroelectric polarizability,εkl = permittivity moduli,
κkl = Fourier coefficients,γ = heat capacity,ηo =
entropy at the natural state,To = absolute tempera-
ture at the natural state,ρo = mass-density at the na-
tural state.

The local equations corresponding to the(i) ba-
lance law of linear momentum,(ii) Maxwell’s equa-
tion, and(iii) balance law of conservation of energy,
respectively write as

tkl, k + ρo(fl − ül) = 0 ,

Dk, k = qe , ρo θ η̇ − qk, k = ρo h , (5)

where

fl is the body force density,

qe is the free (or prescribed) body charge density,

h is the heat source per unit mass.

For fl = qe = h = 0, the above balance equa-
tions yield the following equilibrium equations

tkl, k = 0 , Dk, k = 0 , qk, k = 0 . (6)

Here we consider a material with hexagonal symmetry
in the crystal classC6 ν = 6mm.. The polarized fer-
roelectric ceramics have the symmetry of such a class.

Choosingx3 in the poling direction, the consti-
tutive equations (1), (2) of stress and electric displa-
cement become (see ([1], p.58)

t1 = c11u1, 1 + c12u2, 2 + c13u3, 3 + e31ϕ, 3 − β1T

t2 = c12u1, 1 + c11u2, 2 + c13u3, 3 + e31ϕ, 3 − β2T

t3 = c13u1, 1 + c13u2, 2 + c33u3, 3 + e33ϕ, 3 − β3 T

t4 = c44 (u3, 1 + u1, 3) + e15 ϕ, 2

t5 = c44 (u3, 1 + u1, 3) + e15 ϕ, 1 (7)

t6 = c66 (u1, 2 + u2, 1)
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D1 = e15u3, 1 + e15u1, 3 − ε11ϕ, 1 + ω̃1T

D2 = e15 (u3, 2 + u2, 3) − ε11ϕ, 2 + ω̃2T

D3 = e31u1, 1 + e31u2, 2 + e33 u3, 3 − ε33ϕ, 3 + ω̃3T

Hence the equilibrium field equations for a body for-
med with such a material write as

−β21 T, 2 + c11u1, 11 + (c12 + c66)u2, 12

+(c13 + c44)u3, 13 + c66u1, 22 + c44u1, 33 (8)

+(e31 + e15)ϕ, 13 = 0

−β22 T, 2 + c66u2, 11 + (c66 + c12)u1, 12

+ c11u2, 22 + (c13 + c44)u3, 23 + c44u2, 33 (9)

+(e31 + e15)ϕ, 23 = 0

−β23 T, 2 + c44u3, 11 + (c44 + c13)u1, 31

+ c44u3, 22 + (c44 + c13)u2, 23 + c33u3, 33 + (10)

+ e15ϕ, 11 + e15ϕ, 22 + e33ϕ, 33 = 0

e15u3, 11 + (e15 + e31)u1, 13 +
+ e15u3, 22 + (e15 + e31)u2, 32 +

+ e15u3, 22 + e33u3, 33 +
+ ω̃l T, l − ε11ϕ, 11 − ε11ϕ, 22 − ε33ϕ, 33 = 0 (11)

−κll T, ll + κE
ll ϕ, ll = 0 . (12)

2 Quasi-Static Problems

Here we consider a plateP, infinite in extent and
bounded by two parallel planesx1 = ±h. The plate is
filled by a heat-conducting piezoelectric material with
hexagonal symmetry, so that some quartzs are inclu-
ded. The panel is completely coated by infinitesimally
thin electrodes, so that all their mechanical effects can
be ignored.

In order to consider very slow processes forP
depending on the thermic exposure on its upper side
x1 = h, we consider a one-parameter family

T = T (x1, τ), ϕ = ϕ(x1, τ), uk = uk(x1, τ),
(13)

of solutions of the equilibrium equations (8)-(12),
which are determined by the boundary data on the
two bounding planes. The triple (13) represents a one-
parameter family of equilibrium states superposed to
the reference state. Having as objective the study of
the upper exposure to the sun ofP , which is settled
to a rigid underlying body, the boundary conditions
must include the prescriptions of temperature and of

vanishing normal stress on the upper bounding plane
and the condition of assigned displacement on the lo-
wer bounding plane. Hence we will consider homo-
geneousτ -dependent boundary conditions such as

• temperature prescribed atx1 = h

• electric potential prescribed (e.g. vanishing) at
x1 = h

• displacement prescribed (e.g. vanishing) atx1 =
−h

• stress prescribed (e.g., vanishing) atx1 = h

• surface free charge prescribed (e.g. vanishing) at
x1 = −h

We assume that the prescriptions on the boundary
are functions of a parameterτ which depends slowly
on time:

τ = τ(t), |τ ′(t)| small

We refer to equations (8)-(12) as thequasi-static
equationsand to a solution (13) of the equations (8)-
(12), joined with a specified set of boundary condi-
tions, as aquasi-static process.

2.1 The boundary-value problem modeling
thermic exposures

2.1.1 Statement of the problem

Referring only to thickness static processes (13), the
equilibrium field equations (8)- (12) reduce to

c11u1, 11 = 0 (14)

c66u2, 11 = 0 (15)

c44u3, 11 + e15ϕ, 11 = 0 (16)

e15u3, 11 + ω̃1 T, 1 − ε11ϕ, 11 = 0 (17)

−κ11 T, 11 + κE
11 ϕ, 11 = 0 . (18)

Next we formulate the boundary-value problem
(briefly b-v problem) forP, which model equilibrium
under sun exposure:

To find the particular solution (13) of the
equilibrium field equations (14)-(18), which sa-
tisfies the ten boundary conditions listed below,
where Θ(τ), Φ(τ),Πi(τ), Υi(τ), ∆(τ), Ω(τ) are
given smooth functions ofτ .

1. T (h, τ) = Θ(τ)

2. ϕ(h, τ) = Φ(τ)
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3. t5(h, τ) = Π3(τ), t1(h, τ) = Π1(τ),
t6(h, τ) = Π2(τ)

4. ui(−h, τ) = Υi(τ), (i = 1, 2, 3)

5. −D1(−h, τ) = ∆(τ)

6. −q1(−h, τ) = Ω(τ)

2.1.2 General solution of the problem

The general solution to equations (14)-(18) is given
by

T (x) = T1 eax + T2 (19)

ϕ(x) = KT1 eax + F1x + F2 (20)

u1(x1) = U11x1 + U12 (21)

u2(x1) = U21x1 + U22 (22)

u3(x) = −EKT1 eax + U31x + U32 (23)

whereE := e15/c44, K := κ11/κ
E
11,

a := ω̃1

(
K(ε11 + e2

15/c44)
)−1

, and

T1, T2, F1, F2, Uα1, Uα2 (α = 1, 2, 3)

are arbitrarily chosen smooth functions ofτ .

2.1.3 Temperature and electric potential solution
to the b-v problem

We split the problem above by firstly solving the three
equations (16)–(18) subject to the six boundary con-
ditions

1. T (h, τ) = Θ(τ)

2. ϕ(h, τ) = Φ(τ)

3. t5(h, τ) = Π3(τ)

4. u3(−h, τ) = Υ3(τ)

5. −D1(−h, τ) = ∆(τ)

6. −q1(−h, τ) = Ω(τ)

Note that, by the above equations, the 5-thand 6-th
boundary condition above respectively becomes

−e15u3, 1 +ε11ϕ, 1− ω̃1T = −ω̃1T2−e15U31 +ε11F1

(24)
and

−κE
11KT, 1+κE

11ϕ, 1 = κE
11Kaeax(1−K)T1 +κE

11F1

(25)

Now by imposing these boundary conditions to
the general solution and using the constitutive equa-
tions, we find the following relations:

T1 eah + T2 = Θ (26)

K T1 eah + F1 h + F2 = Φ (27)

c44(U31 + EF1) = Π3 (28)

−EKT1 e−ah − U31h + U32 = Υ3 (29)

−ω̃1T2 − e15U31 + ε11F1 = ∆ (30)

κE
11Kaeax(1 − K)T1 + κE

11F1 = Ω (31)

By solving the above system of equations in the unk-
nown function ofτ ,

(T1, T2, F1, F2, U3 1, U3 2) ,

one finds expressions for the coefficients (which are
very long and complex; but we need them in a sim-
ple case, see below). By replacing them in the general
solution one then obtains the particular solution cor-
responding to the selected boundary conditions.

As we aim to exhibit the difference of electric
potential between the two faces of the piezoelectric
panelP when it is (i) free from stress atx1 = h
where(ii) ϕ vanishes since the electrode is connec-
ted with the ground,(iii) welded to a rigid body at
x1 = −h (iv − v) with zero normal electric displa-
cement and heat conduction, we choose the particular
solution corresponding to very simple boundary data:

Φ = 0, Υ3 = 0, Π3 = 0, Ω = 0, ∆ = 0.

For the temperature and electric potential within the
panel, which are solution to the considered boundary-
value problem, we obtain the expressions

T (x1, τ) = [
ω̃1

A
(ea(x1−h) − 1) + 1]Θ (32)

ϕ(x1, τ) = K
ω̃1

A
[ea(x1−h)+a(1−K)x1−1−ha(1−K)]Θ

(33)
In particular (32, (33) respectively give

T (h, τ) = Θ

T (−h, τ) = [
ω̃1

A
(e−2ah − 1) + 1]Θ (34)

ϕ(h, τ) = 0

ϕ(−h, τ) = K
ω̃1

A
[e−2ah − 2ah(1 − K) − 1]Θ (35)

Thus

Proc. of the 3rd IASME/WSEAS Int. Conf. on Energy, Environment, Ecosystems and Sustainable Development, Agios Nikolaos, Greece, July 24-26, 2007       596



ϕ(−h, τ) − ϕ(h, τ) = BΘ, (36)

with B := K ω̃1
A [e−2ah −2ah(1−K)−1] a material

constant.
Equality (36) shows that the difference of electric

potential between the bounding planes of the panel is
proportional to the temperature on the upper bounding
plane ofP, which is due to the sun exposure.

Now we can solve the remaining two equations
(14)-(15) joined to the other four boundary data.

2.1.4 B-v problem for a plate perpendicular to
the poling direction

Now let us consider a plate filled with the afore-
mentioned material and with the poling directionx3

perpendicular to the plane of the plate. Referring only
to thickness static processes of the form

T = T (x3) , ϕ = ϕ(x3) , ui = ui(x3) , (37)

the equilibrium field equations (8)-(12) reduce to

c44u1, 33 = 0 (38)

c44u2, 33 = 0 (39)

c33u3, 33 + e33ϕ, 33 = 0 (40)

e33u3, 33 + ω̃3 T, 3 − ε33ϕ, 33 = 0 (41)

−κ33 T, 33 + κE
33 ϕ, 33 = 0 . (42)

We note that by the replacements

c44 → c11 (43)

c44 → c66 (44)

(c33, e33) → (c44, e15) (45)

(e33, ω̃3, ε33) → (e15, ω̃1, ε11) (46)

(κ33, κE
33) → (κ11, κE

11) , (47)

(48)

made in the respective lines, these equations become
equations (14)-(18); hence all the results established
in the previous sections for thickness solutions depen-
ding onx1 can be adapted for the present case.

3 Conclusion
The results explained in the previous sections (36)
show that the thermic exposure on the upper plane
in certain piezoelectric panels generates a difference
of electric potential (36) between the two bounding
planes which is proportional to the boundary tempe-
rature.
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