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Abstract�- Global Climate Model, CGCM2 predicted that annual average temperature of northeastern China will rise 
about 3� in 2050 year, and about 6� in 2100 year, annual precipitation will change. To explore the response of 
Northeastern forests to the climate warming scenarios, Logistic regression models were developed to analyze the 
relationships between seven constructive species of northeast forest (Larix gmelinii, Pinus koraiensis, Picea jezoensis, 
Abies nephrolepis, Larix olgensis var. changpaiensis, Quercus mongolica, Betula platyphylla) and 11 environmental 
variables (annual average temperature, annual precipitation, altitude, slope, aspect, soil clay, soil silty, soil sand, soil 
depth, soil organic matter, soil total nitrogen). The predicted distributions of the seven species under the two global 
warming scenarios were derived on the logistic regression models. The result showed that in 2050, the coverage of all 
species would decrease in different degree, respectively. The Picea jezoensis, Abies nephrolepis would disappear. in 
2100, another two species, Larix gmelinii, Pinus koraiensis would disappear. In whole, the climate warming could 
have great impact on the constructive species of northeast forest.  
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1 Introduction 
Global annual temperature has increased by 
approximately 0.6� during the past 100 years, and 
will continue to increase in the next 100 years [1]. 
Climate is the most dominant factor affecting 
species distribution across broad spatial scales [2]. 
Increasing attention has been paid to predict 
potential tree species distribution under climate 
warming [3~5].   

The response of tree species distribution to 
climate warming is complex, varying by regions 
due to factors such as current species composition, 
site conditions and local microclimate. Results from 
paleontology research and observation data in the 
past revealed the northward or upward moving 
trend of most tree species [6~8] in response to 
climate warming.  

Northeastern China is the most important forest 
region of China. According to the results of 

CGCM2 model, the climate here would raise 
remarkably. What effects of the warming climate on 
the potential distribution of the constructive species? 
In this paper, we developed prediction models for 
the seven constructive species for the entire 
Northeastern China. The models are based on the 
current distributions of the seven species and their 
relationships with environmental variables. We will 
then plug the warming climate scenario into the 
prediction models to predict potential distributions 
of the seven tree species under the warming climate. 

2 Problem Formulation 

2.1 Study area  

Northeastern China is a large region from 115°05′E 
38°40′ N in the southwest to 135°02′E 53°30′N in 
the northeast. The annual mean temperature varies 
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from 11.26� in the southeast to –6.87� in the 
northwest Great Xing’an Mountains, and the annual 
precipitation from more than 880 mm in the 
southeast to less than 219 mm in the northwest. The 
great variations of the distribution of solar energy 
and available water are the primary causes of 
current vegetation distribution and are the major 
driving forces in the responses of vegetation 
distribution to regional climatic change. The 
general pattern of vegetation in the region is 
deciduous broad-leaved forests in the warm and 
humid southeast, coniferous forests in the cold 
northwest, temperate grasslands in the dry west, and 
coniferous / broad-leaved mixed forest in humid 
east, with a vast transition area of central plains 
where historical vegetation cover has long been 
converted into agriculture land use[9].  

2.2 Spatial data sets 

Seven constructive species’ current distributions 
(presence/absence) were derived from the 1: 1,000, 
000 vegetation atlas of China [10]. The terrain data 
(DEM, Slope and Aspect) are derived form the 1: 
250 000 contour map and reference point map of 
Northeastern China. The soil data were derived 
from the 1: 1,000, 000 soil map, supplied by 
Institute of Soil Science, CAS[11]. The cliamte data 
were established on the recordings of 62 major 
weather stations for the past three decades and the 
predictions from Canadian Centre for Climate 
Modeling and Analysis (CCCMA). The cell size of 
all maps is at 100 m × 100 m (one ha).  

2.3 Modeling approaches 

Logistic regression model is a special general linear 
model that predicts the probability of a bivariate 
response variable based on a variety of explanatory 
variables [12]. It can be applied in large region like 
entire Northeastern China, and can be 
parameterized in a relatively easy way. Therefore, it 

has been widely applied in ecological research, and 
has been used for risk assessment [13], habitat 
evaluations [14], and the prediction of vegetation 
distribution [12,15].  

In this paper, logistic regression models were 
developed to analyze the relationships between 
seven constructive species of northeast forest (Larix 
gmelinii, Pinus koraiensis, Picea jezoensis, Abies 
nephrolepis, Larix olgensis var. changpaiensis, 
Quercus mongolica, Betula platyphylla) and 11 
environmental variables (annual average 
temperature, annual precipitation, altitude, slope, 
aspect, soil clay, soil silty, soil sand, soil depth, soil 
organization material, soil total nitrogen).  

There are 5 indices for assess the prediction 
precision, percentage of correct (PerC,), sensitivity, 
specificity, false positive rate (FPR), and false 
negative rate (FNR)� 

Percentage of Correct (PerC) represents the total 
prediction accuracy. Sensitivity represents model’s 
estimation ability for occurrence. Specificity 
represents for nonoccurrence. High values of these 
indices represent the high precision of the logistic 
regression models. FPR and FNR represent the 
error of the prediction. Low values of these indices 
represent the high precision of the models [16].  
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In the above equations, a11 represents true positive 
or presence, a12, represents false positive or presence, 
a21 represents false negative or absence, and a22 
represents true negative or absence.  A1· is the sum of 
a11 and a12, A2 is the sum of a21 and a22, A·1 is the sum 
of a11 and a21, A·2 is the sum of a12 and a22, and Asum is 
the sum of A1· and A2· 

 

3 Problem Solution 

3.1 The coefficients of logistic regression models 
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Table 1 logistic regression analysis results � coefficients and Goodness of fit 
  Larix 

gmelinii 
Pinus 

koraiensis 
Picea 

jezoensis 
Abies 

nephrolepis 
Larix olgensis 

var. 
changpaiensis

Quercus 
mongolica 

Betula 
platyphylla 

Intercept -4.80E-01* -1.03E+01* -1.29E+01* -1.27E+01* -1.01E+01* -1.08E+00* -1.05E+00*
Altitude 5.90E-04* -2.60E-03* -4.02E-03* -3.90E-03* 1.90E-04* -2.84E-03* 1.96E-04*
Precipitation -6.62E-03* 1.74E-02* 2.14E-02* 2.76E-02* 1.45E-02* 3.11E-03* 4.75E-04*
Slope 3.90E-02* 6.68E-03* 2.33E-02* 2.37E-02* -4.98E-02* 1.77E-02* -2.19E-02*
Temperature -8.80E-01* -5.10E-01* -1.07E+00* -1.03E+00* 3.07E-01* ―― -1.34E-01*
Trasp-aspect -3.24E-02* 9.44E-02* ―― ―― -8.76E-02* ―― 3.54E-02*
Soil Clay -4.88E-03* -2.21E-02* 5.25E-02* 5.82E-02* ―― ―― 1.99E-02*
Soil Depth 1.62E-03* 1.22E-03* -8.19E-03* -7.17E-03* 5.92E-03* -7.63E-03* ――
Soil Om 2.98E-03* -2.09E-02* 6.36E-02* 8.61E-02* ―― -1.91E-02* 4.74E-02*
Soil Sand 6.80E-03* -7.07E-03* ―― ―― -2.77E-02* -1.31E-03* -2.05E-02*
Soil Silty ―― ―― -1.29E-02* -1.50E-02* -6.16E-03* 2.62E-02* ――
Soil Tn 5.63E-01* ―― -1.68E+00* -2.16E+00* -2.45E+00* ―― -1.84E+00*
* represents the regression coefficient is significant, p < 0.001 
From table 1, we could see that temperature is the main 
factors controlling the distribution of all species, except 
for Quercus mongolica. All species, except the Larix 
olgensis var. changpaiensis, were negative affected by 
temperature. All species, except for Larix gmelinii, 
were positive affected by precipitation. Because the 
temperature and precipitation were high in southeastern 
and low in northwest, we could induce from the 
coefficients that Larix gmelinii was distributed in the 

northwest mountain area, where is low temperature and 
rainless, and Larix olgensis var. changpaiensis was 
distributed in the southeast mountain area, where is 
high temperature and rainy. Pinus koraiensis, Picea 
jezoensis and Abies nephrolepis were distributed in the 
east mountain, where are moderate temperature and 
rainy. The distributions of Quercus mongolica and 
Betula platyphylla were not as regular as conifer 
species.  

3.2 prediction precision 

Table 2 the predicted precision of logistic regression model 
 PerC Sensitivity Specificity FPR FNR 
Larix gmelinii 88.00 89.41 87.22 32.38 3.50 
Pinus koraiensis 75.27 82.37 74.95 87.06 1.05 
Picea jezoensis 77.82 87.45 77.62 92.73 0.32 
Abies nephrolepis 78.13 85.30 77.99 93.09 0.36 
Larix olgensis var. changpaiensis 67.42 97.70 66.95 95.56 0.05 
average of conifer species 77.33 88.45 76.95 80.16 1.06 
Quercus mongolica 63.49 74.04 58.47 54.09 17.45 
Betula platyphylla 55.11 64.82 53.15 78.17 11.79 
average of broadleaf species 59.30 69.43 55.81 66.13 14.62 

From Table 2, we could see that, the PerC, Sensitivity 
and Specificity are higher for conifer species than for 
broadleaf species. FNR are lower for conifer than for 
broadleaf species. The results show that the logistic 
regression models of conifer species have higher 

prediction precision than that of the broadleaf species. 
The causation maybe that, the conifer species are 
commonly the zonal plants, and their habitats are 
characteristic. The broadleaf species are the dispersed 
species. The characters of their habitats are not 
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obviously as that of the conifer species.  
FPR are higher for all species. The causation maybe 

that, the logistic regression model does not considering 
the effects of ecological processes and the human 

activities on the distribution of species. Therefore, the 
predicted areas of all species are lager than their 
observed areas.  

 

Fig. 1 the potential distribution of constructive species under climate warming 

3.3 prediction map of seven species 

Using the results of logistic regression model, we could 

map the distribution of the seven species in 2050 and 
2100 year under climate warming. From Fig.1, we 
could see that, the occurrence probabilities of Larix 
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gmelinii, Pinus koraiensis, Picea jezoensis and Abies 
nephrolepis decrease greatly in 2050 and nearly 
disappear in 2100.  

The occurrence probabilities of Larix olgensis var. 

changpaiensis and Betula platyphylla decrease greatly 
in 2050, but increase a little in 2100. The occurrence 
probability of Quercus mongolica does not change too 
much in 2050 and 2100.  

 

Continue Fig. 1  

4 Conclusion 
From the results of this analysis, we could see that the 
south boundary of Larix gmelinii and Pinus koraiensis 
shift northward greatly in 2050. Their distribution areas 
disappear in 2100 means that their south boundary have 
shift out of northeastern China. The Changes of Picea 
jezoensis and Abies nephrolepis are even more sharply. 
Their south boundaries migrate out of the study area 
early in 2050. Conifer species, Larix olgensis var. 

changpaiensis alone, would exist under the climate 
changing. But the area of high occurrence probability 
decrease acutely. There have no obviously northward 
shift of Quercus mongolica. Betula platyphylla is most 
special, which increase in the occurrence probability in 
2100.  
  The viewpoint we need to point out is that the 
predicted distribution of constructive species are their 
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potential distribution, rather than their actual 
distribution, for logistic regression model do not 
considering many other factors which also have effects 
on the distribution of tree species.  

In spite of the shortcoming of itself, logistic 
regression models still seem to be a robust tool for 
predicting the potential distribution of tree species at 
the regional scale. The results of this research showed 
that future climate changing would have great effects 
on the distribution of constructive species of northeast 
forests. The prediction results provide regional view 
and reference points for revisiting current forest 
harvesting and afforestation plan that has not 
considered the effects of climate warming.  
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