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Abstract: The over-exploitation of subsurface water, the non-rational use of fertilizers from the farmers and 

the continuous use of surface water conduce in the deterioration of the quality of fresh water that is used for 

potable and irrigation purposes. A declining quality of marine sediment is also reported in coastal regions due 

to a large number of uncontrolled pollutant sources. In the present work the mathematics of groundwater 

management are presented and, based on these, a developed methodology was applied to a heavily cultivated 

coastal aquifer in Korithian Gulf. First, the physical system is simulated using a 3-D numerical simulator for 

groundwater flow and mass transport and specifically in this work the Princeton Transport Code (PTC), was 

employed. Second, the numerical simulator is combined with the Outer Approximation Method in order to 

determine the optimal design of a groundwater management problem, related to the movement of the nitrate 

plume. 
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1   Introduction 
In the early ’50s numerical simulation models were 

presented in an attempt to obtain solutions for large 

problems of oil reservoirs. This effort was later 

expanded to address subsurface management 

problems related to groundwater ‘quality’ and 

“quantity”. These models couple and solve 

simultaneously the governing equations of 

groundwater flow, mass transport and chemical 

reaction. 

The main objective of such models is to “predict” 

the groundwater movement and the contaminant 

transport through a subsurface system. In many cases 

these problems are very complicated and difficult to 

describe mathematically.  The accurate description of 

the physical system, necessary for an optimal 

prediction to be obtained, requires a large volume of 

data. In addition, analytical solutions cannot be used 

due to the inhomogeneities, irregularities and 

uncertainties of the physical system. Therefore, 

numerical simulation must be employed.  In the past, 

several numerical simulator models of groundwater 

flow and transport have been presented based on the 

theories of finite elements and finite differences 

(Sutra, Modflow, MD3d, PTC, FEMWATER, etc). 

In the early ’70s groundwater numerical 

simulation models were combined with optimization 

techniques [1] and became a powerful tool for solving 

groundwater management problems. The motivation 

of the attempt to combine simulation with 

optimization was the desire to determine the ‘best’ 

solution (among several feasible solutions) that could 

be applied to a groundwater management problem. As 

indicated by Gorelick et al. [2], simulation models are 

often inadequate because the problems of aquifer 

management do not involve prediction alone. Rather, 

they involve both simulation, for prediction, and 

optimization. The role of optimization is to determine 

the best operating policy for a particular objective, 

taking into account the restrictions that exist on a site-

specific basis. The combination of groundwater 

simulation and optimization techniques can be 

thought of as organized and methodical trial-and-error 

methods. However, in contrast to most trial-and-error 

approaches, the objective, constraints and solution 

search strategies are clearly specified. An 

optimization problem is formulated mathematically as 

a problem that minimizes or maximizes an objective 

function, subject to a set of constraints that are based 

on physical, economic, technical or social restrictions. 

In the present work, first the mathematics of the 

groundwater management problem are presented 

followed by the proposed optimization technique. 

The numerical simulation model of the area of 

interest, where the proposed management 

methodology is applied, is also presented.  
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2 The Mathematics of Groundwater 

Management Problems  
Groundwater management problems can be very 

simple or very complicated. This depends on the 

formulation of the problem. A groundwater 

management problem with a linear objective function 

and a linear set of constraints is characterized as a 

simple problem and is relatively easy to solve. 

Problems where the decision variables do not appear 

in any power and/or in a product form have linear 

behavior. The geometric representation of a linear 

objective function or constraint is a straight line for 

problems with one decision variable (one-

dimensional problems, 1-D), a plane for 2-D 

problems, or a hyperplane for multi-dimensional 

problems (Fig. 1). 

 
 

Figure 1: Linear behavior of a function for 1-D and 

2-D problems 

 

The most complicated form of groundwater 

management problems appears when either the 

objective function or any of the constraints are 

nonlinear. Typical examples for 1-D and 2-D 

problems are shown in Fig. 2.  

In most practical cases, hydraulic head and 

hydraulic gradient constraints have linear behavior 

with respect to the pumping rate. If the objective 

function is also linear, the management problem is 

characterized as linear. Linear problems involve only 

flow equations in the numerical simulation. It should 

be noted that, in order for the above constraints to 

exhibit linear behavior, the aquifer has to be in steady 

state (no changes with time). These problems can be 

solved using classical linear programming techniques 

(simplex method). Several software packages exist to 

solve problems in this category (Lindo, Minos, 

Modman). 

 

Figure 2: Nonlinear behavior of a function for 1-D (a) 

and 2-D (b) problems 

Groundwater management problems that involve 

concentration constraints are nonlinear problems 

(since the mass transport equation has a nonlinear 

behavior) and are known as “groundwater quality 

management problems”. In this case the objective 

function can be either linear or nonlinear. This kind of 

problems is more difficult to solve due to the 

nonlinear behavior. Several methodologies for the 

solution of nonlinear groundwater management 

problems that have been developed in the past few 

years will be presented in a later section. The degree 

of difficulty in solving nonlinear groundwater 

management problems using optimization techniques 

is mostly dependent on the behavior of the objective 

and constraint functions. Regarding the objective 

function, the mathematical formulation can be either 

minimization (e.g., minimization of the total pumping 

cost) or maximization (e.g., maximization of the total 

pumping) of the function. The objective function can 

be linear or non-linear. A nonlinear function can be 

continuous or discontinuous, convex or non-convex 

(concave), monotonic or non-monotonic. Some 

typical examples are presented in Fig. 3. 

 

 

Figure 3: Typical behaviors of an objective function 
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The most complicated case is the non-convex, 

non-monotonic function where most of the 

optimization techniques have difficulties to determine 

the “global optimal” and, instead, terminate the 

process at a local optimal. Fig. 4 illustrates the 

concept of local and global optima. 
 

 

 
 

Figure 4: The concept of local and global optimal in 

a minimization problem 

 

The constraint functions can also be linear or non-

linear, convex or non-convex. The geometric 

representation of the constraint functions is illustrated 

in Fig. 5. 

 

 

Figure 5: Geometrical representation of the 

constraints 

In case that the problem has several constraints the 

feasible region is defined as the intersection of all the 

constraints. The objective function is imposed over 

the feasible region defined by the set of constraints. 

The optimal solution must be either inside the feasible 

region or along the perimeter of this region (Fig. 6). 

 

 

Figure 6: Geometric representation of the objective 

function, feasible region and optimal solution for a 2-

D minimization problem. 

Several optimization techniques using linear and non-

linear programming theory have been presented in the 

past to solve this kind of problems. The optimization 

techniques are combined with groundwater numerical 

models of groundwater flow and mass transport.  

In the present work the Outer Approximation 

Method, first presented by Karatzas and Pinder ([3] 

and [4]) has been used in combination with the 

Princeton Transport Code [5] for the simulation of the 

groundwater flow and the contaminant transport. 

 

 

3 The Optimization Method of the 

Outer Approximation 
The optimization model employed in this work is the 

Outer Approximation Method, first presented by 

Karatzas and Pinder ([3] and [4]). This methodology 

has been expanded by Karatzas et al. [6] and 

Papadopoulou et al. ([7] and [8]) concerning time-

varying multiperiod and post remediation design. The 

method is a global minimization technique that uses a 

cutting plane approach to determine the optimal 

solution. The algorithm starts by determining a 

polytope that encloses the feasible region, which is 

defined by a set of vertices. The feasible region is 

determined as the space where all the constraints are 

satisfied. 

The objective function, the function to be 

minimized, is formulated as a concave function. 

Based on the characteristic property of concave 

functions, that the minimum always occurs at one of 

the most outer points of the feasible region, the 

algorithm determines the vertex of the enclosing 

polytope that minimizes the objective function. Next, 

it examines if the selected vertex is feasible. If all 

constraints are satisfied, it declares this vertex as the 

optimal solution. Otherwise, a cutting plane is 

introduced that eliminates this vertex and its 
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surroundings, creates a new enclosing polytope that is 

a better approximation of the feasible region and the 

process is repeated. The goal of this process is not to 

determine the best approximation of the feasible 

region but rather to determine the most extreme point 

of the feasible region without eliminating any part of 

it (Fig. 7). 

 

Figure 7: The concept of the Outer Approximation 

Method 

The Outer Approximation method takes advantage 

of the concave shape of the objective function that 

ensures that the minimum of such a function over a 

compact convex or non-convex set (feasible region) 

occurs always at the boundary of the feasible region. 

The problem has the following formulation: 

  
0≥∈ x,x)x(min Dthatsuchf        (1) 

 

where  

x:  the vector of decision variables, 

f: R
n
 �R a real-valued continuous concave 

function defined throughout R
n
,  

D: A closed non-convex subset of R
n
 defined by a 

set of m constraints of the following form: 

  

mig i ,...,)x( 10 =≤                      (2) 

where  

gi(x): continuous convex or non-convex 

real-valued functions. 

 

The Princeton Transport Code (PTC) is a three-

dimensional groundwater flow and contaminant 

transport simulator which can use both finite-element 

and finite-difference discretization. It can create and 

process up to 2000 elements. PTC is written in 

FORTRAN 77, thus can be easily applied in 

combination with Argus ONE, in a user-friendly 

Windows environment ([9] and [10]). PTC uses the 

following system of partial differential equations to 

represent the groundwater flow described by 

hydraulic head h, the groundwater velocity 

components, and contaminant transport described by 

concentration C. 

 

( ) 0=−
∂

∂
−∇••∇ iQ

t

h
ShK                    (3) 

 

0=∇•+ hKq      (4) 
 

( ) ( ) 0=−−∇••∇−∇•+
∂

∂
oif ccQcDcq

t

c
Rθ    (5) 

 

where K hydraulic conductivity tensor [LT
-1
], h 

hydraulic head [L], S specific storage coefficient [L
-1
], 

Qi source/sink term at location i [L
3
T
-1
], q groundwater 

velocity (Darcy’s) [LT
-1
], θ effective porosity, Rf  

retardation coefficient, c concentration of contaminant 

at location (x,y,z) at time t [M/L
3
], D dispersion tensor. 

PTC employs a unique splitting algorithm for 

solving the fully three-dimensional equations, which 

reduces the computational burden significantly. The 

algorithm involves discretizing the domain into 

approximately parallel horizontal layers. Within each 

layer a finite element discretization is used allowing 

for accurate representation of irregular domains. The 

layers are connected vertically by a finite difference 

discretization. This kind of approximation of the 

domain, in two different directions (vertical and 

horizontal), has a lot of advantages, since it 

significantly reduces the number and the size of the 

calculations needed. [5] 

 

4 Field Application 
 

4.1 Model setup 
The area of the present study covers the majority of 

the coastal zone of the Corinthian Prefecture (an area 

of 60 Km
2
, approximately). The boundaries of the 

area are defined by the sea to the North and by a fault 

zone to the South, which coincides with the Old 

National Road from Lexeon to Asopos River. The 

Corinthian basin contains alluvial deposits of mixed 

fluvial, lacustrine and terrestrial origin [11]. 

There are several pumping wells shown in Fig.9 (the 

squares). 
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Figure 8: Geological characteristics of modeled area  

The hydraulic head distribution, shown in Fig. 9, 

represents the flow field in October 2002 and is based 

on field measurements, performed during the period 

October 2000 and March 2001. The extended use of 

fertilizers contaminated the modeled aquifer at three 

main locations. The aquifer situation regarding nitrate 

mass distribution prior to any management plan is 

shown in Fig. 10. At areas where the nitrate 

concentration is higher than 50ppm, the groundwater 

is unsuitable for drinking and irrigation purposes 

[12]. 

 
 

Figure 9: Hydraulic head distribution in October 

2002  

 

Figure 10: Nitrate mass distribution prior to any 

management plan  

4.2 Results
1
 

In this paper, a management strategy for the optimal 

operation of the 7 extraction (e1-e7) and 5 injection 

(in1-in5) wells is proposed using the above 

methodology, in order to prevent further spreading of 

the nitrate plume towards the inland pumping 

locations. For these purposes, a series of constraints 

are imposed at 7 observation locations (o1-o7) where 

the nitrate concentration should not exceed a pre-

specified value (Fig. 11). The aim of these 

observation locations was to protect the existing 

municipal pumping wells, assuming that during the 

two-year remediation period there is not any 

additional nitrate load into the aquifer.  

The aim of the proposed remediation design is the 

containment of the plume at the October 2002 levels, 

preventing further spread of the plume. The proposed 

remediation design activates 3 out of 12 remediation 

wells at the southeastern plume (Fig. 12). 

The proposed remediation design requires 

activation of the extraction well # 7 (429.6 m
3
/day) 

and the injection wells # 4 (2826.3 m
3
/day) and #5 

(2000 m
3
/day). The activation of these three is due to 

the hydraulic gradient at this area that is more severe 

and dominates the movement of the plume [13]. 

 

 

Figure 11: Remediation design 

 

 

Figure 12: Locations of the active remediation wells 
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5 Conclusions 
 

By applying the proposed methodology, a 

remediation design that prevents further spreading of 

the existing three major nitrate plumes, without 

deteriorating the subsurface water quality at areas that 

have not been contaminated until the October of 

2002, has been achieved. However the proposed 

design lead only to the anticipation of further 

contamination of the aquifer, assuming that any use 

of chemical fertilizers has been eliminated, and not to 

the restoration of the aquifer.  

The development of methodologies that ensure the 

rational and optimal management of the subsurface 

water resources, will allow the containment of the 

nitrate pollution in aquifers that are heavily 

cultivated. A remediation design that will propose an 

integrated management strategy for all the municipal 

and remediation wells is necessary in order to obtain 

improvement of the subsurface water quality.     
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