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Abstract: In intelligent systems where fuzzy rule base and reasoning mechanism are applied, like fuzzy control
systems, decision support and expert systems, one of the keyissues is the problem of aggregation of information
represented by membership functions. Since the pioneeringwork of Prof. Lotfi Zadeh [21] a great number of
fuzzy connectives, aggregation operators have been introduced. The results of continuous research in this area
have proved that the generally used t-norms, t-conorms do not follow always the real phenomena and do not
provide optimal performance. The requirement to develop more sophisticated intelligent systems demands to find
new operator families. This paper summarizes some new approaches to information aggregation from the literature
and the research results of the authors and his colleagues that have been carried out in recent years on generalization
of conventional operators.
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1 Introduction
Aggregation of several inputs into a single output is
an indispensable step in diverse procedures of math-
ematics, physics, engineering, economical, social and
other sciences. Generally speaking, the problems of
aggregation are very broad and heterogeneous. There-
fore, in this contribution we restrict ourselves to infor-
mation aggregation in intelligent systems.

The problem of aggregating information repre-
sented by membership functions (i.e., by fuzzy sets) in
a meaningful way has been of central interest since the
late 1970s. In most cases, the aggregation operators
are defined on a pure axiomatic basis and are inter-
preted either as logical connectives (such as t-norms
and t-conorms) or as averaging operators allowing a
compensation effect (such as the arithmetic mean).

On the other hand, it can be recognized by some
empirical tests that the above-mentioned classes of
operators differ from those ones that people use in
practice (see [22]). Therefore, it is important to find
operators that are, in a sense, mixtures of the previous
ones, and allow some degree of compensation.

One can also discern that people are inclined to
use standard classes of aggregation operators also as
a matter of routine. For example, when one works
with binary conjunctions and there is no need to ex-
tend them for three or more arguments, as it happens
e.g. in the inference pattern called generalized modus
ponens, associativity of the conjunction is an unnec-
essarily restrictive condition. The same is valid for the

commutativity property if the two arguments have dif-
ferent semantical backgrounds and it has no sense to
interchange one with the other.

These observations advocate the study of en-
larged classes of operations for information aggrega-
tion and have urged us to revise their definitions and
study further properties.

2 Traditional Operations

The original fuzzy set theory was formulated in terms
of Zadeh’s standard operations of intersection, union
and complement. The axiomatic skeleton used for
characterizing fuzzy intersection and fuzzy union are
known astriangular norms (t-norms)and triangular
conorms (t-conorms),respectively. For more details
we refer to the books [9] and [16].

2.1 Triangular Norms and Conorms

Definition 1. A triangular norm(shortly: a t-norm) is
a functionT : [0, 1]2 → [0, 1] which is associative, in-
creasing and commutative, and satisfies the boundary
conditionT (1, x) = x for all x ∈ [0, 1].

Definition 2. A triangular conorm(shortly: a t-
conorm) is an associative, commutative, increasing
S : [0, 1]2 → [0, 1] function, with boundary condition
S(0, x) = x for all x ∈ [0, 1].
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Notice that continuity of a t-norm and a t-conorm
is not taken for granted.

The following are the four basic t-norms, namely,
the minimumTM the productTP, the Łukasiewicz t-
normTL, and the drastic productTD, which are given
by, respectively:

TM(x, y) = min(x, y),

TP(x, y) = x · y,

TL(x, y) = max(x+ y − 1, 0),

TD(x, y) =

{

0 if (x, y) ∈ [ 0, 1[ 2,
min(x, y) otherwise.

These four basic t-norms have some remarkable
properties. The drastic productTD and the minimum
TM are the smallest and the largest t-norm, respec-
tively. The minimumTM is the only t-norm where
eachx ∈ [0, 1] is an idempotent element. The product
TP and the Łukasiewicz t-normTL are prototypical
examples of two important subclasses of t-norms (of
strict and nilpotent t-norms, respectively).

Definition 3. A non-increasing functionN : [0, 1] →
[0, 1] satisfyingN(0) = 1,N(1) = 0 is called anega-
tion. A negationN is called strict if N is strictly
decreasing and continuous. A strict negationN is
said to be astrong negationif N is also involutive:
N(N(x)) = x for all x ∈ [0, 1].

The standard negation is simplyNs(x) = 1 −
x, x ∈ [0, 1]. Clearly, this negation is strong. It
plays a key role in the representation of strong nega-
tions.

We call a continuous, strictly increasing function
ϕ : [0, 1] → [0, 1] with ϕ(0) = 0, ϕ(1) = 1 anauto-
morphismof the unit interval.

Note thatN : [0, 1] → [0, 1] is a strong negation
if and only if there is an automorphismϕ of the unit
interval such that for allx ∈ [0, 1] we have

N(x) = ϕ−1(Ns(ϕ(x))).

In what follows we assume thatT is a t-norm,S
is a t-conorm andN is a strong negation.

Clearly, for every t-normT and strong negation
N , the operationS defined by

S(x, y) = N(T (N(x),N(y))), x, y ∈ [0, 1] (1)

is a t-conorm. In addition, T (x, y) =
N(S(N(x),N(y))) (x, y ∈ [0, 1]). In this case
S andT are calledN -duals. In case of the standard
negation (i.e., whenN(x) = 1 − x for x ∈ [0, 1])
we simply speak about duals. Obviously, equality (1)
expresses the De Morgan’s law in the fuzzy case.

Generally, for any t-normT and t-conormS we
have

TD (x, y) ≤ T (x, y) ≤ TM (x, y)

and
SM (x, y) ≤ S (x, y) ≤ SD (x, y) ,

whereSM is the dual ofTM, andSD is the dual of
TD.

These inequalities are important from practical
point of view as they establish the boundaries of the
possible range of mappingsT andS.

Between the four basic t-norms we have these
strict inequalities:

TD < TP < TL < TM.

3 New Associative and Commutative
Operations

3.1 Uninorms and Nullnorms

3.1.1 Uninorms

Uninorms were introduced by Yager and Rybalov [20]
as a generalization of t-norms and t-conorms. For uni-
norms, the neutral element is not forced to be either 0
or 1, but can be any value in the unit interval.

Definition 4. [20] A uninormU is a commutative, as-
sociative and increasing binary operator with a neu-
tral elemente ∈ [0, 1 ] , i.e., for allx ∈ [0, 1 ] we have
U(x, e) = x.

T-norms do not allow low values to be compen-
sated by high values, while t-conorms do not allow
high values to be compensated by low values. Uni-
norms may allow values separated by their neutral
element to be aggregated in a compensating way.
The structure of uninorms was studied by Fodoret
al. [11]. For a uninormU with neutral elemente ∈
] 0, 1 ] , the binary operatorTU defined by

TU (x, y) =
U(e x, e y)

e

is a t-norm; for a uninormU with neutral elemente ∈
[0, 1[, the binary operatorSU defined by

SU (x, y) =
U(e+ (1 − e)x, e+ (1 − e)y) − e

1 − e

is a t-conorm. The structure of a uninorm with neutral
elemente ∈ ]0, 1[ on the squares[0, e ] 2 and [e, 1 ] 2

is therefore closely related to t-norms and t-conorms.
Fore ∈ ]0, 1[, we denote byφe andψe the linear trans-
formations defined byφe(x) = x

e
andψe(x) = x−e

1−e
.
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To any uninormU with neutral elemente ∈ ]0, 1[,
there corresponds a t-normT and a t-conormS such
that:

(i) for any (x, y) ∈ [0, e ] 2: U(x, y) =
φ−1

e (T (φe(x), φe(y)));

(ii) for any (x, y) ∈ [e, 1 ] 2: U(x, y) =
ψ−1

e (S(ψe(x), ψe(y))).

On the remaining part of the unit square, i.e. onE =
[0, e[× ] e, 1 ] ∪ ]e, 1 ] × [0, e[, it satisfies

min(x, y) ≤ U(x, y) ≤ max(x, y),

and could therefore partially show a compensating be-
haviour, i.e. take values strictly between minimum
and maximum. Note that any uninormU is eithercon-
junctive, i.e. U(0, 1) = U(1, 0) = 0, or disjunctive,
i.e.U(0, 1) = U(1, 0) = 1.

3.1.2 Representation of Uninorms

In analogy to the representation of continuous
Archimedean t-norms and t-conorms in terms of addi-
tive generators, Fodoret al. [11] have investigated the
existence of uninorms with a similar representation in
terms of a single-variable function. This search leads
back to Dombi’s class ofaggregative operators[7].
This work is also closely related to that of Klementet
al. on associative compensatory operators [15]. Con-
sider e ∈ ]0, 1[ and a strictly increasing continuous
[0, 1] → R mappingh with h(0) = −∞, h(e) = 0
andh(1) = +∞. The binary operatorU defined by

U(x, y) = h−1(h(x) + h(y))

for any (x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)}, and either
U(0, 1) = U(1, 0) = 0 or U(0, 1) = U(1, 0) = 1, is
a uninorm with neutral elemente. The class of uni-
norms that can be constructed in this way has been
characterized [11].

Consider a uninormU with neutral elemente ∈
]0, 1[, then there exists a strictly increasing continuous
[0, 1] → R mappingh with h(0) = −∞, h(e) = 0
andh(1) = +∞ such that

U(x, y) = h−1(h(x) + h(y))

for any(x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)} if and only if

(i) U is strictly increasing and continuous on]0, 1[2;

(ii) there exists an involutive negatorN with fixpoint
e such that

U(x, y) = N(U(N(x),N(y))))

for any(x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)}.

The uninorms characterized above are calledrepre-
sentableuninorms. The mappingh is called anad-
ditive generatorof U . The involutive negator corre-
sponding to a representable uninormU with additive
generatorh, as mentioned in condition (ii) above, is
denotedNU and is given by

NU (x) = h−1(−h(x)). (2)

Clearly, any representable uninorm comes in a
conjunctive and a disjunctive version, i.e. there al-
ways exist two representable uninorms that only dif-
fer in the points(0, 1) and(1, 0). Representable uni-
norms are almost continuous, i.e. continuous ex-
cept in (0, 1) and (1, 0), and Archimedean, in the
sense that(∀x ∈ ]0, e[)(U(x, x) < x) and (∀x ∈
]e, 1[)(U(x, x) > x). Clearly, representable uninorms
are not idempotent. The classesUmin andUmax do
not contain representable uninorms. A very impor-
tant fact is that the underlying t-norm and t-conorm
of a representable uninorm must be strict and cannot
be nilpotent. Moreover, given a strict t-normT with
decreasing additive generatorf and a strict t-conorm
S with increasing additive generatorg, we can always
construct a representable uninormU with desired neu-
tral elemente ∈ ]0, 1[ that hasT andS as underlying
t-norm and t-conorm. It suffices to consider as addi-
tive generator the mappingh defined by

h(x) =











−f
(x

e

)

, if x ≤ e

g

(

x− e

1 − e

)

, if x ≥ e
. (3)

On the other hand, the following property indi-
cates that representable uninorms are in some sense
also generalizations of nilpotent t-norms and nilpotent
t-conorms: (∀x ∈ [0, 1])(U(x,NU (x)) = NU (e)).
This claim is further supported by studying the resid-
ual operators of representable uninorms in [6].

As an example of the representable case, con-
sider the additive generatorh defined byh(x) =
log x

1−x
, then the corresponding conjunctive repre-

sentable uninormU is given by U(x, y) = 0 if
(x, y) ∈ {(1, 0), (0, 1)}, and

U(x, y) =
xy

(1 − x)(1 − y) + xy

otherwise, and has as neutral element1

2
. Note thatNU

is the standard negator:NU (x) = 1 − x.
The class of representable uninorms contains fa-

mous operators, such as the functions for combining
certainty factors in the expert systems MYCIN (see
[19, 5]) and PROSPECTOR [5]. The MYCIN ex-
pert system was one of the first systems capable of
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reasoning under uncertainty [2]. To that end, cer-
tainty factors were introduced as numbers in the in-
terval[−1, 1]. Essential in the processing of these cer-
tainty factors is the modified combining functionC
proposed by van Melle [2]. The[−1, 1]2 → [−1, 1]
mappingC is defined by

C(x, y) =















x+ y(1 − x) , if min(x, y) ≥ 0

x+ y(1 + x) , if max(x, y) ≤ 0
x+ y

1 − min(|x|, |y|)
, otherwise

.

The definition ofC is not clear in the points(−1, 1)
and(1,−1), though it is understood thatC(−1, 1) =
C(1,−1) = −1. Rescaling the functionC to a binary
operator on[0, 1], we obtain a representable uninorm
with neutral element1

2
and as underlying t-norm and t-

conorm the product and the probabilistic sum. Implic-
itly, these results are contained in the book of Hájek
et al. [14], in the context of ordered Abelian groups.

3.1.3 Nullnorms

Definition 5. [3] A nullnorm V is a commuta-
tive, associative and increasing binary operator with
an absorbing elementa ∈ [0, 1], i.e. (∀x ∈
[0, 1])(V (x, a) = a), and that satisfies

(∀x ∈ [0, a])(V (x, 0) = x) (4)

(∀x ∈ [a, 1])(V (x, 1) = x) (5)

The absorbing elementa corresponding to a null-
norm V is clearly unique. By definition, the case
a = 0 leads back to t-norms, while the casea = 1
leads back to t-conorms. In the following proposition,
we show that the structure of a nullnorm is similar to
that of a uninorm. In particular, it can be shown that it
is built up from a t-norm, a t-conorm and the absorb-
ing element [3].

Theorem 6. Considera ∈ [0, 1]. A binary operator
V is a nullnorm with absorbing elementa if and only
if

(i) if a = 0: V is a t-norm;

(ii) if 0 < a < 1: there exists a t-normTV and a
t-conormSV such thatV (x, y) is given by














φ−1
a (SV (φa(x), φa(y))) , if (x, y) ∈ [0, a]2

ψ−1
a (TV (ψa(x), ψa(y))) , if (x, y) ∈ [a, 1]2

a , elsewhere

;

(6)

(iii) if a = 1: V is a t-conorm.

Recall that for any t-normT and t-conormS it
holds thatT (x, y) ≤ min(x, y) ≤ max(x, y) ≤
S(x, y), for any (x, y) ∈ [0, 1]2. Hence, for a
nullnorm V with absorbing elementa it holds that
(∀(x, y) ∈ [0, a]2) (V (x, y) ≥ max(x, y)) and
(∀(x, y) ∈ [a, 1]2) (V (x, y) ≤ min(x, y)). Clearly,
for any nullnormV with absorbing elementa it holds
for all x ∈ [0, 1] that

V (x, 0) = min(x, a) and V (x, 1) = max(x, a).
(7)

Notice that, without the additional conditions (4)
and (5), it cannot be shown that a commutative, asso-
ciative and increasing binary operatorV with absorb-
ing elementa behaves as a t-conorm and t-norm on
the squares[0, a]2 and[a, 1]2.

Nullnorms are a generalization of the well-known
medianstudied by Fung and Fu [13], which corre-
sponds to the caseT = min and S = max. For
a more general treatment of this operator, we refer
to [10]. We recall here the characterization of that me-
dian as given by Czogała and Drewniak [4]. Firstly,
they observe that an idempotent, associative and in-
creasing binary operatorO has as absorbing element
a ∈ [0, 1] if and only ifO(0, 1) = O(1, 0) = a. Then
the following theorem can be proven.

Theorem 7. [4] Considera ∈ [0, 1]. A continuous,
idempotent, associative and increasing binary opera-
tor O satisfiesO(0, 1) = O(1, 0) = a if and only if it
is given by

O(x, y) =















max(x, y) , if (x, y) ∈ [0, a]2

min(x, y) , if (x, y) ∈ [a, 1]2

a , elsewhere

.

Nullnorms are also a special case of the class of
T -S aggregation functions introduced and studied by
Fodor and Calvo [12].

Definition 8. Consider a continuous t-normT and
a continuous t-conormS. A binary operatorF is
called aT -S aggregation function if it is increasing
and commutative, and satisfies the boundary condi-
tions

(∀x ∈ [0, 1])(F (x, 0) = T (F (1, 0), x))

(∀x ∈ [0, 1])(F (x, 1) = S(F (1, 0), x)).

When T is the algebraic product andS is the
probabilistic sum, we recover the class of aggregation
functions studied by Mayor and Trillas [18]. Rephras-
ing a result of Fodor and Calvo, we can state that the
class of associativeT -S aggregation functions coin-
cides with the class of nullnorms with underlying t-
normT and t-conormS.
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4 Generalized Conjunctions and Dis-
junctions

4.1 The Role of Commutativity and Associa-
tivity

One possible way of simplification of axiom skele-
tons of t-norms and t-conorms may be not requiring
that these operations to have the commutative and the
associative properties. Non-commutative and non-
associative operations are widely used in mathemat-
ics, so, why do we restrict our investigations by keep-
ing these axioms? What are the requirements of the
most typical applications?

From theoretical point of view the commutative
law is not required, while the associative law is nec-
essary to extend the operation to more than two vari-
ables. In applications, like fuzzy logic control, fuzzy
expert systems and fuzzy systems modeling fuzzy rule
base and fuzzy inference mechanism are used, where
the information aggregation is performed by opera-
tions. The inference procedures do not always require
commutative and associative laws of the operations
used in these procedures. These properties are not
necessary for conjunction operations used in the sim-
plest fuzzy controllers with two inputs and one output.
For rules with greater amount of inputs and outputs
these properties are also not required if the sequence
of variables in the rules are fixed.

Moreover, the non-commutativity of conjunction
may in fact be desirable for rules because it can re-
flect different influences of the input variables on the
output of the system. For example, in fuzzy control,
the positions of the input variables the “error” and
the “change in error” in rules are usually fixed and
these variables have different influences on the out-
put of the system. In the application areas of fuzzy
models when the sequence of operands is not fixed,
the property of non-commutativity may not be desir-
able. Later some examples will be given for paramet-
ric non-commutative and non-associative operations.

The axiom systems of t-norms and t-conorms are
very similar to each other except the neutral element,
i.e. the type is characterized by the neutral element. If
the neutral element is equal to 1 then the operation is
a conjunction type, while if the neutral element is zero
the disjunction operation is obtained. By using these
properties we introduce the concepts of conjunction
and disjunction operations [1].

Definition 9. LetT be a mappingT : [0, 1]× [0, 1] →
[0, 1]. T is a conjunction operation ifT (x, 1) = x for
all x ∈ [0, 1].

Definition 10. LetS be a mappingS : [0, 1]×[0, 1] →

[0, 1]. S is a conjunction operation ifS(x, 0) = x for
all x ∈ [0, 1].

Conjunction and disjunction operations may also
be obtained one from another by means of an involu-
tive negationN : S (x, y) = N (T (N (x) ,N (y))),
andT (x, y) = N (S (N (x) ,N (y))).

It can be seen easily that conjunction and disjunc-
tion operations satisfy the following boundary con-
ditions: T (1, 1) = 1, T (0, x) = T (x, 0) = 0,
S(0, 0) = 0, S(1, x) = S(x, 1) = 1. By fixing
these conditions, new types of generalized operations
are introduced.

Definition 11. Let T be a mappingT : [0, 1] ×
[0, 1] → [0, 1]. T is a quasi-conjunction operation
if T (0, 0) = T (0, 1) = T (1, 0) = 0, andT (1, 1) = 1.

Definition 12. LetS be a mappingS : [0, 1]×[0, 1] →
[0, 1]. S is a quasi-disjunction operation ifS(0, 1) =
S(1, 0) = S(1, 1) = 1, andS(0, 0) = 0.

It is easy to see that conjunction and disjunc-
tion operations are quasi-conjunctions and quasi-
disjunctions, respectively, but the converse is not true.

Omitting T (1, 1) = 1 andS(0, 0) = 0 from the
definitions further generalization can be obtained.

Definition 13. Let T be a mappingT : [0, 1] ×
[0, 1] → [0, 1]. T is a pseudo-conjunction operation if
T (0, 0) = T (0, 1) = T (1, 0) = 0.

Definition 14. Let S be a mappingS : [0, 1] ×
[0, 1] → [0, 1]. S is a pseudo-disjunction operation
if S(0, 1) = S(1, 0) = S(1, 1) = 1.

Theorem 15. Assume thatT and S are non-
decreasing pseudo-conjunctions and pseudo-
disjunctions, respectively. Then there exist the absorb-
ing elements 0 and 1 such asT (x, 0) = T (0, x) = 0
andS (x, 1) = S (1, x) = 1.

4.2 A Parametric Family of Quasi-
Conjunctions

Let us cite the following result, which is the base of
the forthcoming parametric construction, from [1].

Theorem 16. SupposeT1, T2 are quasi-conjunctions,
S1 and S2 are pseudo disjunctions andh, g1, g2 :
[0,1] → [0,1] are non-decreasing functions such that
g1 (1) = g2 (1) = 1. Then the following functions

T (x, y) = T2 (T1 (x, y) , S1 (g1 (x) , g2 (y))) (8)

T (x, y) = T2 (T1 (x, y) , g1S1 (x, y)) (9)

T (x, y) = T2 (T1 (x, y) , S2 (h (x) , S1 (x, y)))
(10)

are quasi-conjunctions.
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Figure 1: Surfaces of conjunction operation
T (x, y) = xpyq for different values ofp.

By the use of this Theorem the simplest paramet-
ric quasi-conjunction operations can be obtained as
follows:

T (x, y) = xpyq, (11)

T (x, y) = min (xp, yq) , (12)

T (x, y) = (xy)p (x+ y − xy)q (13)

wherep, q ≥ 0.
The surfaces of conjunction (11) are is shown in

Fig. 1.

4.3 Distance-based Operations

Let e be an arbitrary element of the closed unit inter-
val [0, 1] and denote byd (x, y) the distance of two
elementsx andyof [0, 1]. The idea of definitions of
distance-based operators is generated from the refor-
mulation of the definition of the min and max opera-
tors as follows

min(x, y) =

{

x, if d (x, 0) ≤ d (y, 0)
y, if d (x, 0) > d (y, 0)

,

max(x, y) =

{

x, if d (x, 0) ≥ d (y, 0)
y, if d (x, 0) < d (y, 0)

Based on this observation the following defini-
tions can be introduced, see [1].

Definition 17. Themaximum distance minimum op-
eratorwith respect toe ∈ [0, 1] is defined as

min
max

e
(x, y) =







x, if d (x, e) > d (y, e)
y, if d (x, e) < d (y, e)

min (x, y) , if d (x, e) = d (y, e)
.

(14)

Definition 18. Themaximum distance maximum op-
eratorwith respect toe ∈ [0, 1] is defined as

max
max

e
(x, y) =







x, if d (x, e) > d (y, e)
y, if d (x, e) < d (y, e)

max (x, y) , if d (x, e) = d (y, e)
.

(15)

Definition 19. Theminimum distance minimum op-
eratorwith respect toe ∈ [0, 1] is defined as

min

min
e

(x, y) =







x, if d (x, e) < d (y, e)
y, if d (x, e) > d (y, e)

min (x, y) , if d (x, e) = d (y, e)
.

(16)

Definition 20. Theminimum distance maximum op-
eratorwith respect toe ∈ [0, 1] is defined as

max

min
e

(x, y) =







x, if d (x, e) < d (y, e)
y, if d (x, e) > d (y, e)

max (x, y) , if d (x, e) = d (y, e)
.

(17)

4.3.1 The Structure of Distance-based Operators

It can be proved by simple computation that if the
distance ofx and yis defined asd (x, y) = |x− y|
then the distance-based operators can be expressed by
means of the min and max operators as follows.

min
max

e
=







max (x, y) , if y > 2e− x

min (x, y) , if y < 2e− x

min (x, y) , if y = 2e− x

, (18)

min

min
e

=







min (x, y) , if y > 2e− x

max (x, y) , if y < 2e− x

min (x, y) , if y = 2e− x

(19)

max
max

e
=







max (x, y) , if y > 2e− x

min (x, y) , if y < 2e− x

max (x, y) , if y = 2e− x

, (20)
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Figure 2: Maximum distance minimum operator (up)
and minimum distance minimum operator (down).

max

min
e

=







min (x, y) , if y > 2e− x

max (x, y) , if y < 2e− x

max (x, y) , if y = 2e− x

(21)

The structures of themaxmin
e and theminmin

e op-
erators are illustrated in Fig. 2.

4.4 Entropy-based Conjunction and Dis-
junction Operators

The question of how fuzzy is a fuzzy set has been
one of the issues associated with the development of
the fuzzy set theory. In accordance with a current
terminological trend in the literature, measure of un-
certainty is being referred asmeasure of fuzziness,or
fuzzy entropy[17].

Throughout this part the following notations will
be used;X is the universal set,F(X) is the class of all
fuzzy subsets ofX , ℜ+ is the set of non negative real
numbers,Ā is the fuzzy complement ofA ∈F(X) and
|A| is the cardinality ofA.

Definition 21. Let Xbe a universal set andA is a
fuzzy subset ofX defined as

A = {(x, µA (x)) | x ∈ X } .

The fuzzy entropy is a mapping

e: F(X) → ℜ+

which satisfies the following axioms:
AE 1 e (A) = 0 if A is a crisp set.
AE 2 If A ≺ B thene (A) ≤ e (B); where

A ≺ B means that A is sharper than B.
AE 3 e (A) assumes its maximum value if and

only ifA is maximally fuzzy.
AE 4 e (A) = e

(

Ā
)

, ∀A ∈ X.

Let ep be equilibrium of the fuzzy complementC
and specifyAE 2 andAE 3 as follows:

AES 2A is sharper than Bin the following sense:
µA (x) ≤ µB (x) for µB (x) ≤ ep andµA (x) ≥

µB (x) for µB (x) ≥ ep, for all x ∈ X.

AES 3 A is defined maximally fuzzy when
µA (x) = ep ∀x ∈ X.

Let A be a fuzzy subset ofX and define the fol-
lowing functionfA : X → [0,1] by

fA : x 7→

{

µA(x) if µA (x) ≤ ep
C (µA (x)) if µA (x) > ep

(22)

DenoteΦA the fuzzy set generated byfA as its
membership function.

Theorem 22. The g (|ΦA|) is an entropy, where
g:ℜ → ℜ is a monotonically increasing real function
andg (0) = 0.

Definition 23. Let A be a fuzzy subset ofX.fA

is said to be an elementary fuzzy entropy func-
tion if the cardinality of the fuzzy setΦA =
{(x, fA (x)) |x ∈ X, fA (x) ∈ [0, 1]} is an entropy of
A.

It is obvious thatfA is an elementary entropy
function.

Now we introduce some operations based on en-
tropy. For more details we refer to [1].

Definition 24. Let A and B be two fuzzy sub-
sets of the universe of discourseX and denote
ϕA andϕB their elementary entropy functions, re-
spectively. The minimum entropy conjunction op-
erations is defined asI∗ϕ = I∗ϕ (A,B) =
{(

x, µI∗
ϕ

(x)
)

|x ∈ X, µI∗
ϕ

(x) ∈ [0, 1]
}

, where

µI∗
ϕ
: x 7→







µA (x) , if ϕA (x) < ϕB (x)
µB (x) , if ϕB (x) < ϕA (x)

min(µA (x) , µB (x)) , if ϕA (x) = ϕB (x)
.

(23)
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Figure 3: Entropy based conjunction operator

Figure 4: Entropy based disjunction operator

The geometrical representation of the minimum
fuzziness generalized intersection can be seen in Fig.
3.

Definition 25. Let A and Bbe two fuzzy sub-
sets of the universe of discourseX and denote
ϕA andϕB their elementary entropy functions, re-
spectively. The maximum entropy disjunction op-
eration is defined asU∗

ϕ = U∗

ϕ (A,B) =
{(

x, µU∗

ϕ
(x)

)

|x ∈ X, µU∗

ϕ
(x) ∈ [0, 1]

}

, where

µU∗

ϕ
:x 7→







µA (x) , if ϕA (x) > ϕB (x)
µB (x) , if ϕB (x) > ϕA (x)

max(µA (x) , µB (x)) , if ϕA (x) = ϕB (x)
.

(24)

The geometrical representation of the maximum
fuzziness operation can be seen in Fig. 4.

Several important properties of these operations
as well as their construction can be found in [1]. Now

Figure 5: The construction ofI∗ϕ .

Figure 6: The construction ofU∗

ϕ .

we present only two figures about the construction.
Notice also thatI∗ϕ is a quasi-conjunction,U∗

ϕ is a
quasi-disjunction operation, andU∗

ϕ is a commutative
semigroup operation on[0, 1] [1].

5 Conclusion
In this paper we summarized some of our contribu-
tions to the theory of non-conventional aggregation
operators. Further details and another classes of ag-
gregation operators can be found in [1].
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