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Abstract:- Software testing needs to be measured in similar terms as overall software development process (SDP) in 
order to understand its true progress and make informed decisions. Basic considerations of Software Testing Metrics 
Framework (STMF) and some commonly used testing metrics and where in testing process they apply are described 
in this, Part 1 article. Typically, software development is measured in terms of overall progress in meeting functional 
and business goals. By considering testing dimensions other than cost and schedule, managers and other team 
members can better understand and optimize the testing process, in effect opening the black box and managing 
testing more effectively were described in Part 2 article. 
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1 Introduction 
By considering testing dimensions other than cost and 
schedule, managers and other team members can better 
understand and optimize the testing process, in effect 
opening the black box and managing testing more 
effectively. In this way they can avoid costly and painful 
"surprises" late in the project. 
       Test metrics are an important barometer used to 
measure the effectiveness of the software testing 
process. In our  Part 1 article [1], the basic 
considerations of Software Testing Metrics Framework 
(STMF) and some commonly used testing metrics and 
where in testing process they apply are described. Aim 
of this Part 2 article is to explain in more detail proposed 
basic metrics of key software testing activities and 
artifacts in development processes that can be 
objectively measured, according to ISO 15939 – 
Software Measurement and SEI CMMI-
SE/SW/IPPD/SS product suit [2-4] as a foundation for 
enterprise wide improvement of Integrated and 
Optimized Software Development / Testing Process 
(IOSD/IOSTP) [9-13] i.e. Software Testing Metrics 
Framework (STMF).  
       Improvements in the software development process 
depend on our ability to collect and analyze data drawn 
from various phases of the development life cycle. Our 
design metrics research team was presented with a large 
scale SDP production model plus the accompanying 
problem reports that began in the requirements phase of 
development. The goal of this research was to identify 
and measure the occurrences of faults and the efficiency 
of their removal by development phase in order to target 
software development process improvement strategies. 
Through our analysis of the system data, the study 
confirms that catching faults in the phase of origin is an 
important goal. The faults that migrated to future phases 
are on average ten times more costly to repair. The study 
also confirms that upstream faults are the most critical 
faults and more importantly it identifies detailed design 
as the major contributor of faults, including critical 
faults. 

In testing we tend to focus on collecting internal IOSTP 
measures such as numbers of defects and innovation 
measures such as process improvement metrics. If we 
examine where our normal test metrics fit in the STMF 
we can see gaps in both quantitative and qualitative 
measures, which we may wish to address not only to 
focus on internal IOSTP results but to look at a balance 
between four measurable areas: financial measures such 
as profit and loss, customer measures such as market 
share and repeat business, internal measures such as 
numbers of defects in products and process violations, 
and innovation or learning measures such as number of 
new products developed and marketed. To achieve 
useful accuracy, software quality models must be 
calibrated for each specific development environment 
[2]. A case study acquires historical data on one or more 
projects. We construct models that could have been 
developed during the historical project, and calculates 
assessments that could have been made. The accuracy of 
those assessments is then evaluated against actual 
experience. This gives us confidence in predictions for a 
current project. Exploit your gold mines. Our approach 
to software quality modeling is aptly described as data 
mining, especially when operational faults are rare and 
vary significantly from one to another source of 
information. Data mining is most appropriate when one 
seeks valuable bits of knowledge in large amounts of 
data collected for some other purpose, and when the 
amount of data is so large that manual analysis is not 
possible. Many software development organizations 
have very large databases for project management, 
configuration management, and problem reporting 
which capture data on individual events during 
development. For large systems or product lines, the 
amount of available data can be overwhelming. Manual 
analysis is certainly not possible. However, we have 
found that these databases do contain indicators of 
which modules will likely have operational faults [12]. 
      One metric is not enough. Much of the literature on 
software metrics is aimed to demonstrate the value of 
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individual metrics. However, this does not fulfill our 
purpose: to build industrial-strength quality models. 
Our experience with modeling empirical data from 
industry has indicated that a model with one software 
metric as the only independent variable does not have 
useful accuracy and robustness. Lines of code is not 
enough. McCabe cyclomatic complexity is not enough. 
The metric that is most highly correlated to faults is not 
enough. Recent case studies have demonstrated that 
multiple independent variables give more accurate 
results than models with just one independent variable 
[5]. The cost of collecting many metrics from source 
code (or other software product), rather than just a few, 
is not a practical problem for conventional metrics, 
because a metric-analyzer software tool is capable of 
measuring many metrics in one pass. We have found it 
is more effective to begin with many metrics, and then 
to apply data mining techniques to choose those with 
statistically significant empirical relationships to faults.     
Code metrics are not enough. The development histories 
of modules often differ radically. For example, modules 
from early releases have been used or tested more than 
recently developed modules. A stable module may have 
been developed by only one person, while other modules 
may have been modified by many different 
programmers. Indicators of such variations can 
significantly improve model accuracy and robustness. 
For example, our case studies have shown that a simple 
indicator of reuse from a prior release can be a 
significant independent variable in both classification 
and regression models. A case study of the Automatic 
Target Tracking Radar System - ATTRS [10], showed 
that the likelihood of discovering additional faults 
during integration and test in a spiral life cycle can be 
usefully modeled as a function of the module history 
prior to integration. In other words, process-related 
measures derived from configuration management data 
and problem reporting data may be adequate for 
software quality modeling, without resorting to software 
product measurement tools and expertise. Empirical 
validation must be realistic. Due to the many human 
factors that influence software reliability, controlled 
experiments to evaluate the usefulness of empirical 
models are not practical. Therefore, we take the case 
study approach to demonstrate their usefulness in a real-
world testing. To be credible, the software engineering 
community demands that the subject of an empirical 
study be a system with the following characteristics [6]: 
(1) developed by a group, rather than an individual; (2) 
developed by professionals, rather than students; (3) 
developed in an industrial environment, rather than an 
artificial setting; and (4) large enough to be comparable 
to real industry projects. Our case studies fulfill all of 
these criteria through collaborative arrangements with 
development organizations. The analysis presented here 
has study data that is especially useful since the data 
supplied was compiled as early as the requirements 

phase. Such thorough fault reporting is relatively 
uncommon and is most helpful in determining the origin 
and resolution of faults in the development process. 

   

You can’t track project status meaningfully unless you 
know the actual effort and time spent on each task 
compared to your plans. You can’t sensibly decide 
whether your product is stable enough to ship unless 
you’re tracking the rates at which your team is finding 
and fixing defects. You can’t quantify how well your 
new development processes are working without some 
measure of your current performance and a baseline to 
compare against. Metrics help you better control your 
software projects and learn more about the way your 
organization works trough Metrics Life Cycle as 
depicted in figure 1. Specifically, the measurements 
described in this paper first answers the question of 
whether Software Testing is "doing the right thing" 
(effectiveness).  Once there is assurance and 
quantification of correct testing, metrics should be 
developed that determine whether or not Software 
Testing "does the thing right" (efficiency) as we did 
during M&S of Optimized Software Testing model 
which combine Risk Management and Earned Value 
Management called RBOST [11,12]. You can measure 
many aspects of your software products, projects, and 
processes. The trick is to select a small and balanced set 
of metrics that will help your organization track 
progress toward its goals. The analysis presented here 
has study data that is especially useful since the data 
supplied was compiled as early as the requirements 
phase. Such thorough fault reporting is relatively 
uncommon and is most helpful in determining the 
origin and resolution of faults in the development 
process. As we described in our Part 1 article, the Goal 
Question Metric (GQM) process, created by Victor 
Basili and his colleagues at the University of Maryland, 
an excellent technique for selecting appropriate metrics 
to meet the specific measurement needs of an 
organization [8,9], see figure 2. The data consisted of 
the IOSD/IOSTP production model and the related 
problem reports for the model. Our research team had 
the task of tracking each fault identified in the problem 
reports back to its software component. Each problem 
report consisted of 35 fields that included the 
development cycle phase of origin and phase found, 
severity class, a fault class, detection method and the 
amount of effort required to resolve the fault. In 
addition, a separate analysis section was appended to 

        In section 2, the SW Testing Measurement 
Infrastructure and some commonly used testing metrics 
and where in testing process they apply are described. 
Software Testing Metrics Framework deployment in our 
IOSTP as a case study is described in section 3. Finally 
in section 4, some concluding remarks are given. 
 
2 The SW Testing Measurement 
Infrastructure 
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each report detailing the description of the problem, the 
problem history, the suggested cause and solution and 
subsequent changes to the model. 
 

 
Figure 1. Metrics life cycle in STMF 
 
Specifically, the measurements described in this paper 
first answers the question of whether Software Testing is 
"doing the right thing" (effectiveness).  Once there is 
assurance and quantification of correct testing, metrics 
should be developed that determine whether or not 
Software Testing "does the thing right" (efficiency). By 
measuring effectiveness and efficiency, a Software 
Testing organization can better communicate its own 
importance using factual information.   

 
Fig 2. Goal Question Metric (GQM) process 

This enables Software Testing organizations to break 
free from the misconception that Software Testing 
measurement should concentrate on issues important to 
the Software Development community. Often, there are 
early warning signs that testing is going to have 
problems.  
In summary form [2], successful software projects in the 
10,000 function point class usually are characterized by 
these attributes: 
1. Less than 1% monthly requirements changes after the 
requirements phase. 
2. Less than 5.0 defects per function point in total 
volume. 
3. More than 65% defect removal efficiency before 
testing begins. 
4. More than 94% defect removal efficiency before 
delivery. 

In summary form, unsuccessful software projects in the 
10,000 function point class 
usually are characterized by these attributes: 
1. More than 2% monthly requirements change after the 
requirements phase. 
2. More than 6.0 defects per function point in total 
volume. 
3. Less than 35% defect removal efficiency before 
testing begins. 
4. Less than 85% defect removal efficiency before 
delivery. 
     These show up in the details of the analysis and 
design phases of the tests themselves. They appear in the 
form of incomplete or deferred work due to missing 
information, improperly managed problems recorded 
against key functionality, and other "small" indicators 
accumulating over time. If these indicators are spotted 
far enough ahead of time by managers, developers, and 
the testers themselves, work can be done to head 
problems off while they are still small. This in turn 
ensures that the testing group is better prepared for the 
software and that the software is better prepared for 
testing. Organizations can avoid last-minute quality 
issues by addressing testing problems earlier in the 
process, when they are still small. Doing this requires 
better insight into a project than what can be gotten from 
a Gantt chart. During test development, management 
needs to know the status of test planning and preparation 
to properly gauge the readiness of the test team to test 
the software. To support these different needs, different 
levels of detail in each of the following categories must 
be provided to each group. 

1. Schedule: What tests will be run? When will the tests 
be ready? How much effort will it take? When will it be 
complete?  

2. Functionality: What requirements will be tested and 
where? How will tests divide up application 
requirements? How much of the functionality has been 
tested for a given version of the software?  

3. Code: What parts of the code are exercised by the 
tests? What problems have been found? How much of 
the code in a given version has been executed during 
testing?  

4. Problems: What problems are tested for? What 
problems have been found? How significant are the 
problems? What parts of the software are affected by the 
problems? What versions are affected by the problems? 
What requirements are impacted by these problems? 
What is the impact of these problems on the testing?  

    The questions posed for each of these areas must be 
carefully examined in order to properly understand and 
track the status of project test activities. In addition, 
having a solid understanding of the planning and 
preparation requirements for each testing phase is 
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critical to making correct decisions about project 
schedule, status, and release. 

Table 1 below summarizes commonly used testing 
metrics and where in the testing process they apply. 

Metric Type Test Development Metrics Test Execution Metrics 

Functional Metric • Number of requirements allocated by 
test  

• % of requirements by test development 
phase  

• Number of requirements verified  
• % of requirements tested by version  
• % of requirements tested by major software 

component  
• Stability of server/platform per user  

Code Metric • % of code covered per test  
• % of code coverage per major software 

component  

• Code coverage of tests completed for each 
version under test  

Problem Metrics • Problems tested for in regression tests  
• Extreme conditions tested for in 

functional tests  

• Problems found per version tested  
• Problems found per software component  
• Number of critical/high problems found per 

version  

Schedule Metrics • % completion of functional test 
requirements by testing phase  

• Weighted functional requirement 
completion  

• Tests completed per version  
• Estimated number of days to complete  
• Test cycle completion time  
• Time to complete testing per functional area  

Table 1. Commonly Used Testing Metrics 

You can’t start with all of these, but we recommend 
including at least the following measurements early in 
your metrics program: 

• Product size: count lines of code, function points, 
object classes, number of requirements, or GUI elements  

• Estimated and actual duration (calendar time) and 
effort (labor hours): track for individual tasks, project 
milestones, and overall product development  

• Work effort distribution: record the time spent in 
development activities (project management, 
requirements specification, design, coding, testing) and 
maintenance activities (adaptive, perfective, corrective)  

• Defects: count the number found by testing and by 
customers and their type, severity, and status (open or 
closed) 
 

3 Measuring the Test Process: IOSTP 
case study 
In this section we describe some test metrics as 
contribution to Risk-Based Optimization of Software 
Testing Process i.e. RBOSTP [11]. which is designed to 
improve the efficiency and effectiveness of the testing 
effort by combining Earned (Economic) Value (EV), 
Risk Management (RM) strategy. Based on a proven and 
documented Integrated and Optimized Software Testing 
methodology (IOSTP) [8-12]. The IOSTP with 
embedded RBOSTP help organizations reduce project 
risk and significantly lower the cost of defects. It focus 
on solving the problems of delivering high quality 
software on time and at an affordable price with 
simulation-based software testing scenarios to manage 

stable (controllable and predictable) software testing 
process at lowest risk. 
 
3.1 E2E Test Concepts – Optimized test scenario 
Traditional approaches, such as module and integration 
testing, only addressed part of the need. Module testing 
checks individual units and integration testing checks 
subsets of modules. But neither addresses the quality of 
the overall system, particularly in systems of systems. 
Neither test approach addresses the quality of the system 
from the end user’s point of view. What is End-to-End 
Testing & Assurance-Based Testing [12], shortly E2E 
testing and how does it address those concerns? E2E 
testing focuses on the end user’s point of view. As we 
know the entire system work together to produce the 
correct, desired end result for the user. It documents 
paths that can be traced through the modules and 
subsystems to produce an output or function that serves 
the user correctly (see figure 3). Once these paths are 
identified, they can be ranked for risk and criticality. 
The ranking forms the basis for selecting test scenarios 
wisely. E2E represent the user’s point of view using thin 
threads to define the user’s perspective in E2E test 
specifications. A thin thread represents a minimum 
usage scenario of an integrated system. Essentially, a 
thin thread is a complete scenario from the end user’s 
perspective; the system takes input data, performs some 
computation and produces output. The thin thread 
describes the whole scenario and it describes just one 
function. Thin threads with certain commonalities can 
form a hierarchical thin thread group. That is, a 
collection of low-level, thin thread groups with certain 
commonalities can be further grouped into a high-level, 
thin-thread group. In this way, all thin threads and thin 
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thread groups can be arranged into a thin-thread tree of a 
banking system as an example (see figure 4). The root of 
a thin thread tree represents the overall integrated 
system under test (SUT), a branch node represents a 
collection of related thin threads (thin thread group), and 
a leaf represents a concrete thin thread. Thus, a thin 
hread tree can be viewed as a functional decomposition 
of the system under test. A condition is a companion 
concept to the thin thread. Numerous conditions affect 
the execution of a thin thread. A thin thread is activated 
when all its affiliated conditions are satisfied. The 
possibilities include communication conditions, 
sequencing and timing conditions, data conditions, and 
environmental conditions. Like thin threads, conditions 
can be organized into a tree structure to facilitate reuse 
and management. 
Thin threads and conditions are the core of E2E test 
specifications. They provide a very effective framework 
for risk analysis, test case generation, and regression 
testing. How does E2E support risk analysis? The test 
engineer begins by examining two factors: the 
probability that a thin thread testing will fail and the 
consequences of the failure if it occurs. The risk 
assigned to a thin thread is a function of its failure 
probability and the consequence of its failure. The level 
of risk can then also be calculated for each condition and 
test case. E2E approach provide easy and effective vay 
to generate test cases. An E2E test case is built on either 
a basic scenario (thin thread) or a complex scenario 
(combination of thin threads). In either case, it is defined 
by a set of input data and the expected outputs. A test 
case can be generated through these steps: 
• Identify the subsystems involved, including both 
software and hardware. 
• Identify the input data for the thread. 
• Use the input data that satisfies the conditions 
associated with the thread. 
• Determine the expected results fromthe thin-thread 
description. 
Input data must be selected with care. Often, a thin 
thread is affected by several conditions, and each 
condition can be satisfied by multiple input data. In this 
case, a tester may need to exercise care in selecting 
proper test inputs. 
Relationships among thin threads are useful in 
scheduling test case execution. For example, if a thin 
thread is on a critical path, it should be tested as early 
and asthoroughly as possible. If a set of thin threads will 
be selected for testing, it maybe appropriate to select 
thin threads with independent execution paths to ensure 
certain kinds of coverage. E2E approach support 
regression testing ensuring adequate regression testing 
with ripple effect analysis (REA) to analyze and 
eliminate the side effects of software changes and to 
ensure consistency and integrity after changes are made. 
REA is an iterative process of change request, software 
modification, impact identification, and validation. E2E 

supports REA because its test specifications embody 
both trace ability and dependency information. E2E 
captures traceabilty information by linking test scenarios 
to requirements, implementation, and test cases. 
 

  
 
Fig. 3 E2E testing verifies that a system of systems will 
produce the correct 
output from the end user’s perspective. 
 
 

 
Fig. 4 Thin-thread trees provide a functional 
decomposition of the system 
under test and form the foundation of E2E testing. 
 
 
Traceability enables global change analysis among 
software artifacts. E2E links all the requirements 
associated with the test scenario and all the test cases 
generated from the test scenario, subsystem components, 
interfaces, and data. Dependency information allows an 
analyst to use test-slicing algorithms to detect scenarios 
that are affected by a change and thus are candidates for 
regression testing. There are few drawbacks or 
limitations to the E2E approach. E2E is meant for large, 
inter connected sub/systems. It can be very complex and 
requires an investment of time. But these systems 
demand an advanced level of effective testing, 
especially from the end user’s perspective. E2E achieves 
that goal and more. E2E test specifications can be used 
as a functional specification for the system, as well as 
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training material for new engineers. This can be 
especially useful in large legacy applications, where 
many engineers have maintained the system over an 
extended period of time and no complete functional 
specification exists. Also, E2Etest specifications can be 
generated during system development and help derive 
design specifications in some formal or semi-formal 
notation. Also, E2E test specifications can serve as both 
the functional specification and test document for the 
project. This is useful when documents must be updated 
to reflect system changes. By using E2E test 
specifications for both purposes, fewer documents will 
need revision. This can save significant effort and 
resources. E2E is most effective when used in 
combination with Statistical-Risk-Based Test with 
Assured Confidence (SRBTAC) [12]. 
We applied the E2E Test strategy in our Integrated and 
Optimized Software Testing framework (IOSTP). In 
determining the best source of data to support analyses, 
IOSTP with embedded RBOSTP considers credibility 
and cost of each test scenario i.e. concept. Resources 
for simulations and software test events are weighed 
against desired confidence levels and the limitations of 
both the resources and the analysis methods. The 
program manager works with the test engineers to use 
IOSTP with embedded RBOSTP to develop a 
comprehensive evaluation strategy that uses data from 
the most cost-effective sources; this may be a 
combination of archived, simulation, and software test 
event data, each one contributing to addressing the 
issues for which it is best suited. 
The central elements of IOSTP with embedded 
RBOSTP are: the acquisition of information that is 
credible; avoiding duplication throughout the life cycle; 
and the reuse of data, tools, and information. The 
system/software under test is described by objectives, 
parameters i.e. factors (indexed by j) in requirement 
specification matrix, where the major capabilities of 
subsystems being tested are documented and represent 
an independent i.e. input variable to optimization model. 
Information is sought under a number of test conditions 
or scenarios. Information may be gathered through 
feasible series of experiments (E): software test method, 
field test, through simulation, or through a combination, 
which represent test scenario indexed by i i.e. sequence 
of test events. Objectives or parameters may vary in 
importance αj or severity of defect impacts. Each M&S 
or test option may have k models/tests called modes, at 
different level of credibility or probability to detect 
failure βijk and provide a different level of computed test 
event information benefit Bijkl of experimental option for 
cell (i,j), mode k, and indexed option l for each feasible 
experiment depending on the nature of the method and 
structure of the test. Test event benefit Bijkl of feasible 
experiment can be simple ROI or design parameter 
solution or both etc. The cost Cijkl, of each experimental 
option corresponding to (i,j,k,l) combination must be 

estimated through standard cost analysis techniques and 
models. For every feasible experiment option, tester 
should estimate time duration Tjikl of experiment 
preparation end execution. The testers of each event, 
through historical experience and statistical calculations 
define the Eijkl's (binary variable 0 or 1) that identify 
options. The following objective function is structured 
to maximize benefits and investment in the most 
important test parameters and in the most credible 
options. The model maintains a budget, schedule and 
meets certain selection requirements and restrictions to 
provide feasible answers through maximization of 
benefit index -BBenefitIndex : 

ijklijkl
l

ijkj
kijlkjindexenefit EBIB ∑∑∑∑= βα

,,,
max           (1) 

Subject to: 
∑∑∑∑ ≤

j
ijklijkl

i k l
BUDGETEC  (Budget constraint); 

 
∑∑∑∑ ≤

j
ijklijkl

i k l

LETIMESCHEDUET  (Time-schedule 

constraint) 
 

1≤∑
l

ijklE  for all i,j,k  (at most one option 

selected per cell i, j, k mode) 
 

1≥∑∑
k l

ijklE  for all i,j (at least one experiment 

option per cell i, j) 
 
Models and simulations can vary significantly in size 
and complexity and can be useful tools in several 
respects. They can be used to conduct predictive 
analyses for developing plans for test activities, for 
assisting test planners in anticipating problem areas, and 
for comparison of predictions to collected data. 
Validated models and simulations can also be used to 
examine test article and instrumentation configurations, 
scenario differences, conduct what-if tradeoffs and 
sensitivity analyses, and to extend test results. In other 
words, the software parameters are estimated on-line 
and the corresponding optimal actions are determined 
based on the estimates of these parameters. This leads to 
an adaptive software testing strategy. A non-adaptive 
software testing strategy specifies what test suite or what 
next test case should be generated e.g. random testing 
methods, whereas an adaptive software testing strategy 
specified what next testing policy should be employed 
and thus in turn what test suite or next test case should 
be generated in accordance with the new testing policy 
to maximize benefit index function (1) which is in 
nature uncertain i.e. includes risk to detect failure. 
Benefit index function depends of failure severity if the 
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chosen feasible experiments i.e. test event don’t detect 
failure (αj) because of test event capability i.e. 
probability to detect failure βijk. Because of risk impact 
and probability of success of test event, increasing cost 
and rework time to fix undetected SUT faults, we call 
our Optimization approach of Software Testing Process 
- Risk-Based. RBOSTP is based on defect removal 
(detection and fixing) metrics. 
 
3.2 Defect metrics as a E2E concept drivers 
A defect is defined as an instance where the product 
does not meet a specified characteristic. The finding and 

correcting of defects is a normal part of the software 
development process. Defects should be tracked 
formally at each project phase. Data should be collected 
on effectiveness of methods used to discover defects and 
to correct the defects. Through defect tracking, an 
organization can estimate the number and severity of 
software defects and then focus their resources (staffing, 
tools, test labs and facilities), release, and decision-
making appropriately. Two metrics provide a top-level 
summary of defect-related progress and potential 
problems for a project: - defect profile, defect fixing 
effort and defect age (see figure 5).

 

 
Fig. 5 Analysis of inter and intra-phase faults and removal effort by development phase 

 
The defect profile chart provides a quick summary of the 
time in the development cycle when the defects were 
found and the number of defects still open (see figure 6). 
It is a cumulative graph. The defect age chart provides 
summary information regarding the defects identified 
and the average time to fix defects throughout a project. 
The metric is a snapshot rather than a rate chart reported 
on a frequent basis. The metric evaluates the "rolling 
wave" phenomenon, where a project defers difficult 
problems while correcting easier problems.  

 
Fig. 6 Defect resolution metrics 
 

In addition, this measure provides a top-level summary 
of the ability of the organization to successfully resolve 
identified defects in an efficient and predictable manner. 
If this metric indicates that problems are accumulating 
in the longer time periods (see figure 4 in our Part 1 [1] 
article, a follow-up investigation should be initiated to 
determine the cause. If this metric indicates that 
problems are taking longer than expected to close the 
schedule and cost risks increase in likelihood and a 
problem may be indicated in the process used to correct 
problems and in potentially in the resources assigned. 
 
3.2.1 Defect removal efficiency model 
When detected through walkthroughs, peer reviews 
inspections or testing, defects should be corrected 
effectively, requiring only one re inspection or 
regression test to verify removal as shown in Fig. 7. If 
the software test managers require more than one 
iteration through the defect removal process, then those 
processes may require improvement. The defect removal 
effectiveness metric tracks the history of these defect 
removals. For demonstration purpose we identified these 

  

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007        150



SDLC phases denoted by P: Requirement (P=1), HL 
Design (Architecture level – P=2), LL Design (Detailed 
design – P=3), Code (Unit) test (P=4), 
Integration/System Test (P=5), Acceptance (User) Test 
(P=6), and Operation (Maintenance – P=7). For P=1 i.e. 
Requirement phase it is obvious that DInP=0 and that 
DInP= DLP-1 for the rest P. If DdP  represent total defect 
detected in phase P, then  DdfP ≤ DdP ≤ DTP, because of 
defect fixing priority i.e. some of detected defect in P 
are defered (postponed) to fix later. From our 
experience, rework calculated as percent of defect fixes 
returned naverage=3 times (regression test cycles) to 
development is in Average=10.5%, Std_Dev=6.6%. 

Finaly 
TP

dP
P D

DDD =  denotes Defect Detection rate in 

phase P.   
 

 
 
Fig. 7 Defect Removal Efficiency Model where: DInP  - 
denotes defects escaped from previous SDL phase P, 
DOinP - denotes defects originated (introduced) in phase 
P, DTP – denotes total existed defects in phase P, DdfP - 

denotes defects fixed in phase P, DnfP - denotes defects 
fixed in phase P after n regressions cycles, DLP  denotes 
defects leakage in phase P (escaped to phase P+1),DDP - 
denotes Defects Detection rate in phase P. 
 
Some representative Defect Removal Efficiency and 
defect fixing Cost matrix data that we call DRECR of 
system/software under test described by objectives, 
parameters i.e. factors (indexed by j) in requirement 
specification matrix from few project versions history is 
presented in Table 2. 
If a large number of fixes are ineffective, then the 
process used for corrections should be analyzed and 
corrected. 
Items to report include: 

1. Total inspections to be conducted or tests to run  
2. Inspections or tests completed  
3. Cumulative inspections or tests failed 

The final test metric relates to technical performance 
testing. The issues in this area vary by type of software 
being developed, but top-level metrics should be 
collected and displayed related to performance for any 
medium- or high- technical risk areas in the 
development. The maximum rework rate was in the 
requirements which were not inspected and which were 
the most subject to interpretation. Resolution of the 
defects and after the fact inspections reduced the rework 
dramatically because of Defect Containment. Defect 
containment metric tracks the persistence of software 
defects through the life cycle. It measures the 
effectiveness of development and verification activities. 
Defects that survive across multiple life-cycle phases 
suggest the need to improve the processes applied 
during those phases.

 
 

Table 2 Typical Defect Removal Efficiency and defect fixing Cost Ratio matrix DRECR 
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3.2.2 Cost to fix error 
For each development phase, the number of defects 
detected during that phase shall be tracked. In addition, 
for each defect, the phase in which that defect was 
created shall be tracked. If defects from earlier phases 
are not detected during that phase, there may be a need 
to improve the processes used for exiting those phases. 
Such defects suggest that additional defects are latent as 
presented in Table 1. The last column represent relative 
Additional Cost to Repair Multiplier ratio range 

 for errors with lowest 

severity s=1 and highest severity 8 of error originated in 
previous P phase but escaped and detected in later P+1 
phase compared to cost to fix immediately using cost to 
fix of Requirement defect as a base i.e. 1. 

1811 +→=+→= − PPjsPPjs CMCM

 
3.3 Risk management and economic value 
measurement leading indicators optimization  
For simplicity purpose, an undetected major or higher 
severity (s≥4, s=1..5) defect that escapes detection and 
leaks to the next phase may cost ten times to detect and 
correct. A minor or lower severity (s≤3) defect may cost 
two to three times to detect and correct. The Net Savings 
(NS) then are nine times for major defects and one to 
two times for minor defects. Because of that we apply 
simple but proven reasoning aout high ROI as key 
benefit of software test events BBijkl in optimization 
objective equation (1) i.e. ROIj= Net Savings for j 
objective/Detection Cost for j objective. Of course, some 
benefits of the system/software under test described by 
objectives, parameters i.e. factors (indexed by j) in 
requirement specification matrix, which is the major 
capabilities of subsystems being tested, must be verified 
and validated in every SDLC phase P by many test 
events. Of course, few objectives are tested only in one 
or two phases P and test events. Also, Net Savings for j 
objective in phase P: Cost Avoidance-Cost to 
detect/Repair Now in phase P. It means, Net Saving 
benefit is error prevention to escape from phase P to 
next P+1 phase, or downstream phases to the customer 
use of defective software in the field. In mathematics 
language, it is calculated as: 

                            (2) ∑
=

∗∗=
7

1P
PijklPijklPjijkl CApNS δ

where =jPδ  0 if not aplicable in phase P, 1 if is 

applicable in phase P,  is probability of feasible l 

of  k experiments in phase P to detect error of  j 
objective i.e to prevent defect to escape in phase P+1. 

Also, , and cost avoidance  in 

phase P is calculated as:  

Pijklp

∑
=

=
7

1
1

P
PijklPj pδ PijklCA

 

1
1

* +→→
=
∑= PPjsPrjs

P

r
Pijkl CMDDCA , or rewritten as, 

     (3) )CMCM(*DDCA PjsPjsPrjs

P

r
Pijkl −= +→

=
∑ 1

1

where ),( PrDRECRDD Prjs =→  denotes Defect 

Detected in phase P of  j objectivity, s severity for 
defects originated in phase r but escaped and 

detected in phase P denoted as  that will 

make additional cost to detect and fix by cost multiplier  
 . Cost avoidance in phase P, then will be 

easily calculated from DRECR matrix like  

Finaly, if  j objective severity (s=1..5) is assesed in 
requirement or specification matrix than importance 
α

rOrInsjD

PrdOrInsjD →

1+→PPsjCM

))()1((*),(
1

PCMPCMPrDRECRCA
P

r
Pijkl −+=∑

=

j=s, βijk = of experiment i.e. we must offer as 

many as we could feasible k series of experiments (E): 
software test method, field test, through simulation, or 
through a combination, which represent test scenario 
indexed by i to find out maximal benefit index -
B

Pijklp

BenefitIndex rewritten as: 

ijklijkl
l

j
kijlkjindexenefit EROIsIB ∑∑∑∑=

,,,
max        (4) 

Where, 
ijkl

ijkl
ijkl C

NS
ROI =   and (budget, cost) constraints 

as in (1). 
This model goal is to find out test scenario indexed by i 
with maximal benefit index -BBenefitIndex based on  Return 
on Investment bases and appropriate Risk Management 
activities assure the savings on the cost avoidance 
associated with detecting and correcting defects earlier 
rather than later in the product evolution cycle. 
 
4 Conclusions 
In software development organizations, increased 
complexity of product, shortened development cycles, 
and higher customer expectations of quality proves that 
software testing has become extremely important 
software engineering activity. Software development 
activities, in every phase, are error prone so defects play 
a crucial role in software development. At the beginning 
of software testing task we encounter the question: How 
to inspect the results of executing test and reveal 
failures? What is risk to finish project within budget, 
time and reach required software performance i.e. 
quality? How does one measure test effectiveness, 
efficacy, benefits, risks (confidence) of project success, 
availability of resources, budget, time allocated to STP? 
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How does one plan, estimate, predict, control, evaluate 
and choose “the best” test scenario among hundreds of 
possible (considered, available, feasible) number of test 
events (test cases)? Proposed Software Testing Metrics 
Framework as a part of IOSTP framework solved these 
issues combining few engineering and scientific areas 
such as: Software Measurement, Design of Experiments, 
Modeling & Simulation, integrated practical software 
measurement, Six Sigma strategy, Earned (Economic) 
Value Management (EVM) and Risk Management (RM) 
methodology through simulation-based software testing 
scenarios at various abstraction levels of the SUT to 
manage stable (predictable and controllable) software 
testing process at lowest risk, at an affordable price and 
time.  
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