
A Framework of Software Testing Metrics – Part 2

 Ljubomir Lazić, School of Electrical Engineering, Vojvode Stepe 283, Beograd, SCG, llazic@vets.edu.yu
Nikos Mastorakis, Military Institutions of University Education, Hellenic Naval Academy, Terma

 Hatzikyriakou, 18539, Piraeus, Greece, mastor@ieee.org

Abstract:- Software testing needs to be measured in similar terms as overall software development process (SDP) in
order to understand its true progress and make informed decisions. Basic considerations of Software Testing Metrics
Framework (STMF) and some commonly used testing metrics and where in testing process they apply are described
in this, Part 1 article. Typically, software development is measured in terms of overall progress in meeting functional
and business goals. By considering testing dimensions other than cost and schedule, managers and other team
members can better understand and optimize the testing process, in effect opening the black box and managing
testing more effectively were described in Part 2 article.
Key-Words:- software testing, testing metrics, size estimation, effort estimation, test effectiveness evaluation.

1 Introduction
By considering testing dimensions other than cost and
schedule, managers and other team members can better
understand and optimize the testing process, in effect
opening the black box and managing testing more
effectively. In this way they can avoid costly and painful
"surprises" late in the project.
 Test metrics are an important barometer used to
measure the effectiveness of the software testing
process. In our Part 1 article [1], the basic
considerations of Software Testing Metrics Framework
(STMF) and some commonly used testing metrics and
where in testing process they apply are described. Aim
of this Part 2 article is to explain in more detail proposed
basic metrics of key software testing activities and
artifacts in development processes that can be
objectively measured, according to ISO 15939 –
Software Measurement and SEI CMMI-
SE/SW/IPPD/SS product suit [2-4] as a foundation for
enterprise wide improvement of Integrated and
Optimized Software Development / Testing Process
(IOSD/IOSTP) [9-13] i.e. Software Testing Metrics
Framework (STMF).
 Improvements in the software development process
depend on our ability to collect and analyze data drawn
from various phases of the development life cycle. Our
design metrics research team was presented with a large
scale SDP production model plus the accompanying
problem reports that began in the requirements phase of
development. The goal of this research was to identify
and measure the occurrences of faults and the efficiency
of their removal by development phase in order to target
software development process improvement strategies.
Through our analysis of the system data, the study
confirms that catching faults in the phase of origin is an
important goal. The faults that migrated to future phases
are on average ten times more costly to repair. The study
also confirms that upstream faults are the most critical
faults and more importantly it identifies detailed design
as the major contributor of faults, including critical
faults.

In testing we tend to focus on collecting internal IOSTP
measures such as numbers of defects and innovation
measures such as process improvement metrics. If we
examine where our normal test metrics fit in the STMF
we can see gaps in both quantitative and qualitative
measures, which we may wish to address not only to
focus on internal IOSTP results but to look at a balance
between four measurable areas: financial measures such
as profit and loss, customer measures such as market
share and repeat business, internal measures such as
numbers of defects in products and process violations,
and innovation or learning measures such as number of
new products developed and marketed. To achieve
useful accuracy, software quality models must be
calibrated for each specific development environment
[2]. A case study acquires historical data on one or more
projects. We construct models that could have been
developed during the historical project, and calculates
assessments that could have been made. The accuracy of
those assessments is then evaluated against actual
experience. This gives us confidence in predictions for a
current project. Exploit your gold mines. Our approach
to software quality modeling is aptly described as data
mining, especially when operational faults are rare and
vary significantly from one to another source of
information. Data mining is most appropriate when one
seeks valuable bits of knowledge in large amounts of
data collected for some other purpose, and when the
amount of data is so large that manual analysis is not
possible. Many software development organizations
have very large databases for project management,
configuration management, and problem reporting
which capture data on individual events during
development. For large systems or product lines, the
amount of available data can be overwhelming. Manual
analysis is certainly not possible. However, we have
found that these databases do contain indicators of
which modules will likely have operational faults [12].
 One metric is not enough. Much of the literature on
software metrics is aimed to demonstrate the value of

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007 144

individual metrics. However, this does not fulfill our
purpose: to build industrial-strength quality models.
Our experience with modeling empirical data from
industry has indicated that a model with one software
metric as the only independent variable does not have
useful accuracy and robustness. Lines of code is not
enough. McCabe cyclomatic complexity is not enough.
The metric that is most highly correlated to faults is not
enough. Recent case studies have demonstrated that
multiple independent variables give more accurate
results than models with just one independent variable
[5]. The cost of collecting many metrics from source
code (or other software product), rather than just a few,
is not a practical problem for conventional metrics,
because a metric-analyzer software tool is capable of
measuring many metrics in one pass. We have found it
is more effective to begin with many metrics, and then
to apply data mining techniques to choose those with
statistically significant empirical relationships to faults.
Code metrics are not enough. The development histories
of modules often differ radically. For example, modules
from early releases have been used or tested more than
recently developed modules. A stable module may have
been developed by only one person, while other modules
may have been modified by many different
programmers. Indicators of such variations can
significantly improve model accuracy and robustness.
For example, our case studies have shown that a simple
indicator of reuse from a prior release can be a
significant independent variable in both classification
and regression models. A case study of the Automatic
Target Tracking Radar System - ATTRS [10], showed
that the likelihood of discovering additional faults
during integration and test in a spiral life cycle can be
usefully modeled as a function of the module history
prior to integration. In other words, process-related
measures derived from configuration management data
and problem reporting data may be adequate for
software quality modeling, without resorting to software
product measurement tools and expertise. Empirical
validation must be realistic. Due to the many human
factors that influence software reliability, controlled
experiments to evaluate the usefulness of empirical
models are not practical. Therefore, we take the case
study approach to demonstrate their usefulness in a real-
world testing. To be credible, the software engineering
community demands that the subject of an empirical
study be a system with the following characteristics [6]:
(1) developed by a group, rather than an individual; (2)
developed by professionals, rather than students; (3)
developed in an industrial environment, rather than an
artificial setting; and (4) large enough to be comparable
to real industry projects. Our case studies fulfill all of
these criteria through collaborative arrangements with
development organizations. The analysis presented here
has study data that is especially useful since the data
supplied was compiled as early as the requirements

phase. Such thorough fault reporting is relatively
uncommon and is most helpful in determining the origin
and resolution of faults in the development process.

You can’t track project status meaningfully unless you
know the actual effort and time spent on each task
compared to your plans. You can’t sensibly decide
whether your product is stable enough to ship unless
you’re tracking the rates at which your team is finding
and fixing defects. You can’t quantify how well your
new development processes are working without some
measure of your current performance and a baseline to
compare against. Metrics help you better control your
software projects and learn more about the way your
organization works trough Metrics Life Cycle as
depicted in figure 1. Specifically, the measurements
described in this paper first answers the question of
whether Software Testing is "doing the right thing"
(effectiveness). Once there is assurance and
quantification of correct testing, metrics should be
developed that determine whether or not Software
Testing "does the thing right" (efficiency) as we did
during M&S of Optimized Software Testing model
which combine Risk Management and Earned Value
Management called RBOST [11,12]. You can measure
many aspects of your software products, projects, and
processes. The trick is to select a small and balanced set
of metrics that will help your organization track
progress toward its goals. The analysis presented here
has study data that is especially useful since the data
supplied was compiled as early as the requirements
phase. Such thorough fault reporting is relatively
uncommon and is most helpful in determining the
origin and resolution of faults in the development
process. As we described in our Part 1 article, the Goal
Question Metric (GQM) process, created by Victor
Basili and his colleagues at the University of Maryland,
an excellent technique for selecting appropriate metrics
to meet the specific measurement needs of an
organization [8,9], see figure 2. The data consisted of
the IOSD/IOSTP production model and the related
problem reports for the model. Our research team had
the task of tracking each fault identified in the problem
reports back to its software component. Each problem
report consisted of 35 fields that included the
development cycle phase of origin and phase found,
severity class, a fault class, detection method and the
amount of effort required to resolve the fault. In
addition, a separate analysis section was appended to

 In section 2, the SW Testing Measurement
Infrastructure and some commonly used testing metrics
and where in testing process they apply are described.
Software Testing Metrics Framework deployment in our
IOSTP as a case study is described in section 3. Finally
in section 4, some concluding remarks are given.

2 The SW Testing Measurement
Infrastructure

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007 145

each report detailing the description of the problem, the
problem history, the suggested cause and solution and
subsequent changes to the model.

Figure 1. Metrics life cycle in STMF

Specifically, the measurements described in this paper
first answers the question of whether Software Testing is
"doing the right thing" (effectiveness). Once there is
assurance and quantification of correct testing, metrics
should be developed that determine whether or not
Software Testing "does the thing right" (efficiency). By
measuring effectiveness and efficiency, a Software
Testing organization can better communicate its own
importance using factual information.

Fig 2. Goal Question Metric (GQM) process

This enables Software Testing organizations to break
free from the misconception that Software Testing
measurement should concentrate on issues important to
the Software Development community. Often, there are
early warning signs that testing is going to have
problems.
In summary form [2], successful software projects in the
10,000 function point class usually are characterized by
these attributes:
1. Less than 1% monthly requirements changes after the
requirements phase.
2. Less than 5.0 defects per function point in total
volume.
3. More than 65% defect removal efficiency before
testing begins.
4. More than 94% defect removal efficiency before
delivery.

In summary form, unsuccessful software projects in the
10,000 function point class
usually are characterized by these attributes:
1. More than 2% monthly requirements change after the
requirements phase.
2. More than 6.0 defects per function point in total
volume.
3. Less than 35% defect removal efficiency before
testing begins.
4. Less than 85% defect removal efficiency before
delivery.
 These show up in the details of the analysis and
design phases of the tests themselves. They appear in the
form of incomplete or deferred work due to missing
information, improperly managed problems recorded
against key functionality, and other "small" indicators
accumulating over time. If these indicators are spotted
far enough ahead of time by managers, developers, and
the testers themselves, work can be done to head
problems off while they are still small. This in turn
ensures that the testing group is better prepared for the
software and that the software is better prepared for
testing. Organizations can avoid last-minute quality
issues by addressing testing problems earlier in the
process, when they are still small. Doing this requires
better insight into a project than what can be gotten from
a Gantt chart. During test development, management
needs to know the status of test planning and preparation
to properly gauge the readiness of the test team to test
the software. To support these different needs, different
levels of detail in each of the following categories must
be provided to each group.

1. Schedule: What tests will be run? When will the tests
be ready? How much effort will it take? When will it be
complete?

2. Functionality: What requirements will be tested and
where? How will tests divide up application
requirements? How much of the functionality has been
tested for a given version of the software?

3. Code: What parts of the code are exercised by the
tests? What problems have been found? How much of
the code in a given version has been executed during
testing?

4. Problems: What problems are tested for? What
problems have been found? How significant are the
problems? What parts of the software are affected by the
problems? What versions are affected by the problems?
What requirements are impacted by these problems?
What is the impact of these problems on the testing?

 The questions posed for each of these areas must be
carefully examined in order to properly understand and
track the status of project test activities. In addition,
having a solid understanding of the planning and
preparation requirements for each testing phase is

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007 146

critical to making correct decisions about project
schedule, status, and release.

Table 1 below summarizes commonly used testing
metrics and where in the testing process they apply.

Metric Type Test Development Metrics Test Execution Metrics

Functional Metric • Number of requirements allocated by
test

• % of requirements by test development
phase

• Number of requirements verified
• % of requirements tested by version
• % of requirements tested by major software

component
• Stability of server/platform per user

Code Metric • % of code covered per test
• % of code coverage per major software

component

• Code coverage of tests completed for each
version under test

Problem Metrics • Problems tested for in regression tests
• Extreme conditions tested for in

functional tests

• Problems found per version tested
• Problems found per software component
• Number of critical/high problems found per

version

Schedule Metrics • % completion of functional test
requirements by testing phase

• Weighted functional requirement
completion

• Tests completed per version
• Estimated number of days to complete
• Test cycle completion time
• Time to complete testing per functional area

Table 1. Commonly Used Testing Metrics

You can’t start with all of these, but we recommend
including at least the following measurements early in
your metrics program:

• Product size: count lines of code, function points,
object classes, number of requirements, or GUI elements

• Estimated and actual duration (calendar time) and
effort (labor hours): track for individual tasks, project
milestones, and overall product development

• Work effort distribution: record the time spent in
development activities (project management,
requirements specification, design, coding, testing) and
maintenance activities (adaptive, perfective, corrective)

• Defects: count the number found by testing and by
customers and their type, severity, and status (open or
closed)

3 Measuring the Test Process: IOSTP
case study
In this section we describe some test metrics as
contribution to Risk-Based Optimization of Software
Testing Process i.e. RBOSTP [11]. which is designed to
improve the efficiency and effectiveness of the testing
effort by combining Earned (Economic) Value (EV),
Risk Management (RM) strategy. Based on a proven and
documented Integrated and Optimized Software Testing
methodology (IOSTP) [8-12]. The IOSTP with
embedded RBOSTP help organizations reduce project
risk and significantly lower the cost of defects. It focus
on solving the problems of delivering high quality
software on time and at an affordable price with
simulation-based software testing scenarios to manage

stable (controllable and predictable) software testing
process at lowest risk.

3.1 E2E Test Concepts – Optimized test scenario
Traditional approaches, such as module and integration
testing, only addressed part of the need. Module testing
checks individual units and integration testing checks
subsets of modules. But neither addresses the quality of
the overall system, particularly in systems of systems.
Neither test approach addresses the quality of the system
from the end user’s point of view. What is End-to-End
Testing & Assurance-Based Testing [12], shortly E2E
testing and how does it address those concerns? E2E
testing focuses on the end user’s point of view. As we
know the entire system work together to produce the
correct, desired end result for the user. It documents
paths that can be traced through the modules and
subsystems to produce an output or function that serves
the user correctly (see figure 3). Once these paths are
identified, they can be ranked for risk and criticality.
The ranking forms the basis for selecting test scenarios
wisely. E2E represent the user’s point of view using thin
threads to define the user’s perspective in E2E test
specifications. A thin thread represents a minimum
usage scenario of an integrated system. Essentially, a
thin thread is a complete scenario from the end user’s
perspective; the system takes input data, performs some
computation and produces output. The thin thread
describes the whole scenario and it describes just one
function. Thin threads with certain commonalities can
form a hierarchical thin thread group. That is, a
collection of low-level, thin thread groups with certain
commonalities can be further grouped into a high-level,
thin-thread group. In this way, all thin threads and thin

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007 147

thread groups can be arranged into a thin-thread tree of a
banking system as an example (see figure 4). The root of
a thin thread tree represents the overall integrated
system under test (SUT), a branch node represents a
collection of related thin threads (thin thread group), and
a leaf represents a concrete thin thread. Thus, a thin
hread tree can be viewed as a functional decomposition
of the system under test. A condition is a companion
concept to the thin thread. Numerous conditions affect
the execution of a thin thread. A thin thread is activated
when all its affiliated conditions are satisfied. The
possibilities include communication conditions,
sequencing and timing conditions, data conditions, and
environmental conditions. Like thin threads, conditions
can be organized into a tree structure to facilitate reuse
and management.
Thin threads and conditions are the core of E2E test
specifications. They provide a very effective framework
for risk analysis, test case generation, and regression
testing. How does E2E support risk analysis? The test
engineer begins by examining two factors: the
probability that a thin thread testing will fail and the
consequences of the failure if it occurs. The risk
assigned to a thin thread is a function of its failure
probability and the consequence of its failure. The level
of risk can then also be calculated for each condition and
test case. E2E approach provide easy and effective vay
to generate test cases. An E2E test case is built on either
a basic scenario (thin thread) or a complex scenario
(combination of thin threads). In either case, it is defined
by a set of input data and the expected outputs. A test
case can be generated through these steps:
• Identify the subsystems involved, including both
software and hardware.
• Identify the input data for the thread.
• Use the input data that satisfies the conditions
associated with the thread.
• Determine the expected results fromthe thin-thread
description.
Input data must be selected with care. Often, a thin
thread is affected by several conditions, and each
condition can be satisfied by multiple input data. In this
case, a tester may need to exercise care in selecting
proper test inputs.
Relationships among thin threads are useful in
scheduling test case execution. For example, if a thin
thread is on a critical path, it should be tested as early
and asthoroughly as possible. If a set of thin threads will
be selected for testing, it maybe appropriate to select
thin threads with independent execution paths to ensure
certain kinds of coverage. E2E approach support
regression testing ensuring adequate regression testing
with ripple effect analysis (REA) to analyze and
eliminate the side effects of software changes and to
ensure consistency and integrity after changes are made.
REA is an iterative process of change request, software
modification, impact identification, and validation. E2E

supports REA because its test specifications embody
both trace ability and dependency information. E2E
captures traceabilty information by linking test scenarios
to requirements, implementation, and test cases.

Fig. 3 E2E testing verifies that a system of systems will
produce the correct
output from the end user’s perspective.

Fig. 4 Thin-thread trees provide a functional
decomposition of the system
under test and form the foundation of E2E testing.

Traceability enables global change analysis among
software artifacts. E2E links all the requirements
associated with the test scenario and all the test cases
generated from the test scenario, subsystem components,
interfaces, and data. Dependency information allows an
analyst to use test-slicing algorithms to detect scenarios
that are affected by a change and thus are candidates for
regression testing. There are few drawbacks or
limitations to the E2E approach. E2E is meant for large,
inter connected sub/systems. It can be very complex and
requires an investment of time. But these systems
demand an advanced level of effective testing,
especially from the end user’s perspective. E2E achieves
that goal and more. E2E test specifications can be used
as a functional specification for the system, as well as

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007 148

training material for new engineers. This can be
especially useful in large legacy applications, where
many engineers have maintained the system over an
extended period of time and no complete functional
specification exists. Also, E2Etest specifications can be
generated during system development and help derive
design specifications in some formal or semi-formal
notation. Also, E2E test specifications can serve as both
the functional specification and test document for the
project. This is useful when documents must be updated
to reflect system changes. By using E2E test
specifications for both purposes, fewer documents will
need revision. This can save significant effort and
resources. E2E is most effective when used in
combination with Statistical-Risk-Based Test with
Assured Confidence (SRBTAC) [12].
We applied the E2E Test strategy in our Integrated and
Optimized Software Testing framework (IOSTP). In
determining the best source of data to support analyses,
IOSTP with embedded RBOSTP considers credibility
and cost of each test scenario i.e. concept. Resources
for simulations and software test events are weighed
against desired confidence levels and the limitations of
both the resources and the analysis methods. The
program manager works with the test engineers to use
IOSTP with embedded RBOSTP to develop a
comprehensive evaluation strategy that uses data from
the most cost-effective sources; this may be a
combination of archived, simulation, and software test
event data, each one contributing to addressing the
issues for which it is best suited.
The central elements of IOSTP with embedded
RBOSTP are: the acquisition of information that is
credible; avoiding duplication throughout the life cycle;
and the reuse of data, tools, and information. The
system/software under test is described by objectives,
parameters i.e. factors (indexed by j) in requirement
specification matrix, where the major capabilities of
subsystems being tested are documented and represent
an independent i.e. input variable to optimization model.
Information is sought under a number of test conditions
or scenarios. Information may be gathered through
feasible series of experiments (E): software test method,
field test, through simulation, or through a combination,
which represent test scenario indexed by i i.e. sequence
of test events. Objectives or parameters may vary in
importance αj or severity of defect impacts. Each M&S
or test option may have k models/tests called modes, at
different level of credibility or probability to detect
failure βijk and provide a different level of computed test
event information benefit Bijkl of experimental option for
cell (i,j), mode k, and indexed option l for each feasible
experiment depending on the nature of the method and
structure of the test. Test event benefit Bijkl of feasible
experiment can be simple ROI or design parameter
solution or both etc. The cost Cijkl, of each experimental
option corresponding to (i,j,k,l) combination must be

estimated through standard cost analysis techniques and
models. For every feasible experiment option, tester
should estimate time duration Tjikl of experiment
preparation end execution. The testers of each event,
through historical experience and statistical calculations
define the Eijkl's (binary variable 0 or 1) that identify
options. The following objective function is structured
to maximize benefits and investment in the most
important test parameters and in the most credible
options. The model maintains a budget, schedule and
meets certain selection requirements and restrictions to
provide feasible answers through maximization of
benefit index -BBenefitIndex :

ijklijkl
l

ijkj
kijlkjindexenefit EBIB ∑∑∑∑= βα

,,,
max (1)

Subject to:
∑∑∑∑ ≤

j
ijklijkl

i k l
BUDGETEC (Budget constraint);

∑∑∑∑ ≤

j
ijklijkl

i k l

LETIMESCHEDUET (Time-schedule

constraint)

1≤∑
l

ijklE for all i,j,k (at most one option

selected per cell i, j, k mode)

1≥∑∑
k l

ijklE for all i,j (at least one experiment

option per cell i, j)

Models and simulations can vary significantly in size
and complexity and can be useful tools in several
respects. They can be used to conduct predictive
analyses for developing plans for test activities, for
assisting test planners in anticipating problem areas, and
for comparison of predictions to collected data.
Validated models and simulations can also be used to
examine test article and instrumentation configurations,
scenario differences, conduct what-if tradeoffs and
sensitivity analyses, and to extend test results. In other
words, the software parameters are estimated on-line
and the corresponding optimal actions are determined
based on the estimates of these parameters. This leads to
an adaptive software testing strategy. A non-adaptive
software testing strategy specifies what test suite or what
next test case should be generated e.g. random testing
methods, whereas an adaptive software testing strategy
specified what next testing policy should be employed
and thus in turn what test suite or next test case should
be generated in accordance with the new testing policy
to maximize benefit index function (1) which is in
nature uncertain i.e. includes risk to detect failure.
Benefit index function depends of failure severity if the

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007 149

chosen feasible experiments i.e. test event don’t detect
failure (αj) because of test event capability i.e.
probability to detect failure βijk. Because of risk impact
and probability of success of test event, increasing cost
and rework time to fix undetected SUT faults, we call
our Optimization approach of Software Testing Process
- Risk-Based. RBOSTP is based on defect removal
(detection and fixing) metrics.

3.2 Defect metrics as a E2E concept drivers
A defect is defined as an instance where the product
does not meet a specified characteristic. The finding and

correcting of defects is a normal part of the software
development process. Defects should be tracked
formally at each project phase. Data should be collected
on effectiveness of methods used to discover defects and
to correct the defects. Through defect tracking, an
organization can estimate the number and severity of
software defects and then focus their resources (staffing,
tools, test labs and facilities), release, and decision-
making appropriately. Two metrics provide a top-level
summary of defect-related progress and potential
problems for a project: - defect profile, defect fixing
effort and defect age (see figure 5).

Fig. 5 Analysis of inter and intra-phase faults and removal effort by development phase

The defect profile chart provides a quick summary of the
time in the development cycle when the defects were
found and the number of defects still open (see figure 6).
It is a cumulative graph. The defect age chart provides
summary information regarding the defects identified
and the average time to fix defects throughout a project.
The metric is a snapshot rather than a rate chart reported
on a frequent basis. The metric evaluates the "rolling
wave" phenomenon, where a project defers difficult
problems while correcting easier problems.

Fig. 6 Defect resolution metrics

In addition, this measure provides a top-level summary
of the ability of the organization to successfully resolve
identified defects in an efficient and predictable manner.
If this metric indicates that problems are accumulating
in the longer time periods (see figure 4 in our Part 1 [1]
article, a follow-up investigation should be initiated to
determine the cause. If this metric indicates that
problems are taking longer than expected to close the
schedule and cost risks increase in likelihood and a
problem may be indicated in the process used to correct
problems and in potentially in the resources assigned.

3.2.1 Defect removal efficiency model
When detected through walkthroughs, peer reviews
inspections or testing, defects should be corrected
effectively, requiring only one re inspection or
regression test to verify removal as shown in Fig. 7. If
the software test managers require more than one
iteration through the defect removal process, then those
processes may require improvement. The defect removal
effectiveness metric tracks the history of these defect
removals. For demonstration purpose we identified these

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007 150

SDLC phases denoted by P: Requirement (P=1), HL
Design (Architecture level – P=2), LL Design (Detailed
design – P=3), Code (Unit) test (P=4),
Integration/System Test (P=5), Acceptance (User) Test
(P=6), and Operation (Maintenance – P=7). For P=1 i.e.
Requirement phase it is obvious that DInP=0 and that
DInP= DLP-1 for the rest P. If DdP represent total defect
detected in phase P, then DdfP ≤ DdP ≤ DTP, because of
defect fixing priority i.e. some of detected defect in P
are defered (postponed) to fix later. From our
experience, rework calculated as percent of defect fixes
returned naverage=3 times (regression test cycles) to
development is in Average=10.5%, Std_Dev=6.6%.

Finaly
TP

dP
P D

DDD = denotes Defect Detection rate in

phase P.

Fig. 7 Defect Removal Efficiency Model where: DInP -
denotes defects escaped from previous SDL phase P,
DOinP - denotes defects originated (introduced) in phase
P, DTP – denotes total existed defects in phase P, DdfP -

denotes defects fixed in phase P, DnfP - denotes defects
fixed in phase P after n regressions cycles, DLP denotes
defects leakage in phase P (escaped to phase P+1),DDP -
denotes Defects Detection rate in phase P.

Some representative Defect Removal Efficiency and
defect fixing Cost matrix data that we call DRECR of
system/software under test described by objectives,
parameters i.e. factors (indexed by j) in requirement
specification matrix from few project versions history is
presented in Table 2.
If a large number of fixes are ineffective, then the
process used for corrections should be analyzed and
corrected.
Items to report include:

1. Total inspections to be conducted or tests to run
2. Inspections or tests completed
3. Cumulative inspections or tests failed

The final test metric relates to technical performance
testing. The issues in this area vary by type of software
being developed, but top-level metrics should be
collected and displayed related to performance for any
medium- or high- technical risk areas in the
development. The maximum rework rate was in the
requirements which were not inspected and which were
the most subject to interpretation. Resolution of the
defects and after the fact inspections reduced the rework
dramatically because of Defect Containment. Defect
containment metric tracks the persistence of software
defects through the life cycle. It measures the
effectiveness of development and verification activities.
Defects that survive across multiple life-cycle phases
suggest the need to improve the processes applied
during those phases.

Table 2 Typical Defect Removal Efficiency and defect fixing Cost Ratio matrix DRECR

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007 151

3.2.2 Cost to fix error
For each development phase, the number of defects
detected during that phase shall be tracked. In addition,
for each defect, the phase in which that defect was
created shall be tracked. If defects from earlier phases
are not detected during that phase, there may be a need
to improve the processes used for exiting those phases.
Such defects suggest that additional defects are latent as
presented in Table 1. The last column represent relative
Additional Cost to Repair Multiplier ratio range

 for errors with lowest

severity s=1 and highest severity 8 of error originated in
previous P phase but escaped and detected in later P+1
phase compared to cost to fix immediately using cost to
fix of Requirement defect as a base i.e. 1.

1811 +→=+→= − PPjsPPjs CMCM

3.3 Risk management and economic value
measurement leading indicators optimization
For simplicity purpose, an undetected major or higher
severity (s≥4, s=1..5) defect that escapes detection and
leaks to the next phase may cost ten times to detect and
correct. A minor or lower severity (s≤3) defect may cost
two to three times to detect and correct. The Net Savings
(NS) then are nine times for major defects and one to
two times for minor defects. Because of that we apply
simple but proven reasoning aout high ROI as key
benefit of software test events BBijkl in optimization
objective equation (1) i.e. ROIj= Net Savings for j
objective/Detection Cost for j objective. Of course, some
benefits of the system/software under test described by
objectives, parameters i.e. factors (indexed by j) in
requirement specification matrix, which is the major
capabilities of subsystems being tested, must be verified
and validated in every SDLC phase P by many test
events. Of course, few objectives are tested only in one
or two phases P and test events. Also, Net Savings for j
objective in phase P: Cost Avoidance-Cost to
detect/Repair Now in phase P. It means, Net Saving
benefit is error prevention to escape from phase P to
next P+1 phase, or downstream phases to the customer
use of defective software in the field. In mathematics
language, it is calculated as:

 (2) ∑
=

∗∗=
7

1P
PijklPijklPjijkl CApNS δ

where =jPδ 0 if not aplicable in phase P, 1 if is

applicable in phase P, is probability of feasible l

of k experiments in phase P to detect error of j
objective i.e to prevent defect to escape in phase P+1.

Also, , and cost avoidance in

phase P is calculated as:

Pijklp

∑
=

=
7

1
1

P
PijklPj pδ PijklCA

1
1

* +→→
=
∑= PPjsPrjs

P

r
Pijkl CMDDCA , or rewritten as,

 (3))CMCM(*DDCA PjsPjsPrjs

P

r
Pijkl −= +→

=
∑ 1

1

where),(PrDRECRDD Prjs =→ denotes Defect

Detected in phase P of j objectivity, s severity for
defects originated in phase r but escaped and

detected in phase P denoted as that will

make additional cost to detect and fix by cost multiplier
 . Cost avoidance in phase P, then will be

easily calculated from DRECR matrix like

Finaly, if j objective severity (s=1..5) is assesed in
requirement or specification matrix than importance
α

rOrInsjD

PrdOrInsjD →

1+→PPsjCM

))()1((*),(
1

PCMPCMPrDRECRCA
P

r
Pijkl −+=∑

=

j=s, βijk = of experiment i.e. we must offer as

many as we could feasible k series of experiments (E):
software test method, field test, through simulation, or
through a combination, which represent test scenario
indexed by i to find out maximal benefit index -
B

Pijklp

BenefitIndex rewritten as:

ijklijkl
l

j
kijlkjindexenefit EROIsIB ∑∑∑∑=

,,,
max (4)

Where,
ijkl

ijkl
ijkl C

NS
ROI = and (budget, cost) constraints

as in (1).
This model goal is to find out test scenario indexed by i
with maximal benefit index -BBenefitIndex based on Return
on Investment bases and appropriate Risk Management
activities assure the savings on the cost avoidance
associated with detecting and correcting defects earlier
rather than later in the product evolution cycle.

4 Conclusions
In software development organizations, increased
complexity of product, shortened development cycles,
and higher customer expectations of quality proves that
software testing has become extremely important
software engineering activity. Software development
activities, in every phase, are error prone so defects play
a crucial role in software development. At the beginning
of software testing task we encounter the question: How
to inspect the results of executing test and reveal
failures? What is risk to finish project within budget,
time and reach required software performance i.e.
quality? How does one measure test effectiveness,
efficacy, benefits, risks (confidence) of project success,
availability of resources, budget, time allocated to STP?

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007 152

How does one plan, estimate, predict, control, evaluate
and choose “the best” test scenario among hundreds of
possible (considered, available, feasible) number of test
events (test cases)? Proposed Software Testing Metrics
Framework as a part of IOSTP framework solved these
issues combining few engineering and scientific areas
such as: Software Measurement, Design of Experiments,
Modeling & Simulation, integrated practical software
measurement, Six Sigma strategy, Earned (Economic)
Value Management (EVM) and Risk Management (RM)
methodology through simulation-based software testing
scenarios at various abstraction levels of the SUT to
manage stable (predictable and controllable) software
testing process at lowest risk, at an affordable price and
time.

References
[1]] Lj. Lazić, N. Mastorakis. A Framework of Software
Testing Metrics – Part 2, 11h WSEAS CSCC
(CIRCUITS-SYSTEMS-COMMUNICATIONS-
COMPUTERS) Multiconference, Agios Nikolaos, Crete
Island, Greece, July 23-28, 2007
[2] S. H. Kan. Metrics and Models in Software Quality
Engineering, Second Edition, Addison-Wesley, 2003.
[3] CMM Product Development Team. Capability
Maturity Model for Software (CMM), Version 1.1,
CMU/SEI-93-TR-24, ESC-TR-93-177. Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA; 64 pp., 1993.
[4] CMMI Product Development Team. Capability
Maturity Model Integration for Software Engineering
(CMMi), Version 1.1, CMU/SEI-2002-TR-028, ESC-
TR-2002-028. Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA; 707 pp., 2002.
[5] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J.
P. Hudepohl. Data mining for predictions of software
quality. International Journal of Software Engineering
and Knowledge Engineering, 1999.
[6] L. G. Votta and A. A. Porter. Experimental software
engineering: A report on the state of the art. In
Proceedings of the Seventeenth International Conference
on Software Engineering, IEEE Computer Society,
pages 277-279, Seattle, WA, Apr. 1995.
[7] V. R. Basili, G. Caldiera, H. D. Rombach. The Goal
Question Metric Approach, Encyclopedia of Software
Engineering, volume 1, John Wiley & Sons, 1994, pp.
528-532
[8] Lj. Lazić, N. Mastorakis. Software Testing Process
Improvement to achieve a high ROI of 100:1, 6th
WSEAS Int. Conf. On MATHEMATICS AND
COMPUTERS IN BUSINESS AND ECONOMICS
(MCBE’05), March 1-3, Buenos Aires, Argentina 2005.
[9] Lj. Lazić, D. Velašević, N. Mastorakis. A
Framework of Integrated and Optimized Software
Testing Process, WSEAS Conference, August 11-13,
Crete, Greece, 2003 also in WSEAS TRANSACTIONS
on COMPUTERS, Issue 1, Volume 2, January 2003.

[10] Lj. Lazić, D. Velašević. Applying Simulation and
Design of Experiments to the Embedded Software
Testing Process”, SOFTWARE TESTING,
VERIFICATION AND RELIABILITY, Volume 14,
Number 4, p 257-282, John Willey & Sons, Ltd., 2004.
[11] Lj. Lazić, Mastorakis, N. RBOSTP: Risk-based
optimization of software testing process Part 2”, WSEAS
TRANSACTIONS on INFORMATION SCIENCE and
APPLICATIONS, Issue 7, Volume 2, p 902-916, July
2005, ISSN 1790-0832.
[12] Lj. Lazić, N. Mastorakis. “Faster, Cheaper Software
Error Detection with Assured Confidence – Part 1”, 5th
WSEAS International Conference on APPLIED
COMPUTER SCIENCE (ACOS '06), Hangzhou, China,
Sponsored by WSEAS and WSEAS Transactions, Co-
Organized by WSEAS and Zhejiang University of
Technology, April 16-18, 2006.

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007 153

