
A Framework of Software Testing Metrics – Part 1

Ljubomir Lazić, School of Electrical Engineering, Vojvode Stepe 283, Beograd, Serbia,
llazic@vets.edu.yu

Nikos Mastorakis, Military Institutions of University Education, Hellenic Naval Academy, Terma
 Hatzikyriakou, 18539, Piraeus, Greece, mastor@ieee.org

Abstract:- Software testing needs to be measured in similar terms as overall software development process (SDP) in
order to understand its true progress and make informed decisions. Basic considerations of Software Testing Metrics
Framework (STMF) and some commonly used testing metrics and where in testing process they apply are described
in this, Part 1 article. Typically, software development is measured in terms of overall progress in meeting functional
and business goals. By considering testing dimensions other than cost and schedule, managers and other team
members can better understand and optimize the testing process, in effect opening the black box and managing
testing more effectively is described in Part 2 article.
Key-Words:- software testing, testing metrics, size estimation, effort estimation, test effectiveness evaluation.

1 Introduction
Testing is often seen as a troublesome and
uncontrollable process. As it is often performed, it takes
too much time, costs too much, and does not contribute
to product quality. Testing can become merely an
exercise in identifying how bad the product will be in
the field. However, with appropriate processes, it can be
brought under control and can add significant value to
the development process. Planning for testing on a
software project is often challenging for program
managers. Test progress is frequently unpredictable, and
during software testing painful schedule and feature
"surprises" typically occur. Software testing is often
viewed as an obstacle—more as a problem and less as a
vital step in the process. For this reason, testing is
treated as a "black box" and addressed at the end of the
schedule. While budget and time may be allocated for it,
testing is not really managed in the same way as
development. Typically, software development is
measured in terms of overall progress in meeting
functional and business goals. Software testing needs to
be measured in similar terms to understand its true
progress and make informed decisions. By considering
testing dimensions other than cost and schedule,
managers and other team members can better understand
and optimize the testing process, in effect opening the
black box and managing testing more effectively. In this
way they can avoid costly and painful "surprises" late in
the project.
 Test metrics are an important barometer used to
measure the effectiveness of the software testing
process. Aim of this paper is to propose basic metrics of
key software testing activities and artifacts in
development processes that can be objectively
measured, according to ISO 15939 – Software
Measurement and SEI CMMI-SE/SW/IPPD/SS product
suit [1-3] as a foundation for enterprise wide
improvement of Integrated and Optimized Software
Development / Testing Pocess (IOSTP) [7-11] i.e.
Software Testing Metrics Framework (STMF).

In testing we tend to focus on collecting internal IOSTP
measures such as numbers of defects and innovation
measures such as process improvement metrics. If we
examine where our normal test metrics fit in the STMF
we can see gaps in both quantitative and qualitative
measures, which we may wish to address not only to
focus on internal IOSTP results but to look at a balance
between four measurable areas: financial measures such
as profit and loss, customer measures such as market
share and repeat business, internal measures such as
numbers of defects in products and process violations,
and innovation or learning measures such as number of
new products developed and marketed. Our customers
and managers may be interested in the financial impact
of testing and customer satisfaction measures. Measure
the past to predict the future. Software development is
inherently a people-intensive enterprise, and software
quality is influenced by many factors that vary
tremendously among organizations. To achieve useful
accuracy, software quality models must be calibrated for
each specific development environment [1]. A case
study acquires historical data on one or more projects.
We construct models that could have been developed
during the historical project, and calculate assessments
that could have been made. The accuracy of those
assessments is then evaluated against actual experience.
This gives us confidence in predictions for a current
project. Exploit your gold mines. Our approach to
software quality modeling is aptly described as data
mining, especially when operational faults are rare. Data
mining is most appropriate when one seeks valuable bits
of knowledge in large amounts of data collected for
some other purpose, and when the amount of data is so
large that manual analysis is not possible. Many
software development organizations have very large
databases for project management, configuration
management, and problem reporting which capture data
on individual events during development. For large
systems or product lines, the amount of available data
can be overwhelming. Manual analysis is certainly not

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007 137

possible. However, we have found that these databases
do contain indicators of which modules will likely have
operational faults [11].
 One metric is not enough. Much of the literature on
software metrics is aimed to demonstrate the value of
individual metrics. However, this does not fulfill our
purpose: to build industrial-strength quality models.
Our experience with modeling empirical data from
industry has indicated that a model with one software
metric as the only independent variable does not have
useful accuracy and robustness. Lines of code is not
enough. McCabe cyclomatic complexity is not enough.
The metric that is most highly correlated to faults is not
enough. Recent case studies have demonstrated that
multiple independent variables give more accurate
results than models with just one independent variable
[4]. The cost of collecting many metrics from source
code (or other software product), rather than just a few,
is not a practical problem for conventional metrics,
because a metric-analyzer software tool is capable of
measuring many metrics in one pass. We have found it
is more effective to begin with many metrics, and then
to apply data mining techniques to choose those with
statistically significant empirical relationships to faults.
Code metrics are not enough. The development histories
of modules often differ radically. For example, modules
from early releases have been used or tested more than
recently developed modules. A stable module may have
been developed by only one person, while other modules
may have been modified by many different
programmers. Indicators of such variations can
significantly improve model accuracy and robustness.
For example, our case studies have shown that a simple
indicator of reuse from a prior release can be a
significant independent variable in both classification
and regression models. A case study of the Automatic
Target Tracking Radar System - ATTRS [9], showed
that the likelihood of discovering additional faults
during integration and test in a spiral life cycle can be
usefully modeled as a function of the module history
prior to integration. In other words, process-related
measures derived from configuration management data
and problem reporting data may be adequate for
software quality modeling, without resorting to software
product measurement tools and expertise. Empirical
validation must be realistic. Due to the many human
factors that influence software reliability, controlled
experiments to evaluate the usefulness of empirical
models are not practical. Therefore, we take the case
study approach to demonstrate their usefulness in a real-
world testing. To be credible, the software engineering
community demands that the subject of an empirical
study be a system with the following characteristics [5]:
(1) developed by a group, rather than an individual; (2)
developed by professionals, rather than students; (3)
developed in an industrial environment, rather than an
artificial setting; and (4) large enough to be comparable

to real industry projects. Our case studies fulfill all of
these criteria through collaborative arrangements with
development organizations.
 Test metrics and data gathering regarding the testing
costs, testing failure costs, and defects are essential to
manage and control testing function efficiently and
effectively. Accurate data and relevant metrics provide
information for decision making in relation to quality of
products and processes. Otherwise the release decisions,
further investments, and process changes are
troublesome to justify without proper information. Hard
data about the current situation also concretizes the true
facts enabling to set up feasible and rational objectives.
By establishing appropriate metrics, an organization can
balance the cost of testing with the benefits derived from
that testing. In order for metrics to be effective, the data
collected must allow an organization to understand
clearly:
• When the cost of further testing would outweigh the
risk to the business.
• The cost to fix defects at the various stages of a project
life cycle.
• The potential risk and subsequent costs to the business
if the amount of testing were to be reduced.
This information can then be used to provide the
organization with an informed basis of decision and
effective ways to:
• Estimate the testing budget/spend.
• Spend more efficiently for future projects.
• Potentially reduce the overall costs of testing, realizing
maximum value.
• Reduce total development and production support
costs.
 During individual projects, project metrics can be
compared with accumulated experience to provide an
early indication of quality levels and the accuracy of
estimates. This in turn enables effective management
and cost control at a project management level.
 In section 2, basic considerations of Software Testing
Metrics Framework (STMF) and some commonly used
testing metrics and where in testing process they apply
are described. Finally in section 3, some concluding
remarks are given.

2 Why metrics specific to SW Testing are

essential
Software measurement is a challenging but essential
component of a healthy and highly capable software
engineering culture. In this article, we describe some
basic software measurement principles and suggest
some metrics that can help you understand and improve
the way your organization operates i.e. Software
Testing Metrics Framework (STMF). Plan your
measurement activities carefully because they can take
significant effort to implement and the payoff will come
over time. Software projects are notorious for running
over schedule and budget, yet still having quality

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007 138

problems. Software measurement lets you quantify your
schedule, work effort, product size, project status, and
quality performance. If you don’t measure your current
performance and use the data to improve your future
work estimates, those estimates will just be guesses.
Because today’s current data becomes tomorrow’s
historical data, it’s never too late to start recording key
information about your project. You can’t track project
status meaningfully unless you know the actual effort
and time spent on each task compared to your plans.
You can’t sensibly decide whether your product is
stable enough to ship unless you’re tracking the rates at
which your team is finding and fixing defects. You
can’t quantify how well your new development
processes are working without some measure of your
current performance and a baseline to compare against.

Fig. 1 Major components used for STMF definition

 This consists of five parts:
2.1 Major components used for STMF
definition

Specific – Is the goal specific? Even for developers and
testers working on the project, a percentage and
timeframe should quantify the words “reduce” and
“failures”.

Metrics help you better control your software projects
and learn more about the way your organization works.
Specifically, the measurements described in this paper
first answers the question of whether Software Testing
is "doing the right thing" (effectiveness). Once there is
assurance and quantification of correct testing, metrics
should be developed that determine whether or not
Software Testing "does the thing right" (efficiency) as
we did during M&S of Optimized Software Testing
model which combine Risk Management and Earned
Value Management called RBOST [10]. You can
measure many aspects of your software products,
projects, and processes. The trick is to select a small
and balanced set of metrics that will help your
organization track progress toward its goals. Major
components (depicted in Fig. 1) of proposed Software
Testing Metrics Framework are: 1) The Goal Question
Metric (GQM) process, created by Victor Basili and his
colleagues at the University of Maryland, is a good
place to begin targeting the specific measurement needs
of an organization [6,7], 2) Balanced Scorecard (BSC)
that ensures set of measures providing coverage of all
elements of performance and avoid hidden trade-offs
and 3) Process Model Performance measures that are
most meaningful with respect to selected areas of
performance, prefere outcome then output measures
over process and input measures.

Measurable – Can the goal be gauged in comparison to
other data? In this example, the answer appears to be
“yes”. What is lacking is why this quantity is being
measured? What decisions are being made? What
conclusions can be drawn? It is important to consider
questions like these when refining goals.
Attainable – Is there agreement that this goal is
achievable? Has consensus from the rest of the team
been obtained? Are resources allocated to work on the
goal?
Relevant – Is the goal impractical or imprecise? Is the
goal scaled in the proper perspective? Is the goal
within the scope of what you are responsible for and
expected to accomplish?
Time-limited – Does the goal have a specific start and
end date? Is there time in the project schedule allocated
toward collecting data and tracking progress toward the
goal? In the example above, this is not the case.
In addition to “SMART”, every valid goal should
represent a “stretch”. In other words, achievement of
the goal is not something that will be accomplished
without effort and focus. When the organization reaches
the goal, there will be agreement that improvement has
definitely occurred. For each of the fundamental issues
there are key questions that the project manager must
periodically ask to ensure that the project remains on
course and under control. To answer these questions,
specific categories of measurement data must be
available to the project manager. The issues, key
questions related to each issue, and categories of
measures necessary to answer the questions are show in
Table 1.

The main emphasis of GQM is goal directed
measurement. An organization usually starts with
generic goals that must be refined. For example,
“Reduce the number of failures found on a project”.
This is certainly a goal, but is it well enough refined?
One technique to further refine goals, making them
specific enough that they are applicable to the direction
of the organization, is the SMART technique.

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007 139

Table 1. The issues, key questions related to each issue, and categories of measures

Issue Key Questions Measurement Category
1. Schedule &
Progress

Is the project meeting scheduled
milestones?
How are specific activities and products
progressing?
Is project spending meeting schedule
goals?
Is capability being delivered as scheduled?

1.1 Milestone Performance

1.2 Work Unit Progress

1.3 Schedule Performance

1.4 Incremental Capability

2. Resources & Cost Is effort being expended according to plan?
Are qualified staffs assigned according to
plan?
Is project spending meeting budget
objectives?
Are necessary facilities and equipment
available as planned?

2.1 Effort Profile
2.2 Staff Profile

2.3 Cost Performance

2.4 Environment Availability

3. Growth & Stability Are the product size and content changing?
Are the functionality and requirements
changing?
Is the target computer system adequate?

3.1 Product Size & Stability
3.2 Functional Size &
Stability
3.3 Target Computer

Resource Utilization
4. Product Quality Is the software good enough for delivery?

Is the software testable and maintainable?
4.1 Defect Profile
4.2 Complexity

5. Development /
Testing
Performance

Will the developer be able to meet budget
and schedules?

Is the developer efficient enough to meet
current commitments?
How much breakage to changes and errors
has to be handled?

5.1 Process Maturity

5.2 Productivity

5.3 Rework

6. Technical
Adequacy

Is the planned impact of the leveraged
technology being realized?

6.1 Technology Impacts

2.2 Basic software testing process metrics
By focusing data collection activities on measurement
categories that answer the key issue questions the
project can minimize resources devoted to the
measurement process. Among many Goals and
Problems identified in former SDP/STP, before IOSTP
deployment [8,9], our focus for STP improvement for

demonstration purpose in this paper were issues -
Development/Testing Performance and Product Quality
i.e. only to these sampled issues, key questions related to
each issue, and categories of measures necessary to
answer the questions are show in Table 2 to 6 and some
graphical presentations in figures 2 to 4.

Table 2. Key questions related to each issue, and categories of measures

4. Product Quality Is the software good enough for
delivery?

4.1 Defect Profile

5. Development / Testing
Performance

Is the developer efficient enough
to meet current commitments?

5.2 Productivity

Measuring the impact and consequences of problems
that arise during testing is a critical step in the process.
This should include analysis of collected measurements
and calculated metrics to find out how much of the
software is affected by a given problem, at what point
during testing a problem was found, and what kinds of
problems regression tests are attempting to uncover.
The idea is to generate questions about the goal that
will lead to specific metrics. A few questions to
consider are:

- Is this project similar enough to the previous project
that this type of comparison makes sense?

- What are the causes of critical defects?
- What data about duration testing indicates that 20%

more critical failures can be found using these
techniques?

- In the last product, what was the percentage of
“critical” failures found, for the corresponding time
period, as compared to the total?

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007 140

- How many critical defects are expected for the same
period on the next project?

- What duration test suite is appropriate for this
project?

- Does duration testing enable finding a higher
percentage of critical defects than regular testing?

Once a list of valid questions are created, measurements
are generated. When considering metrics, it is often
helpful to list the raw data that must be collected. This
raw data is sometimes referred to as “primitive
metrics”. In this example, some important raw data is:
- Number of critical defects with a severity level of

three and four.
- Time in duration testing.
- Total number of defects found in duration testing

time period.
- Number of critical defects found on the last project

for the corresponding time period.
- Number of total defects on last project for the

corresponding time period.

Table 3. Measurement Category and Specific Measures

Once the raw data is defined, more complex, or
“computed” metrics are generated based on
combinations of primitive metrics.

Fig. 2 Typical Distribution of Bugs

Deriving measurements from raw data and translating
that data into something useful to managers and/or
developers is essential in tracking real progress towards
a goal. Important computed metrics in this example are:

- Number of critical failures found in duration testing
time period / Total number of failures found in
duration testing time period.

- Number of critical failures (severity 3&4) found in
corresponding time period on previous project /
Total number of failures found in corresponding
time period on previous project.

Fig. 3 Typical Distribution of Effort to Fix Bugs

After collection and analysis phase statistical methods
and tools are used to identify and confirm root causes of
defects. Not only must analysis of the data be
performed, but also an in depth analysis of the process to
ensure an understanding of how the work is actually
being done must be performed to identify
inconsistencies or problem areas that might cause or
contribute to the problem. Deliverables of this phase are:
data and process analysis, root cause analysis,
quantifying the gap/opportunity and checkpoints for
completion is to identify gaps between current
performance and the goal performance.

Fig. 4 Typical time to Fix Bugs vs severity levels

Root Cause Analysis should be done to:
• Generate list of possible causes (sources of variation).
• Segment and stratify possible causes (sources of
variation).
• Prioritize list of 'vital few' causes (key sources of
variation).
• Verify and quantify the root causes of variation.

Measurement
Category

Specific Measures

4.1 Defect Profile 4.1.1 Problem Report Trends
4.1.2 Problem Report Aging
4.1.3 Defect Density
4.1.4 Failure Interval

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007 141

Table 4. Focus question and specific measure
4 PRODUCT QUALITY
Are difficult problems being deferred? 4.1.2 Problem Report Aging
Are reported problems being closed in a timely manner? 4.1.2 Problem Report Aging
Do report arrival and closure rates support the scheduled completion
date of integration and test?

4.1.1 Problem Report Trends

FOCUS QUESTION SPECIFIC MEASURE

How long does it take to close a problem report? 4.1.2 Problem Report Aging
How many problem reports are open? What are their priorities? 4.1.1 Problem Report Trends
How many problems reports have been written? 4.1.1 Problem Report Trends
How much code is being reused? 4.2.6 Depth Of Inheritance
How often will software failures occur during operation of the
system?

4.1.4 Failure Interval

How reliable is the software? 4.1.4 Failure Interval
What components are candidates for rework? 4.1.3 Defect Density
What components have a disproportionate amount of defects? 4.1.3 Defect Density
What components require additional testing or review? 4.1.3 Defect Density
What is the program’s expected operational reliability? 4.1.4 Failure Interval
What is the quality of the software? 4.1.3 Defect Density

In order to quantify the Gap/Opportunity answering the
questions:
• What is the cost of poor quality as supported by the
team's analysis?
• Is the process severely broken such that a re-design
is necessary?
• What are the revised rough order estimates of the
financial savings/opportunity for the improvement
project?
• Have the problem and goal statements been updated

to reflect the additional knowledge gained from the
analyze phase?

• Have any additional benefits been identified that
will result from closing all or most of the gaps?
• What were the financial benefits resulting from any
'ground fruit or low-hanging fruit' (quick fixes)?

• What quality tools were used to get through the
analyze phase?

Table 5. Measurement Category and Specific Measures

Measurement Category Specific Measures
5.2 Productivity 5.2.1 Product Size/Effort Ratio

5.3.2 Functional Size/Effort
Ratio

5.8.1 Tracking Defect
Containment

In proposed STMF our focus is on software Error and
Defect Root Cases Analysis applying Defect
Classification scheme as described in our paper about
Software Testing Process Improvement to achieve a
high ROI of 100:1 [7].

Table 6. Focus question and specific measure

FOCUS QUESTION
SPECIFIC MEASURE

How efficiently is software being produced? 5.2.1 Product Size/Effort Ratio
What is Phase Defect Detection effectiveness? 5.8.1.1 Phase Containment Effectiveness
What is Defect Escape effectiveness? 5.8.1.2 Defect Containment Effectiveness
What is Post-Released Defect number? 5.8.1.3 Total Containment Effectiveness
How much effort was expended on fixing defects in the software
product?

5.3.2 Rework Effort

Is product being developed at a rate to be completed within
budget?

5.2.1 Product Size/Effort Ratio

Is the amount of rework impacting cost or schedule? 5.3.2 Rework Effort
Is the amount of rework impacting the cost and schedule? 5.3.1 Rework Size
Is the planned software productivity rate realistic? 5.2.1 Product Size/Effort Ratio
What software development activity required the most rework? 5.3.2 Rework Effort
What was the quality of the initial development effort? 5.3.1 Rework Size

This information is needed to monitor the overall
progress of the software through testing and to make

informed decisions about software release. Once initial
measurements are defined using the GQM paradigm, it

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007 142

is essential to verify that the metrics align with the
departments (teams) that make up the organization. So
by combining all of the different perspectives of
schedule, functionality, code, and problem resolution, it
is possible to understand and manage software testing,
rather than treating it as a black box as we explained in
our paper of proposed STMF, Part 2 [12].

3 Conclusion
Although it is important to measure the quality of the
product under development, it is equally important to
measure the effectiveness and efficiency of Software
Testing itself as an activity – not a service. We proposed
basic metrics of key software testing activities and
artifacts in development processes that can be
objectively measured, according to ISO 15939 –
Software Measurement and SEI CMMI-
SE/SW/IPPD/SS product suit [1-3] as a foundation for
enterprise wide improvement of Integrated and
Optimized Software Development / Testing Pocess
(IOSTP) [7-11] i.e. Software Testing Metrics
Framework (STMF). Specifically, the measurements
described in this paper first answers the question of
whether Software Testing is "doing the right thing"
(effectiveness). Once there is assurance and
quantification of correct testing, metrics should be
developed that determine whether or not Software
Testing "does the thing right" (efficiency). By
measuring effectiveness and efficiency, a Software
Testing organization can better communicate its own
importance using factual information. Often, there are
early warning signs that testing is going to have
problems. These show up in the details of the analysis
and design phases of the tests themselves. They appear
in the form of incomplete or deferred work due to
missing information, improperly managed problems
recorded against key functionality, and other "small"
indicators accumulating over time. If these indicators are
spotted far enough ahead of time by managers,
developers, and the testers themselves, work can be
done to head problems off while they are still small.
This in turn ensures that the testing group is better
prepared for the software and that the software is better
prepared for testing. Measuring the impact and
consequences of problems that arise during testing is a
critical step in the process. So by combining all of the
different perspectives of schedule, functionality, code,
and problem resolution, it is possible to understand and
manage software testing, rather than treating it as a
black box.

References
[1] S. H. Kan. Metrics and Models in Software Quality
Engineering, Second Edition, Addison-Wesley, 2003.
[2] CMM Product Development Team. Capability
Maturity Model for Software (CMM), Version 1.1,

CMU/SEI-93-TR-24, ESC-TR-93-177. Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA; 64 pp., 1993.
[3] CMMI Product Development Team. Capability
Maturity Model Integration for Software Engineering
(CMMi), Version 1.1, CMU/SEI-2002-TR-028, ESC-
TR-2002-028. Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA; 707 pp., 2002.
[4] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J.
P. Hudepohl. Data mining for predictions of software
quality. International Journal of Software Engineering
and Knowledge Engineering, 1999.
[5] Nagappan, N., Williams, L., Vouk, M., Osborne, J.
“Early Estimation of Software Quality Using In-Process
Testing Metrics: A Controlled Case Study”, Third
Software Quality Workshop, co-located with the
International Conference on Software Engineering
(ICSE 2005), pp. 46-52, May 2005.
[6] V. R. Basili, G. Caldiera, H. D. Rombach. The
Goal Question Metric Approach, Encyclopedia of
Software Engineering, volume 1, John Wiley &
Sons, 1994, pp. 528-532
[7] Lj. Lazić, N. Mastorakis. Software Testing Process
Improvement to achieve a high ROI of 100:1, 6th
WSEAS Int. Conf. On MATHEMATICS AND
COMPUTERS IN BUSINESS AND ECONOMICS
(MCBE’05), March 1-3, Buenos Aires, Argentina 2005.
[8] Lj. Lazić, D. Velašević, N. Mastorakis. A
Framework of Integrated and Optimized Software
Testing Process, WSEAS Conference, August 11-13,
Crete, Greece, 2003 also in WSEAS TRANSACTIONS
on COMPUTERS, Issue 1, Volume 2, January 2003.
[9] Lj. Lazić, D. Velašević. Applying Simulation and
Design of Experiments to the Embedded Software
Testing Process”, SOFTWARE TESTING,
VERIFICATION AND RELIABILITY, Volume 14,
Number 4, p 257-282, John Willey & Sons, Ltd., 2004.
[10] Lj. Lazić, Mastorakis, N. RBOSTP: Risk-based
optimization of software testing process Part 2”, WSEAS
TRANSACTIONS on INFORMATION SCIENCE and
APPLICATIONS, Issue 7, Volume 2, p 902-916, July
2005, ISSN 1790-0832.
[11] Lj. Lazić, N. Mastorakis. “Faster, Cheaper Software
Error Detection with Assured Confidence – Part 1”, 5th
WSEAS International Conference on APPLIED
COMPUTER SCIENCE (ACOS '06), Hangzhou, China,
Sponsored by WSEAS and WSEAS Transactions, Co-
Organized by WSEAS and Zhejiang University of
Technology, April 16-18, 2006.
[12] Lj. Lazić, N. Mastorakis. A Framework of Software
Testing Metrics – Part 2, 11h WSEAS CSCC
(CIRCUITS-SYSTEMS-COMMUNICATIONS-
COMPUTERS) Multiconference, Agios Nikolaos, Crete
Island, Greece, July 23-28, 2007.

Proceedings of the 4th WSEAS/IASME International Conference on Engineering Education, Agios Nikolaos, Crete Island, Greece, July 24-26, 2007 143

	Measurement Category
	FOCUS QUESTION
	Measurement Category
	FOCUS QUESTION
	3 Conclusion

