

Optimal Polarity for Dual Reed-Muller Expressions
Khalid. Faraj A.E.A. Almaini

 Computer Science School of Engineering
 Wajdi Institute of Technology Napier University
 Jerusalem, Mount of Olives. P.O.Box 19014 Edinburgh

 Palestine Scotland
 http://www.wit.edu.ps www.napier.ac.uk

Abstract In this paper we present two algorithms, which can be used in converting between product of sum (POS)
and fixed polarity dual Reed_Muller (FPDRM) and find the optimal polarity for large number of variables. The first
algorithm is used to compute the coefficients of FPDRM directly from the truth table of POS. This algorithm is also
used to compute the coefficients of POS from FPDRM. The second algorithm will find the optimal polarity among
the 2n different polarities for large n-variable functions, without generating all of the polarity sets. This algorithm is
based on separating the truth vector of POS and the use of sparse techniques, which will lead to the optimal polarity.
Time efficiency and computing speed are thus achieved in this technique.

Keywords:-Product of Sum, Dual Reed_Muller, Maxterms,Boolean functions.

1. Introduction
The increasing complexity of chip designs and the
continuous development of smaller size fabrication
processes present new challenges to the existing tools.
Future synthesis tools are required to handle millions
of gates in a realistic time. Computer-Aided Design
(CAD) tools became critical for design and
verification of Very Large Scale Integrated (VLSI)
digital circuits. Up to now, most of the research has
focused on developing algorithms for AND/OR or
NAND/NOR circuits. An alternative description of a
Boolean function is Reed-Muller expansion [1, 2]. It
employs modulo-2 arithmetic and is also unique and
canonical for a given Boolean function. The
application of XOR/AND and XNOR/OR gates has
some advantages over other implementations. In
practice, it is well known that many useful circuits
such as arithmetic units and parity checkers are
heavily XOR oriented and it is more economical to
implement their modulo-2 expressions [3-6]. Some
authors [7, 8] even conjecture that it is generally more
economical to base logic design on modulo-2
expressions rather than conventional OR expressions.
Recent progress in circuit technology makes the use
of OR/XNOR gates feasible, especially with the
development of the new technologies and the arrival
of various programmable gate array (FPGA) devices.
A major other characteristic of the XNOR logic is the
numerous possible canonical representations of
switching functions it provides.

There are several kinds of OR/ XNOR circuits. The
FPDRM is one of the canonical OR/ XNOR expressions.
FPDRMs are a generalization of Positive Polarity Reed-
Muller expressions (PPDRM). A PPDRM is unique for a
completely specified function, is an OR/ XNOR
expressions with only un-complemented (positive)
literals. Each variable in the FPDRM can appear either in
un-complemented or complemented form but not both.
For an n-variable completely specified Boolean function
there are 2n distinct FPDRMs. There are techniques for
converting from POSs to PPDRM or FPDRM [9-11]. In
this paper we present an efficient algorithm, which can be
used to compute the coefficients of PPDRM or FPDRM
directly from the truth table of POS, without the use of
mapping techniques [9] and without the use of matrix
operation [10]. This algorithm is also used to compute the
coefficients of POSs from PPDRM or FPDRM. Time
efficiency and computing speed are thus achieved in this
technique.

2. Preliminaries
In this section, essential definitions and notations are
presented, which are important for the understanding of
the paper.

Definition 2.1 An n-variable Boolean function can be
expressed as

Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19, 2007 102

() ()ii
i

nn Mxxxf
n

+=
=

−− d∏
1-2

0

021 ...,,, (1)

Where ‘∏’ represents logical products (AND), the ‘+’
is OR operation and i is a binary n-tuple i = [i0, i 1,…,
in-1]2, [d0,d1,…, d2

n
-1] is the truth vector of the function

f , di ∈{0,1} [12], Mi is a sum term

021

021

0

1-

∑
ii

n

i

n

nk

i

ki xxxxM
nnk •

−

•

−

•

=

•

+++==
−−

...

and

⎩
⎨
⎧

=
=

=
•

1

0

kk

kk
i

k
ix
ix

x
k

Alternatively, any Boolean function can be
represented by a FPDRM expression as:

f(xn-1,xn-2,…,x0) = ()iii

S
n

+⊗
−

=
c

12

0 (2)

Where ‘⊗’ is XNOR operator, [c2

n
-1, c2

n
-2,…,c0] is the

truth vector of the function f , ci ∈{0,1}, i = [i0, i 1,…,
in-1]2, Si represents a Sum term as

021

021

0

1-

∑S
ii

n

i

n

nk

i

ki xxxx
nnk ~~~~

...+++==
−−

−−

=

, (3)

and

⎩
⎨
⎧

=
=

=
1

00

kk

k
i

k
ix
i

x
k~

Definition 2.2 Polarity vector (pn-1,pn-2,…,p0) for a
FPDRM of an n-variable Boolean function is a binary
vector with n elements, where pi = 0 indicates the
variable xi in an un-complemented form (xi), while pi
= 1 indicates the variable xi in the complemented form
xi.
Property 1 For an n-variable Boolean function, there
are 2n FPDRM expansions corresponding to 2n
different polarity numbers. Each of such expansions is
a canonical representation of a completely specified
Boolean function.
Maxterms can be identified by expanding a Kronecker
sum of n basis vectors of the form [0 xi] for ‘0’
polarity and [0 xi] for ‘1’ polarity .

The FPDRM can be deduced by substituting the
coefficient vector c in equation (4) for a zero polarity.
Thus, for n = 2 and P = 0
[0 x1]*[0 x0] = [0+0 0+ x0 x1+0 x1+ x0]

f(xn-1,xn-2,…,x0) = {[0 xn-1]*[0 xn-2]**[0 x0]} c (4)
Where ‘ ’ represents matrix multiplication based on OR
and XNOR [9-11].

3 Conversion Algorithms from POS to
FPDRM and vise versa
To compute ci coefficients from di coefficients, the
following principles and derivation are developed.
Equation (1) can be represented as

f(xn-1,xn-2,…,x0) = (d0 + xn-1+ x n-2 + … x 0)٠(d1 + xn-1+ x n-2

+ … x 0)٠(d2 + xn-1+ x n-2 + … x 1 + x 0) ٠…٠(d2
n
-1 + x n-

1+ x n-2 + … x 0) (5)

In equation (1) if all Maxterms are ANDed for each
different combination of the inputs the result will be ‘0’
and if all Maxterms are XNORed for each different
combination of the inputs variables the result will be also
a ‘0’, because for each combination of the inputs one of
the Maxtrems will be ‘0’ and the rest will be ‘1’. Hence
equation (1) can be written as in Equation (6) by replacing
each AND gate by XNOR gate.

f(xn-1,xn-2,…,x0) = ()iii
M

n

+⊗
−

=
d

12

0 (6)

f(xn-1,xn-2,…,x0) = (d0 + xn-1+ x n-2 + … x 0) ⊗ (d1 + xn-1+ x n-2

+ … x 0) ⊗ (d2 + xn-1+ x n-2 + … x 1 + x 0) ⊗…⊗ (d2
n

-1 +
x n-1+ x n-2 + … x 0) (7)

Equation (7) can be described in terms of a coefficient
truth vector. The coefficient vector for an n-variable
Boolean function can be represented as
T = [d0,d1,…, d2

n
-1] (8)

The elements of the truth vector (T) are placed in the
order of decimal equivalent binary coding of the sum
terms.
Examining equation (7), half of the sum terms include
variable xi in true form and the second half include
variable xi in complemented form. Therefore, each truth
vector (T) for any Boolean function in POS form can be
separated into two rows for each variable xi and the result
is stored in the separation matrix T(xi). The first row of
the separation matrix T(xi) contains Maxterms with
variable xi in un-complemented form, while the second

Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19, 2007 103

row of T(xi) contains Maxterms with variable xi in
complemented [13]. The elements in the truth vector
and the separation matrix T(xi) are arranged into
groups of four bits for convenient. The following
example illustrates the separation process.

Example 1
Construct the truth vector T for a 4-variable function
f(x3,x2,x1,x0) = ∏ M(0,4,6,7,11,15) and use the truth
vector T to generate the separation matrix for each
variable xi.
The truth vector T has 2n elements. Each Maxterms
correspond to ‘0’s in the truth vector T. Hence T is
presented as follows:
T = [0111 0100 1110 1110]
To generate the first matrix T(x3), the truth vector T is
separated around variable x3 int two equal parts. The
first part corresponds to un-complemented part, while
the second part to the complemented part. This is can
be done according to the following formula:

Number of Divisions = (2n/2n-i)

Where n is the number of variables and i is the
number for variable xi.
Therefore, n = 4 and i = 3.
Hence,
The un- complemented for x3 is:

[0111 0100]

And for the complemented is:

[1110 1110]
Therefore,

To generate the first matrix T(x3), the truth vector T is
separated around variable x3 which gives the
following result

3

3
3 11101110

01000111
)T(

x
x

x ⎥
⎦

⎤
⎢
⎣

⎡
=

Similarly the separation matrices for x2, x1 and x0 are
as follows:

2

2
2 11100100

11100111
)T(

x
x

x ⎥
⎦

⎤
⎢
⎣

⎡
=

1

1
1 10101100

11110101
)T(

x
x

x ⎥
⎦

⎤
⎢
⎣

⎡
=

0

0
0 10101110

11110100
)T(

x
x

x ⎥
⎦

⎤
⎢
⎣

⎡
=

To replace any complemented variable xi by un-
complemented variable xi in equation (7) the following
identity xi = (0 ⊗ xi) is used. The following result is
obtained

(a + ix) ⊗ (b + xi) = [a + (0 ⊗xi)] ⊗ (b + xi)

 = [(a + 0) ⊗ (a + xi)] ⊗ (b + xi)
 = a ⊗ [(a + xi) ⊗ (b + xi)]
However
 [(a + xi) ⊗ (b + xi)] = [(a ⊗ b) + xi]
This can be verified as follows

[(a + xi) ⊗ (b + xi)] = ii xbxa ⊕

)(baxi ⊕=

Where ‘⊕’ is XOR operator.
Complementing the last expression, the following is
obtained

)⊕a(bxi = [(a ⊗ b) + xi]

Therefore,

[(a + xi) ⊗ (b + xi)] = [(a ⊗ b) + xi]
Hence
(a + ix) ⊗ (b + xi) = a ⊗ [(a ⊗ b) + xi] (9)

Examining equation (9), the coefficients of the un-
complemented part of variable xi takes a new form. The
new coefficient is (a XNOR b), while the coefficient for
the complemented part will remain the same. Similarly, to
convert un-complemented form to complemented form
the following principal is applied.
Each un-complemented variable xi is replaced by 0 ⊗ xi.

(a + ix) ⊗ (b + xi) =

bxbxa
xbbxa

xbxa

ii

ii

ii

⊗+⊗+=
+⊗+⊗+=

⊗+⊗+

)]()[(

)]()0[()(

)]0([()(

By taking the complement of the following expression

)()]()[(baxxbxaxbxa iiiii ⊕=⊕=+⊗+

Taking the complement for the last expression will give
the following result

)()⊕a(baxbx ii ⊗+=

Hence
)()]() [(baxxbxa iii ⊗+=+⊗+

Therefore,

Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19, 2007 104

(a + ix) ⊗ (b + xi) = b ⊗ [(a ⊗b) + ix] (10)

Inspecting equation (10), the coefficient of the true
form stays as it is while the coefficient of the
complemented form is replaced by (a XNOR b).

Algorithm 1
A computer algorithm has been developed based on
the previous theory as shown in the following steps.

Algorithm A: Converting from POS to FPDRM
Step 1: Store the coefficients of the POS in the truth
vector T.
Step 2: Construct T(xi) matrix from T vector for each
variable xi. The first row of T(xi) matrix contains the
coefficients of the Maxterms for variable xi in un-
complemented form. While the second row of T(xi)
contains the coefficients of the Maxterms with
variable xi in the complemented form.
Step 3: The elements in the first and second rows of
T(xi) matrix are group together using XNOR
operation and the result is stored in vector N.
Step 4: If the required polarity for xi variable is ‘0’
then replace the contents of each true variable xi in the
truth vector T by the contents of vector N.
Step 5: If the required polarity for xi variable is ‘1’
then replace the contents of each complemented part
of the xi variable in the truth vector T by the contents
of the un-complemented part of the xi variable and
store the result N in place of un-complemented part
of xi variable in T.
Step 6: Repeat the previous steps for the rest of the
variables by using the new truth vector from step ‘5’
or ‘6’ depending on the polarity.
Step 7: The zero elements stored in the last T vector
are the coefficients for that particular polarity of the
FPDRM.

Algorithm B: Converting from FPDRM to POS
To find the POS’s coefficients from the FPDRM’s
coefficients, step ‘5’ is changed to the following step:
If the required polarity for xi variable is ‘1’ then
replace the contents of each un-complemented part of
the xi variable in the truth vector T by the contents of
the complemented part of the xi variable and store the
in T.
The following examples will illustrate Algorithm 1.a
and Algorithm 1.b.

Example 2
Convert a 4-variable function f (x3,x2,x1,x0) = ∏
M(0,4,7,11,15) from the POS to the fixed polarity DRM
by using polarity p = 7 = (0111).
Store the coefficients of Maxterms in the truth vector T.
T = [0111 0110 1110 1110]
Separate T vector around variable x3 to obtain T(x3)
matrix and XNOR each element in the first row with the
elements in the second row.

01110110

XNOR
11101110

01100111
)(T

3

3
3 x

x
x ⎥

⎦

⎤
⎢
⎣

⎡
=

Since the polarity is ‘0’ for variable x3, replace the un-
complemented part of x3 variable in T by the N vector
results. The new T vector is [0110 0111 1110 1110].
Separate the new vector T around variable x2 to obtain

T(x2) matrix as follows:

[]11111110N

) XNOR(
11100111

11100110
)(T 22

2

2
2

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

Since the polarity is ‘1’ for variable x2 apply step ‘5’, the
new truth vector is

T = [1110 0110 1111 1110].
Similarly for variable x1 and x0

[]11101000N

) XNOR(
11101010

11111101
)(T 11

1

1
1

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

T = [1011 0001 1111 1011]

[]11010110N

) XNOR(
11010101

11111100
)(T 00

0

0
0

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

The final T vector is

T = [0111 1000 1111 0111]={0,5,6,7,12}
The sum terms in this canonical can be generated by using
the basis vector

Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19, 2007 105

)]()(

)()()(

)()()()(

)()([0

][0]0[]0[]0[

0123123

02323013

13031212

22011

0123

xxxxxxx
xxxxxxxx

xxxxxxxxx
xxxxxxx

xxxx

o

oo

+++++
+++++

+++++
++

=++++++

The FPDRM can be generated using by substituting
the coefficient vector c in the following general
equation.

 f(xn-1,xn-2,…,x0) = {[0 xn-1] ++ [0 xn-2] ++ … ++
[0 x0] } º c (11)
Hence

)()(

)()(0),,,(

023012

12020123

xxxxxx
xxxxxxxxf

++⊗++⊗
+⊗+⊗=

Example 3
Convert a 4-variable function f (x3,x2,x1,x0) = ⊗
(0,5,6,7,12) from FPDRM form to POS form by
using polarity p = 7 = (0111).
 Store the truth vector in T matrix.

T = [0111 1000 1111 0111]
Separate T vector around variable x3 to obtain T(x3)
matrix.

[]00000111N

) XNOR(
01111111

10000111
)(T 33

3

3
3

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

Since polarity is ‘0’ for variable x3, replace the un-
complemented part of variable x3 in T by the N vector
results. The new truth vector is

T = [0111 0000 1111 0111].
Separate the new vector T around variable x2 to obtain

T(x2) matrix as follows

[]01111000N

) XNOR(
01110000

11110111
)(T 22

2

2
2

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

Since polarity is ‘1’ for variable x2 apply Algorithm
B, the new truth vector is

T= [0000 1000 0111 0111]
Similarly for variable x1 and x0

[]01011101N

) XNOR(
11110000

01010010
)(T 11

1

1
1

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

T= [0011 0001 1101 1101]

[]10101110N

) XNOR(
11110101

10100100
)(T 00

0

0
0

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

T= [0111 0110 1110 1110]
Therefore, the POS’s coefficients are (0,4,7,11,15).

f (x3,x2,x1,x0) = ∏ M(0,4,7,11,15).

4. Optimization of the Fixed Polarity DRM
forms
In the optimization of the FPDRM functions with
different polarities are usually calculated directly from
POS expressions [10, 11]. A new algorithm is presented
in this paper to find the optimal polarity directly from the
truth vector of the zero polarity. This technique is aimed
at large number of variables, where time is very crucial. It
usually requires a long time to convert from POS to DRM
for each polarity and then search for the best polarity
among the 2n polarities. The new algorithm introduced in
this section will achieve maximum efficiency in respect of
time for large number of variables and does not require a
large memory. The time required to find a ‘good’ polarity,
is almost equal to the time required for converting a single
polarity as giving in algorithm B. This algorithm doesn’t
search each polarity to convert from POS to FPDRM and
it doesn’t use matrix technique to convert from POS to
DRM for each polarity. Thus the algorithm is fast with
respect to time and efficient in terms of memory storage.

Algorithm 4.1
Step 1: Algorithm A is used to obtain zero polarity, the
coefficients are stored in vector T. Let Pmin equals the
polarity number zero for the zero polarity which is zero.
Step 2: Count the number of zero terms in vector T and
denote it by (TNZ).
Step 3: Construct T(xi) matrix from vector T for each
variable xi. The first row of T(xi) matrix contains the
coefficients of the Maxterms for variable xi in un-
complemented form. The second row of T(xi) contains the
coefficients of the Maxterms with variable xi in the
complemented form.
Step 4: The elements in the first and second rows of
matrix T(xi) are grouped together using XNOR operation
and the result is stored in vector N.
Step 5: Count the number of zeros of the un-
complemented part from T(xi) and N . Add the two
numbers together and denote it by NZ(xi).
Step 6: Repeat steps 4 and 5 for all the variables that have
not been converted to polarity 1.

Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19, 2007 106

Step 7: To determine the variable (xi) that has to be
converted from ‘0’ polarity to ‘1’ polarity. Select the
variable with the least number of zeros NZ(xi) from
Step 6. This should be less than or equal to the total
number of zeros from step 2, TNZ.
Step 8: Replace the contents of complemented part of
T(xi) by the contents of vector N. This will generate a
new T vector. Pmin is set to the new polarity number.
Step 9: Use the new T vector from step 8 and repeat
the same procedure from step 2 for the variables that
have not been converted.
Step 10: If the total number of zeros NZ(xi) for each
variable xi from step 6 is greater than TNZ from step
2, then stop and there will be no more variables to
convert from ‘0’ polarity to ‘1’ polarity.
Step 11: The zero elements stored in the last T vector
are the coefficients for that particular polarity of the
FPDRM.

Example 4
Find an optimal polarity for a 5-variable function

f (x4,x3,x2,x1,x0) = ∏ (1,3,4,5,7,10,11,12).

Step 1: use Algorithm (A) to convert from POS to
zero polarity DRM and set
Pmin = 0.
The result is as follows: T = [1010 1100 0010 0110
1111 1111 1111 1111]
Hence the coefficients for PPDRM with polarity p = 0
are: c = {1, 3, 6, 7, 8, 9, 11, 12, 15}
Step 2: Count the number of zero terms in T vector
and set TNZ = 9.
Step 3: Separate T vector around variable x4 into un-
complemented and complemented parts, and store the
result into vector N as follows:

[]0110001011001010N

) XNOR(
1111111111111111

0110001011001010
)(T 44

4

4
4

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

Step 4: Count the number of zeros of the un-
complemented part from T(x4) and N vector and add
the two numbers together: NZ (x 4) = 18
By repeating steps 3 to 6, the following results are
obtained for the following variables x3, x 2, x 1 and x 0

[]1111111101010111=N

) XNOR(
1111111101100010

1111111111001010
)(T 33

3

3
3 xx

x
x

x ⎥
⎦

⎤
⎢
⎣

⎡
=

NZ (x 3) = 7

[]1111111110111001N

) XNOR(
1111111101101100

1111111100101010
)(T 22

2

2
2

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

NZ (x 2) = 8

[]1111111101001100N

) XNOR(
1111111110101000

1111111100011011
)(T 11

1

1
1

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

NZ (x 1) = 9

[]1111111110000011N

) XNOR(
1111111100100010

1111111101011110
)(T 00

0

0
0

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

NZ (x 0) = 8

Since NZ (x3) has the minimum number of zeros, replace
the contents of complemented part of T matrix by the
result of XNOR operation hence the new T vector is

T = [1010 1100 0111 0101 1111 1111 1111 1111].
The total number of zeros for the new vector TNZ = 7,
and the polarity number for this vector is Pmin = {01000}=
8.
Similarly as in the previous part, separate vector T around
each variable but not x3 because it has been changed to x3.

[]0101011111001010N

) XNOR(
1111111111111111

0101011111001010
)(T 44

4

4
4

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

NZ (x4) = 14

[]1111111111011001N

) XNOR(
1111111101011100

1111111101111010
)(T 22

2

2
2

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

NZ (x 2) = 6

[]1111111101111100N

) XNOR(
1111111111011000

1111111101011011
)(T 11

1

1
1

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

NZ (x 1) = 6

[]1111111101000011N

) XNOR(
1111111111110010

1111111101001110
)(T 00

0

0
0

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

NZ (x 0) = 9

Since the total number of zeros for variable x2 is less than
TNZ from the last operation, therefore x2 will be

Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19, 2007 107

converted to x2. Hence the new T vector is: T = [1010
1001 0111 1101 1111 1111 1111 1111].
The total number of zeros for the new vector TNZ = 6
and Pmin = {01100} = 12.
Repeat the same procedure for x4, x1 and x0.

[]1101011110011010N

) XNOR(
1111111111111111

1101011110011010
)(T 44

4

4
4

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

NZ (x4) = 12

[]1111111101011100N

) XNOR(
1111111111011001

1111111101111010
)(T 11

1

1
1

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

NZ (x 1) = 7

[]1111111101100000N

) XNOR(
1111111111110001

1111111101101110
)(T 00

0

0
0

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x

NZ (x 0) = 9
Since the total number of zeros from each operation is
greater than TNZ from the last operation, there are no
more variables to convert to the complemented form
and the process is terminated at this point.
Therefore, the final c vector is given as follows:
c = [1010 1001 0111 1101 1111 1111 1111 1111]
The FPDRM terms that are needed for this form are
{1,3,5,6,8,14}, and the best polarity is P = 12.
A program has been developed based on the previous
theory and sparse technique. A matrix is called sparse
if most of its elements are non-zero [14, 15].
Considerable saving in memory and computation time
can be achieved by using sparse formats that store
only the zeros in this case. Since most of the elements
in the truth vector T are non-zeros where the normal
size of T is 2n, a sparse format will be a suitable
solution to store the zero elements to avoid wasting
memory. The following example illustrates this
method.

Example 5
Let vector A = [0,4,7] and vector B = [2,4,6] then A
XNOR B is given as follows:

A = [0 y y y 4 y y 7]
B = [y y 2 y 4 y 6 y]
N = [0 y 2 y y y 6 y]

Where ‘y’ presents a non-zero element ‘1’ in the truth
vector.

5. Experimental Results
In this section, experimental results are presented for the
proposed algorithms. The proposed algorithms are
implemented in C language and the programs are
compiled using Borland C++ compiler. It is tested on a
personal computer with Pentium 4 processor of 2.4 GHz
CPU and 512 MB of RAM under Window operating
system. The algorithms where applied to several MCNC
benchmarks. Table (1) shows the results obtained from
converting PPDRM coefficients into POSs coefficients.
Table (2) shows the results obtained from converting POS
coefficients into PPDRM coefficients. Where name
denotes the name of circuit, n denotes the number of
variables, init terms denotes the number of terms in POS
form, PPDRM terms denotes the number of terms in
PPDRM form and the CPU time is in seconds. For most
of the circuits with n less 14 the CPU time is less than 0.6
seconds.

Table 1:
Conversion table from PPDRM to POS

Name n
PPDRM

Terms

POS

Terms

Time

(s)

Clip 9 92 480 0.001

Con1 7 9 88 0.001

Ex1010 10 480 142 0.010

Rd84 8 37 136 0.001

Table3 14 2528 1859 1.29

Table5 17 3359 28552 4.927

Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19, 2007 108

Table 2:
Conversion table from POS to PPDRM

References

[1] Reed, I.S., 1954, A claa of multiple-error-correction codes

and their decoding schem. IRE trans. Inform. Theory, IT-4,
38-49.

[2] Muller, D.E. Sept., 1954, pplication of Boolean algebra to
switching circuit design for error detection. IEEE trans.
Comput, EC-3, 6-12.

[3] Jeong, B.k., Sung, J.H., and Jong, K., 1997, New circuit for
XOR and XNOR functions. International Journal of
Electronics, 82, 131-143.

[4] McCluskey, E., 1986, Logic Design Principles with
Emphasis on Testable Semicustom Circuits. (Prentice Hall).

[5] Wang, J.M., Fang, S. C., and Feng, W.S., 1994, New
efficient design for XOR and XNOR functions on the
transistor level. IEEE Journal of solid-state Circuits, 29, 780-
786.

[6] Sasao, T., 1997 ， Easily Testable Realizations for
Generalized Reed-Muller Expressions. IEEE Transaction on
computers, 46, 709-716.

[7] Robinson, J.P. and Yeh, C.L. Aug., 1982, A method for
modulo-2 minimization. IEEE Trans. Comput, C-31, 800-801

[8] Sassao, T and Besslich, P. Feb., 1990, On the complexity of
Mod-2 sum PLA’s. IEEE Trans. Comput. C-39, 262-266.

[9] Cheng, J., Chen, X., Faraj, K.M., and Almaini, A.E.A., 2003,
Expansion of logical functions in the OR-coincidence system
and the transform between it and maxterm. IEE Proc.-
comput. Digit. Tech, 150, 397-402.

[10] Green, D.H., 1994, Dual forms of Reed-Muller expansions.
IEE Proc.-Comput. Digit. Tech, 141, 184-192.

[11] Faraj, K., MacCallum, M., and Almaini, A.E.A., 2004, Fast
computation of Conjunctive Canonical Reed-Muller
functions. PREP Proceeding, University of Hertfordshire,
144.

[12] Almaini, A.E.A., 1994, Electronic logic systems, 3rded,
(Prentice Hall).

[13] Habbib, M.K., 2002, A new approach to generate fixed-polarity
Reed-Muller expansions for completely and incompletely
specified functions. International Journal of Electronics, 89, 845-
876.

[14] Toledo, S., ‘Improving the memory-system performance of
sparse-matrix vector multiplication,’ IBM J. RES. Develop, Vol.
41, No. 6, pp. 711-725, November 1997.

[15] Duff, I. S., Heroux, M. A., and Pozo, R., ‘The Sparse BLAS,
Technical Report, CERFACS tr/pa/01/24,’ September 2001.

Name n
Init. POS

terms
PPDRM

terms

CPU

Time

Con1 7 88 9 0.001

Rd84 8 136 37 0.001

Clip 9 480 92 0.001

Ex1010 10 142 480 0.001

F12† 12 1984 365 0.01

F13† 13 4152 127 0.04

F14† 14 16172 65 0.521

F15† 15 5792 3100 3.695

spla 16 5348 517 1.843

Table5 17 28552 3359 162.85

Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19, 2007 109

