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Abstract In this paper we present two algorithms, which can be used in converting between product of sum (POS) 
and fixed polarity dual Reed_Muller (FPDRM) and find the optimal polarity for large number of variables. The first 
algorithm is used to compute the coefficients of FPDRM directly from the truth table of POS. This algorithm is also 
used to compute the coefficients of POS from FPDRM. The second algorithm will find the optimal polarity among 
the 2n different polarities for large n-variable functions, without generating all of the polarity sets. This algorithm is 
based on separating the truth vector of POS and the use of sparse techniques, which will lead to the optimal polarity. 
Time efficiency and computing speed are thus achieved in this technique. 
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1.  Introduction 
The increasing complexity of chip designs and the 
continuous development of smaller size fabrication 
processes present new challenges to the existing tools. 
Future synthesis tools are required to handle millions 
of gates in a realistic time. Computer-Aided Design 
(CAD) tools became critical for design and 
verification of Very Large Scale Integrated (VLSI) 
digital circuits. Up to now, most of the research has 
focused on developing algorithms for AND/OR or 
NAND/NOR circuits. An alternative description of a 
Boolean function is Reed-Muller expansion [1, 2]. It 
employs modulo-2 arithmetic and is also unique and 
canonical for a given Boolean function. The 
application of XOR/AND and XNOR/OR gates has 
some advantages over other implementations. In 
practice, it is well known that many useful circuits 
such as arithmetic units and parity checkers are 
heavily XOR oriented and it is more economical to 
implement their modulo-2 expressions [3-6]. Some 
authors [7, 8] even conjecture that it is generally more 
economical to base logic design on modulo-2 
expressions rather than conventional OR expressions. 
Recent progress in circuit technology makes the use 
of OR/XNOR gates feasible, especially with the 
development of the new technologies and the arrival 
of various programmable gate array (FPGA) devices. 
A major other characteristic of the XNOR logic is the 
numerous possible canonical representations of 
switching functions it provides. 

There are several kinds of OR/ XNOR circuits. The 
FPDRM is one of the canonical OR/ XNOR expressions. 
FPDRMs are a generalization of Positive Polarity Reed-
Muller expressions (PPDRM). A PPDRM is unique for a 
completely specified function, is an OR/ XNOR 
expressions with only un-complemented (positive) 
literals. Each variable in the FPDRM can appear either in 
un-complemented or complemented form but not both. 
For an n-variable completely specified Boolean function 
there are 2n distinct FPDRMs. There are techniques for 
converting from POSs to PPDRM or FPDRM [9-11]. In 
this paper we present an efficient algorithm, which can be 
used to compute the coefficients of PPDRM or FPDRM 
directly from the truth table of POS, without the use of 
mapping techniques [9] and without the use of matrix 
operation [10]. This algorithm is also used to compute the 
coefficients of POSs from PPDRM or FPDRM. Time 
efficiency and computing speed are thus achieved in this 
technique.  
 
 

2.  Preliminaries 
In this section, essential definitions and notations are 
presented, which are important for the understanding of 
the paper. 
 
Definition 2.1 An n-variable Boolean function can be 
expressed as 
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Where ‘∏’ represents logical products (AND), the ‘+’ 
is OR operation and i is a binary n-tuple i = [i0, i 1,…, 
in-1]2, [d0,d1,…, d2

n
-1] is the truth vector of the function  

f , di ∈{0,1} [12],  Mi is a sum term 
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Alternatively, any Boolean function can be 
represented by a FPDRM expression as: 
 
f(xn-1,xn-2,…,x0) =  ( )iii

S
n

+⊗
−

=
c

12

0                      (2) 

 
Where ‘⊗’ is XNOR operator, [c2

n
-1, c2

n
-2,…,c0] is the 

truth vector of the function  f , ci ∈{0,1}, i = [i0, i 1,…, 
in-1]2, Si represents a Sum term as  
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Definition 2.2 Polarity vector (pn-1,pn-2,…,p0) for a 
FPDRM of an n-variable Boolean function is a binary 
vector with n elements, where pi = 0 indicates the 
variable xi in an un-complemented form (xi), while pi 
= 1 indicates the variable xi in the complemented form 
xi.  
Property 1 For an n-variable Boolean function, there 
are 2n FPDRM expansions corresponding to 2n 
different polarity numbers. Each of such expansions is 
a canonical representation of a completely specified 
Boolean function. 
Maxterms can be identified by expanding a Kronecker 
sum of n basis vectors of the form [0  xi] for ‘0’ 
polarity and [0  xi ] for ‘1’ polarity .  

The FPDRM can be deduced by substituting the 
coefficient vector c in equation (4) for a zero polarity.  
Thus, for n = 2 and P = 0 
[0  x1]*[0  x0] = [0+0  0+ x0  x1+0  x1+ x0]  
 
f(xn-1,xn-2,…,x0) = {[0  xn-1]*[0  xn-2]**[0   x0]}  c       (4) 
Where ‘ ’ represents matrix multiplication based on OR 
and XNOR [9-11]. 
  
 

3 Conversion Algorithms from POS to 
FPDRM and vise versa 
To compute ci coefficients from di coefficients, the 
following principles and derivation are developed. 
Equation (1) can be represented as 
 
f(xn-1,xn-2,…,x0) = (d0 + xn-1+ x n-2 + … x 0)٠(d1 + xn-1+ x n-2 

+ … x 0 )٠(d2 + xn-1+ x n-2 +  … x 1 + x 0) ٠…٠(d2
n
-1 + x n-

1+ x n-2 + … x 0 )                                                  (5) 
 
In equation (1) if all Maxterms are ANDed for each 
different combination of the inputs the result will be ‘0’ 
and if all Maxterms are XNORed for each different 
combination of the inputs variables the result will be also 
a ‘0’, because for each combination of the inputs one of 
the Maxtrems will be ‘0’ and the rest will be ‘1’. Hence 
equation (1) can be written as in Equation (6) by replacing 
each AND gate by XNOR gate. 
 

f(xn-1,xn-2,…,x0) =  ( )iii
M

n

+⊗
−

=
d

12

0                                    (6) 

f(xn-1,xn-2,…,x0) = (d0 + xn-1+ x n-2 + … x 0) ⊗ (d1 + xn-1+ x n-2 

+ … x 0 ) ⊗ (d2 + xn-1+ x n-2 + … x 1 + x 0) ⊗…⊗ (d2
n

-1 + 
x n-1+ x n-2 + … x 0 )                                                  (7) 
 
Equation (7) can be described in terms of a coefficient 
truth vector. The coefficient vector for an n-variable 
Boolean function can be represented as  
T = [d0,d1,…, d2

n
-1]                                        (8) 

The elements of the truth vector (T) are placed in the 
order of decimal equivalent binary coding of the sum 
terms. 
Examining equation (7), half of the sum terms include 
variable xi in true form and the second half include 
variable xi in complemented form. Therefore, each truth 
vector (T) for any Boolean function in POS form can be 
separated into two rows for each variable xi and the result 
is stored in the separation matrix T(xi). The first row of 
the separation matrix T(xi) contains Maxterms with 
variable  xi in un-complemented  form, while the second 
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row of T(xi) contains Maxterms with variable  xi in 
complemented [13]. The elements in the truth vector 
and the separation matrix T(xi) are arranged into 
groups of four bits for convenient. The following 
example illustrates the separation process. 
 
Example 1 
Construct the truth vector T for a 4-variable function 
f(x3,x2,x1,x0) = ∏ M(0,4,6,7,11,15) and use the truth 
vector T to generate the separation matrix for each 
variable xi. 
The truth vector T has 2n elements. Each Maxterms 
correspond to ‘0’s in the truth vector T. Hence T is 
presented as follows: 
T = [0111 0100 1110 1110] 
To generate the first matrix T(x3), the truth vector T is 
separated around variable x3 int two equal parts. The 
first part corresponds to un-complemented part, while 
the second part to the complemented part. This is can 
be done according to the following formula: 
 

Number of Divisions = (2n/2n-i)  
 

Where n is the number of variables and i is the 
number for variable xi. 
Therefore, n = 4 and i = 3. 
Hence,  
The un- complemented for x3 is:  

 
[0111 0100] 

And for the complemented is: 
 

[1110 1110] 
Therefore,  
 
To generate the first matrix T(x3), the truth vector T is 
separated around variable x3 which gives the 
following result 

3

3
3 11101110
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)T(

x
x

x ⎥
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⎤
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⎡
=  

Similarly the separation matrices for x2, x1 and x0 are 
as follows: 

2

2
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To replace any complemented variable xi by un-
complemented variable xi in equation (7) the following 
identity xi = (0 ⊗ xi) is used. The following result is 
obtained 
 
(a + ix ) ⊗ (b + xi) = [a + (0 ⊗xi)] ⊗ (b + xi) 

               = [(a + 0) ⊗ (a + xi)] ⊗ (b + xi) 
                = a ⊗ [(a + xi) ⊗ (b + xi)]  
However   
 [(a + xi) ⊗ (b + xi)] = [(a ⊗ b) + xi] 
This can be verified as follows  

[(a + xi) ⊗ (b + xi)] = ii xbxa ⊕  
 
                               )( baxi ⊕=  

Where ‘⊕’ is XOR operator. 
Complementing the last expression, the following is 
obtained 
 

)⊕a( bxi = [(a ⊗ b) + xi] 

Therefore,  
 
[(a + xi) ⊗ (b + xi)] = [(a ⊗ b) + xi] 
Hence 
(a + ix ) ⊗ (b + xi) = a ⊗ [(a ⊗ b) + xi]                       (9) 

 
Examining equation (9), the coefficients of the un-
complemented part of variable xi   takes a new form. The 
new coefficient is (a XNOR b), while the coefficient for 
the complemented part will remain the same. Similarly, to 
convert un-complemented form to complemented form 
the following principal is applied. 
Each un-complemented variable xi is replaced by 0 ⊗ xi. 

(a + ix ) ⊗ (b + xi) = 

bxbxa
xbbxa

xbxa

ii

ii

ii

⊗+⊗+=
+⊗+⊗+=

⊗+⊗+
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)]()0[()(
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By taking the complement of the following expression 
 

)()]()[( baxxbxaxbxa iiiii ⊕=⊕=+⊗+     

Taking the complement for the last expression will give 
the following result 
 

)()⊕a( baxbx ii ⊗+=   

Hence  
)()]() [( baxxbxa iii ⊗+=+⊗+  

Therefore, 
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(a + ix ) ⊗ (b + xi) = b ⊗ [(a ⊗b) + ix ]                   (10) 

 
Inspecting equation (10), the coefficient of the true 
form stays as it is while the coefficient of the 
complemented form is replaced by (a XNOR b). 
 
Algorithm 1 
A computer algorithm has been developed based on 
the previous theory as shown in the following steps.  
 
Algorithm A: Converting from POS to FPDRM  
Step 1: Store the coefficients of the POS in the truth 
vector T. 
Step 2: Construct T(xi) matrix from T vector for each 
variable xi. The first row of T(xi) matrix contains the 
coefficients of the Maxterms for variable xi in un-
complemented form. While the second row of T(xi) 
contains the coefficients of the  Maxterms with 
variable  xi in the complemented  form. 
Step 3: The elements in the first and second rows of 
T(xi) matrix are group together using XNOR 
operation and the result is stored in vector N. 
Step 4: If the required polarity for xi variable is ‘0’ 
then replace the contents of each true variable xi in the 
truth vector T by the contents of vector N.  
Step 5: If the required polarity for xi variable is ‘1’ 
then replace the contents of each complemented part 
of the xi variable in the truth vector T by the contents 
of the un-complemented part of the xi variable and 
store the result N in place of un-complemented  part 
of xi variable in T.  
Step 6: Repeat the previous steps for the rest of the 
variables by using the new truth vector from step ‘5’ 
or ‘6’ depending on the polarity. 
Step 7: The zero elements stored in the last T vector 
are the coefficients for that particular polarity of the 
FPDRM. 

 
Algorithm B: Converting from FPDRM to POS  
To find the POS’s coefficients from the FPDRM’s 
coefficients, step ‘5’ is changed to the following step:  
If the required polarity for xi variable is ‘1’ then 
replace the contents of each un-complemented part of 
the xi variable in the truth vector T by the contents of 
the complemented part of the xi variable and store the 
in T.  
The following examples will illustrate Algorithm 1.a 
and Algorithm 1.b. 
 

Example 2 
Convert a 4-variable function f (x3,x2,x1,x0) = ∏ 
M(0,4,7,11,15) from the POS to the fixed polarity DRM 
by using polarity  p = 7 = (0111). 
Store the coefficients of Maxterms in the truth vector T. 
T = [0111  0110  1110  1110] 
Separate T vector around variable x3 to obtain T(x3) 
matrix and XNOR each element in the first row with the 
elements in the second row. 

 

01110110

XNOR
11101110

01100111
)(T

3

3
3 x

x
x ⎥

⎦

⎤
⎢
⎣

⎡
=  

 
Since the polarity is ‘0’ for variable x3, replace the un-
complemented part of x3 variable in T by the N vector 
results. The new T vector is [0110  0111  1110  1110].  
Separate the new vector T around variable x2 to obtain 

T(x2) matrix as follows: 
 

[ ]11111110N

) XNOR(
11100111

11100110
)(T 22

2

2
2

=

⎥
⎦

⎤
⎢
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⎡
= xx

x
x

x

 

Since the polarity is ‘1’ for variable x2 apply step ‘5’, the 
new truth vector is 

T = [1110  0110  1111  1110]. 
Similarly for variable x1 and x0  

 

[ ]11101000N

) XNOR(
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)(T 11

1

1
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=

⎥
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⎤
⎢
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⎡
= xx

x
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x  

T = [1011  0001  1111  1011] 

[ ]11010110N

) XNOR(
11010101

11111100
)(T 00

0

0
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⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x  

 
The final T vector is  

T = [0111  1000  1111  0111]={0,5,6,7,12} 
The sum terms in this canonical can be generated by using 
the basis vector 
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The FPDRM can be generated using by substituting 
the coefficient vector c in the following general 
equation. 
 
 f(xn-1,xn-2,…,x0) = {[0  xn-1] ++ [0  xn-2] ++ … ++  
[0   x0] } º c                                                     (11)  
Hence 

)()(

)()( 0  ),,,( 

023012

12020123

xxxxxx
xxxxxxxxf

++⊗++⊗
+⊗+⊗=

   

Example 3 
Convert a 4-variable function f (x3,x2,x1,x0) = ⊗ 
(0,5,6,7,12) from  FPDRM form to POS form by 
using polarity  p = 7 = (0111). 
 Store the truth vector in T matrix. 

T = [0111  1000  1111  0111] 
Separate T vector around variable x3 to obtain T(x3) 
matrix. 
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) XNOR(
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)(T 33
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= xx
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x  

Since polarity is ‘0’ for variable x3, replace the un-
complemented part of variable x3 in T by the N vector 
results. The new truth vector is 

T = [0111  0000  1111  0111]. 
Separate the new vector T around variable x2 to obtain 

T(x2) matrix as follows 

[ ]01111000N

) XNOR(
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11110111
)(T 22
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= xx
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Since polarity is ‘1’ for variable x2 apply Algorithm 
B, the new truth vector is 

T= [0000  1000  0111  0111] 
Similarly for variable x1 and x0 

[ ]01011101N

) XNOR(
11110000

01010010
)(T 11

1

1
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=

⎥
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= xx
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T= [0011  0001  1101  1101] 
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) XNOR(
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)(T 00

0

0
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⎣

⎡
= xx

x
x
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T= [0111  0110  1110  1110] 
Therefore, the POS’s coefficients are (0,4,7,11,15). 

f (x3,x2,x1,x0) = ∏ M(0,4,7,11,15). 
 
 

4. Optimization of the Fixed Polarity DRM 
forms 
In the optimization of the FPDRM functions with 
different polarities are usually calculated directly from 
POS expressions [10, 11]. A new algorithm is presented 
in this paper to find the optimal polarity directly from the 
truth vector of the zero polarity. This technique is aimed 
at large number of variables, where time is very crucial. It 
usually requires a long time to convert from POS to DRM 
for each polarity and then search for the best polarity 
among the 2n polarities. The new algorithm introduced in 
this section will achieve maximum efficiency in respect of 
time for large number of variables and does not require a 
large memory. The time required to find a ‘good’ polarity, 
is almost equal to the time required for converting a single 
polarity as giving in algorithm B. This algorithm doesn’t 
search each polarity to convert from POS to FPDRM and 
it doesn’t use matrix technique to convert from POS to 
DRM for each polarity. Thus the algorithm is fast with 
respect to time and efficient in terms of memory storage.  
 
Algorithm 4.1  
Step 1: Algorithm A is used to obtain zero polarity, the 
coefficients are stored in vector T. Let Pmin equals the 
polarity number zero for the zero polarity which is zero.  
Step 2: Count the number of zero terms in vector T and 
denote it by (TNZ). 
Step 3: Construct T(xi) matrix from vector T for each 
variable xi. The first row of T(xi) matrix contains the 
coefficients of the Maxterms for variable xi in un-
complemented form. The second row of T(xi) contains the 
coefficients of the  Maxterms with variable  xi  in the 
complemented  form. 
Step 4: The elements in the first and second rows of 
matrix T(xi) are grouped together using XNOR operation 
and the result is stored in vector N. 
Step 5: Count the number of zeros of the un-
complemented part from T(xi) and N . Add the two 
numbers together and denote it by NZ(xi). 
Step 6: Repeat steps 4 and 5 for all the variables that have 
not been converted to polarity 1. 
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Step 7:  To determine the variable (xi) that has to be 
converted from ‘0’ polarity to ‘1’ polarity. Select the 
variable with the least number of zeros NZ(xi) from 
Step 6. This should be less than or equal to the total 
number of zeros from step 2, TNZ. 
Step 8: Replace the contents of complemented part of 
T(xi) by the contents of vector N. This will generate a 
new T vector. Pmin is set to the new polarity number. 
Step 9: Use the new T vector from step 8 and repeat 
the same procedure from step 2 for the variables that 
have not been converted. 
Step 10: If the total number of zeros NZ(xi) for each 
variable xi from step 6 is greater than TNZ from step 
2, then stop and there will be no more variables to 
convert from ‘0’ polarity to ‘1’ polarity. 
Step 11: The zero elements stored in the last T vector 
are the coefficients for that particular polarity of the 
FPDRM. 
 
Example 4 
Find an optimal polarity for a 5-variable function  

f (x4,x3,x2,x1,x0) = ∏ (1,3,4,5,7,10,11,12). 
 
Step 1: use Algorithm (A) to convert from POS to 
zero polarity DRM and set  
Pmin = 0. 
The result is as follows: T = [1010  1100  0010  0110  
1111  1111  1111  1111] 
Hence the coefficients for PPDRM with polarity p = 0 
are: c = {1, 3, 6, 7, 8, 9, 11, 12, 15} 
Step 2: Count the number of zero terms in T vector 
and set TNZ = 9. 
Step 3: Separate T vector around variable x4 into un-
complemented and complemented parts, and store the 
result into vector N as follows: 
 

[ ]0110001011001010N

) XNOR(
1111111111111111

0110001011001010
)(T 44

4

4
4

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x  

Step 4: Count the number of zeros of the un-
complemented part from T(x4) and N vector   and add 
the two numbers together: NZ (x 4) = 18 
By repeating steps 3 to 6, the following results are 
obtained for the following variables x3, x 2, x 1 and x 0 
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NZ (x 3) = 7 
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NZ (x 2) = 8 
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= xx
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NZ (x 1) = 9 
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)(T 00

0

0
0

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x
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NZ (x 0) = 8 

Since NZ (x3) has the minimum number of zeros, replace 
the contents of complemented part of T matrix by the 
result of XNOR operation hence the new T vector is 

T = [1010  1100  0111  0101  1111  1111  1111  1111]. 
The total number of zeros for the new vector TNZ = 7, 
and the polarity number for this vector is Pmin = {01000}= 
8. 
Similarly as in the previous part, separate vector T around 
each variable but not x3 because it has been changed to x3. 
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1111111111111111

0101011111001010
)(T 44
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4
4

=
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NZ (x4) = 14 
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)(T 22
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2
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NZ (x 2) = 6 
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)(T 11

1
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= xx
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NZ (x 1) = 6 
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) XNOR(
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1111111101001110
)(T 00

0
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⎤
⎢
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= xx

x
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NZ (x 0) = 9 

Since the total number of zeros for variable x2 is less than 
TNZ from the last operation, therefore x2 will be 
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converted to x2. Hence the new T vector is: T = [1010  
1001  0111  1101  1111  1111  1111  1111]. 
The total number of zeros for the new vector TNZ = 6 
and Pmin = {01100} = 12.  
Repeat the same procedure for x4, x1 and x0. 

 

[ ]1101011110011010N

) XNOR(
1111111111111111

1101011110011010
)(T 44

4

4
4

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x  

NZ (x4) = 12 

[ ]1111111101011100N

) XNOR(
1111111111011001

1111111101111010
)(T 11

1

1
1

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x  

NZ (x 1) = 7 

[ ]1111111101100000N

) XNOR(
1111111111110001

1111111101101110
)(T 00

0

0
0

=

⎥
⎦

⎤
⎢
⎣

⎡
= xx

x
x

x  

NZ (x 0) = 9 
Since the total number of zeros from each operation is 
greater than TNZ from the last operation, there are no 
more variables to convert to the complemented form 
and the process is terminated at this point. 
Therefore, the final c vector is given as follows: 
c = [1010  1001  0111  1101  1111  1111  1111  1111] 
The FPDRM terms that are needed for this form are 
{1,3,5,6,8,14}, and the best polarity is P = 12.  
A program has been developed based on the previous 
theory and sparse technique. A matrix is called sparse 
if most of its elements are non-zero [14, 15]. 
Considerable saving in memory and computation time 
can be achieved by using sparse formats that store 
only the zeros in this case. Since most of the elements 
in the truth vector T are non-zeros where the normal 
size of T is 2n, a sparse format will be a suitable 
solution to store the zero elements to avoid wasting 
memory. The following example illustrates this 
method. 
 
Example 5 
Let vector A = [0,4,7] and vector B = [2,4,6] then A 
XNOR B is given as follows: 

A = [0 y y y 4 y y 7] 
B = [y y 2 y 4 y 6 y] 
N = [0 y 2 y y y 6 y] 

Where ‘y’ presents a non-zero element ‘1’ in the truth 
vector.  

 
 

5. Experimental Results  
In this section, experimental results are presented for the 
proposed algorithms. The proposed algorithms are 
implemented in C language and the programs are 
compiled using Borland C++ compiler. It is tested on a 
personal computer with Pentium 4 processor of 2.4 GHz 
CPU and 512 MB of RAM under Window operating 
system. The algorithms where applied to several MCNC 
benchmarks. Table (1) shows the results obtained from 
converting PPDRM coefficients into POSs coefficients. 
Table (2) shows the results obtained from converting POS 
coefficients into PPDRM coefficients. Where name 
denotes the name of circuit, n denotes the number of 
variables, init terms denotes the number of terms in POS 
form, PPDRM terms denotes the number of terms in 
PPDRM form and the CPU time is in seconds. For most 
of the circuits with n less 14 the CPU time is less than 0.6 
seconds.  
 

 
 

Table 1:  
Conversion table from PPDRM to POS 

 

Name n 
PPDRM 

Terms 

POS 

Terms 

Time 

(s) 

Clip 9 92 480 0.001 

Con1 7 9 88 0.001 

Ex1010 10 480 142 0.010 

Rd84 8 37 136 0.001 

Table3 14 2528 1859 1.29 

Table5 17 3359 28552 4.927 
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Table 2:  
Conversion table from POS to PPDRM 
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Name n 
Init. POS 

terms 
PPDRM 

terms 

CPU 

Time 

Con1 7 88 9 0.001 

Rd84 8 136 37 0.001 

Clip 9 480 92 0.001 

Ex1010 10 142 480 0.001 

F12† 12 1984 365 0.01 

F13† 13 4152 127 0.04 

F14† 14 16172 65 0.521 

F15† 15 5792 3100 3.695 

spla 16 5348 517 1.843 

Table5 17 28552 3359 162.85 
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