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Abstract: - The paper studies the problem of tracking a target robot that moves following a random walk 
strategy, by constructing in the observer robot a model of the behaviour of the target. The strategy of the target 
robot is supposed to be a random generator of movements. We make the assumption that the robot motion 
strategies can be modelled as uniform random generator of movements. We suppose that the observations are 
noise free. We will explore the hardness of the problem of trying to predict the numbers generated by a uniform 
random generator and relate this problem with our motion tracking problem. At the end of the present article we 
will propose some algorithmic alternatives to deal with the complexity of this problem.  
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1 Introduction 
In a previous article [1] we have talked about the 
learning algorithms of robot motion tracking problem 
under the assumption that the strategy followed by 
the target robot as well as the observer robot was a 
DFA  (DETERMINISTIC FINIT AUTOMATA).   In 
this article, the agents observed the actions taken by 
the other agents, and try to predict the behaviour of 
them and react in the best possible way by means of 
the construction of a model of the behaviour of the 
target that was obtained by the automata learning 
algorithm obtained in this work. This was possible in 
a computationally tractable way because the DFA 
obtained was not minimal in the number of states. 
The fundamental assumption about the computational 
power of the agents was that they were limited in 
their computational power. Because of that we 
proposed in [2] to state the robot tracking problem as 
a repeated game. The solution obtained in [2] 
outperform the solutions proposed in [4] [5] and [7] 
given that our assumptions about the behaviour of the 
implicated agents were more general than the evading 
strategy of the target in the articles cited just before. 
In the seminal paper on complexity and bounded 
rationality written by Christos H. Papadimitriou and 
M. Yannakakis [17] it was analyzed the complexity 
of calculating the Nash equilibrium (the best strategy 
for the two players) of a two player game in the case 
of agents with limited rationality. In [17] 
Papadimitriou studied the Nash equilibrium of 
classical game theory prisioner’s dilemma and 

observed that there is paradox on the non-cooperative 
Nash equilibrium  strategies of the players that is 
opposed to the social experience of cooperative 
behaviour showed by Axelrod in [18]. Papadimitriou 
argues that a good measure of the limited 
computational power (limited rationality) can be the 
number of states of the automata executed by each 
player. Depending on that the players can tend to play 
cooperatively (cooperative Nash equilibrium). One 
computational complexity obstacle for obtaining 
efficient learning algorithms is related with the fact of 
being a passive or an active learner. In the first case it 
has been shown the impossibility to obtain in the 
worst case an efficient algorithm [20][21]. In the 
second case if we permit the learner to make some 
questions (i.e. to be an active learner) we can obtain 
efficient learning algorithms [3] . This work done on 
the DFA learning area has given place to many 
excellent articles on learning models of intelligent 
agents as those elaborated by David Carmel & Shaul 
Markovitch [23] [24] and in the field of Multi-agent 
Systems those written about Markov games as a 
framework for multi-agent reinforcement learning by 
M.L. Littman [6]. In the present work we will try to 
approach the same robot motion tracking problem 
stated in [1] [2] but now the assumption on the 
behaviour is that the robots follow a random walk 
strategy.  When we talk about a random walk strategy 
we mean that the robots toss coins for calculating 
their next move. In the present work we are assuming 
again that observed moves are not noisy and that the 
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calculation power of each agent is limited. So we 
have to talk about the computing complexity that we 
have to face when we want to predict the next move 
of an agent that has this type of behaviour.  For this 
end we will start our exposition by making some 
definitions about pseudo-random functions and 
pseudo-random behaviour. Given that the agents 
behave randomly we will give a rough description of 
how to construct random functions as well as how to 
use them for constructing random strategies. Because 
of that we have to talk about the complexity 
challenges implied while one try to predict the next 
move of a target robot  that moves  randomly and as 
will be shown later it is a  hard to solve problem, said 
otherwise, it doesn’t exist a deterministic polynomial 
time algorithm for solving it. As we will see this 
problem is related to the problem of decryption of 
RSA  (RIVEST, SHAMIR & ADELMAN 
ENCRYPTION PROTOCOL) that at the same time is 
related with discovering the prime factors of a 
number. It has not be discovered a deterministic 
polynomial time algorithm for this last problem and 
because of that it belongs to the  NP  complexity 
class, but at the same time it has not been proved that 
it is completeNP −  neither. Consequently we will 
propose a way to cope algorithmically with that 
complexity under some new theoretical computing 
model assumption. 
 

2 How to implement pseudo-random 

strategies. 
Randomness has attracted the attention of many 
computer scientists over the last twenty years. One of 
the firsts subjects about that interested the researchers 
was how to measure the string randomness. This give 
place to the Kolmogorov string randomness notion,  
which can be defined as the length of the shortest 
description of a string. In a more recent approach, it 
has been emerged the computational complexity 
based notion of polynomial randomness measure of a 
string, that can be defined as follows. A set S  of 
strings is polynomial random if programs running in 
polynomial time produce the same results when fed 
either with elements randomly selected in S  or with 
string selected randomly from the set of all the 
strings. It means that there exist a polynomial time 
algorithm that, upon input of a k-bit string, outputs a 
poly(k)-bit string, such that, if one-way function 
exist, then the set of all output strings is poly-random. 
Under this approach of string randomness a function 
is called poly-random if no polynomial time 
algorithm, asking for the values of the function at 
chosen arguments, can distinguish the computed 
values of the function and values given by an 

independent coin flips.  Based on the existence of a 
one way function, it can be defined the poly-random 
collection as a set of all functions kkk IIH →:  

where kI  is the set of all k-bit strings. The cardinality 

of kH  is 
kk 22 ⋅  so we need kk2  for the specification 

of this set which is impractical for moderate values of 
k . In [25] they cope with this problem by randomly 
selecting for all k  a subset kk HH ⊆

~
 of cardinality 

k2  that belongs to the collection H
~  in such a way 

that each element of this collection has a unique k-bit 
index function. The objective of [25] was to make 
random functions accessible for applications, being of 
easy evaluation and hard to distinguish from random 
chosen functions in kH . They achieve this goal by 

choosing functions from a multiset kF  (whose 

elements are in kH ) where the collection { }kFF =  

has the properties of indexing, Poly-time evaluation 

and pseudo-randomness. The pseudo-randomness 

property means that no probabilistic polynomial time 
algorithm in k can distinguish the function in kF  

from the functions in kH . These functions just 

mentioned are equivalent to the cryptographically 
strong pseudorandom bit generators (CSB generators) 
defined in [22] but outperform them in the sense that   
they save coin tosses and storage in polynomial time 
computation with random oracle. A CSB generator is 
efficient deterministic program that stretch a random 

k-bit-long input seed to a tk -bit-long output 
pseudorandom sequence, for some 0>t , 
indistinguishable from a true randomly generated 
string in polynomial time. The pseudo-random 
sequence must have some statistical properties 
present in true random sequences as for example, 
having the same number of 0’s and 1’s. In [22] 
Shamir presents a pseudorandom number generator 
for which computing the next number in the sequence 
from the preceding ones is as hard as inverting the 
RSA   function. For the sake of clarity we will give 
some definitions and results obtained in [25] without 
demonstration. Definition of Multiset: Let A  be a  
be a multiset with distinct elements naa …,1  

occurring with multiplicities nmm …,1 , respectively. 

Then ∑ =
=

n

i imA
1

. By writing Aa R∈ , we mean 

that the element a has been randomly selected from 
the multiset A . That is, an element occurring in A  
with multiplicity m  is chosen with probability 

Am . Definition of CSB Generator: Let P  be a 

polynomial. A CSB generator G  is a deterministic 
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poly(k)-time program that stretches a k-bit long 
randomly selected seed into a P(k)-bit long sequence 
(called CSB sequence) that passes all next-bit-tests: 
Let P  be a polynomial, kS  a multiset consisting of 

P(k)-bit sequences and kk SS ∪= . A next-bit-set 

for S  is a probabilistic polynomial time algorithm T  
that on input k  and the first i  bits in a string 

kk Ss∈  outputs a bit b . Let i

kp  denote the 

probability that b  equals the 1+i st bit of s . We say 
that S  passes the next-bit-test T  if, for all 
polynomials Q , for all sufficiently large k , and for 

all integers [ ))(,0 kPi∈ ;  

)(

1

2

1

kQ
p i

k <−  

It exist a more general kind of test called polynomial-
time statistical test where the condition change as 
follows  

)(

1

kQ
pp R

k

S

k <−   

where  S

kp  denotes the probability that T  outputs 1 

on )(1 kP  randomly selected strings in kS , and R

kp  

represents the probability  that T  outputs 1 on )(1 kP  

random bit strings, each of length )(kP . 

We say that a multiset kk SS ∪=  is samplable if 

there is a probabilistic polynomial-time algorithm 
that, given as input k , outputs kR Ss∈ . 

Definition of one-way function: Let kk ID ⊆ . Let 

kkk DDf →:  be a sequence of functions and let the 

function f  defined as follows: )()( xfxf k=  if 

kDx∈ . Let if  denote f  applied i  times. Let 

k

i

k DD ⊆  such that i

kDy∈  if )(xfy i=  for some 

kDx∈ . f  is a one-way function if 

1) f  polynomial time computable; 

2) f  is hard to invert; that is, for every 

probabilistic polynomial-time algorithm A  
and for all sufficiently large k , for every 

31 ki ≤≤ , )()( 1 xfxA k

−≠  for at least a 

constant fraction of i

kDx∈ ; 

3) kU∪   is samplable. 

 

3 Hardness of a random robot motion 

tracking. 
 

After all those definitions we can now resume 
the main results of [25] that will allow us to 
grasp the computational hardness on the 
prediction of the bits generated by uniform 
random function. This will enable us to 
formally base our statements about the 
computational complexity of the robot motion 
tracking problem when the target robot follows 
a random motion strategy. We will list the 
results obtained in [25] as follows. Result 1: 
Let kk SS ∪=  be a samplable multiset of bit 

sequences. The following statements are 

equivalent: 

i. S  passes the next-bit-test. 

ii. S  passes all polynomial-time 

statistical tests for strings. 

iii. S  passes all polynomial-time 

statistical tests whose input consists 

of a single string in S . (Rem. CSB 

sequences pass all polynomial time 

statistical tests) 

Result 2: There exists a one-way function if 

and only if there exists a CSB generator. 
This last result allow us to ensure the 
construction secure CSB generators. Given 
that a CSB generator can be constructed 
explicitly if one way functions exist, so can 
poly-random collections.  Result 3 (main 

theorem): Let F  be a collection of functions 

constructed using a CSB generator G . Then 

F  passes all polynomial-time statistical 

tests for functions. This lend us to the last 
result in [25] that we state as follows. Result 
4: Let { }kFF =  be a collection of functions 

satisfying the indexing,  and the polynomial-

time evaluation conditions of a poly-random 

collection. Then F  cannot be polynomially 

inferred if and only if it passes all 

polynomial-time statistical tests for 

functions. This last result give us the main 
argument concerning the computational 
complexity of random robot motion tracking 
problem. So based in the preceding random 
function construction results we are able to 
state formally the next affirmation.  
Theorem 1: The problem of tracking a target 

robot that behaves randomly cannot be 

learned in polynomial-time. 

Proof: The strategy followed by the target 

include a call to a random function. Then we 

can predict the next move of the target if and 

only if we can predict the next number 

generated by a random function. So given 
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that it is not polynomially predictable then 

the theorem is proved.   
 
As we have done in [1] we assume that each 
robot is aware of the other robot actions, i.e. 

to ΣΣ , are common knowledge while the 

preferences to uu , are private. It is assumed 
too that each robot keeps a model of the 
behaviour of the other robot. The strategy of 
each robot is adaptive in the sense that a 
robot modifies his model about the other 
robot such that the first should look for the 
best response strategy w.r.t. its utility 
function. Given that the search of optimal 
strategies in the strategy space is very 
complex when the agents have bounded 

rationality it has been proven in [10] that this 
task can be simplified if we assume that each 
agent follow a DFA strategy. For more 
details about our DFA learning algorithm see 
[1].  

 

4 Relation between CSB generators 

and decryption of RSA . 
 
In this section we will roughly describe the relation 
that exist between CSB generators and RSA  
(RIVEST, SHAMIR & ADELMAN ENCRYPTION 
PROTOCOL) as a formal tool to base our algorithmic 
proposed solution to deal wit the random robot 
motion tracking problem. For this end we will 
mention some issues that were studied in [22] 
concerning the generation of CBS sequences. In the 
seminal work on cryptography done by Adi Shamir in 
[22] he shows how to generate from a short random 
seed a long sequence of pseudo-random numbers that 
he called CSB sequences, based on the RSA   
cryptosystem. He related the notion of 
unpredictability with the property of the sequences of 
being cryptographically strong. He defined 
additionally the notion of cryptographic knowledge 
as computed knowledge, that is, as the ability to 
compute the desired value within certain time and 
space complexity bounds. He related the one-way 
functions with the easy to compute permutations on 
some finite universe U  that are everywhere difficult 
to invert. That is, given a one-way function f , 
generate a long pseudo-random sequence of elements 
of U , by the application of f  to a standard sequence 

of arguments derived from some initial seed S , for 
example …,2,1, ++ SSS . The difficulty of 

extracting S  from a single value )( iSf +  is 

guaranteed by the one-way nature of f . In [22] is 

given as an example of a good one-way function, the 

RSA encryption function )(mod)( NMME K

K = . 
Concerning this function Shamir shows that it can 
give degenerate results if it is applied to the sequence 

…,6,5,4,3,2=M  and that this can be corrected if 

applied to the sequence …,7,5,3,2=M . For the 

sake of avoiding degenerancies he proposed an 
iterated application of  f  to the secret seed S  in 

conjunction of the XOR operator denoted by ⊕ . 
Based on that Shamir stated the following lemma. 
Lemma 1: If f  is a one-way function, then a new 

element of the sequence cannot be computed from a 

single known element. 
Given that the ⊕  operator scrambles the sequences 
making impossible the proofs in more complex 
situations, he proposed the RSA public-key 
encryption function with modulus N  that maps the 
secret cleartext M  under the publicly known key K  

to NM K mod . The corresponding decryption 
function recovers the cleartext by taking the K -th 
root of the ciphertext ( )Nmod . The cryptographic 
security of RSA cryptosystem is thus equivalent by 
definition to difficulty of taking root Nmod . When 
N  is a large composite number with unknown 
factorization, this root problem is believed to be very 
difficult, but when his factorization (or the Euler 
function )(Nϕ ) is known an K  is relative prime to 

)(Nϕ , there is a fast  algorithm for solving it. Each 
pseudo-random sequence generator consists of a 
modulus N  and some standard easy-to-generate 
sequence of keys …,, 21 KK  such that )(Nϕ  and all 

the iK ’s are pairwise relative prime. In order actually 

to generate  a pseudo-random sequence of values 
…,, 21 RR  the two parties choose a random seed S  

and use their knowledge of )(Nϕ  to compute the 

sequence of roots 

( ) ( )…,mod,mod 21 1
2

1
1 NSRNSR

KK ==  
The security of this scheme depends only on the 
secrecy of the factorization of N . 
Because of that we can take state the equivalence 
between the factorization of a number N  and the 
numbers generated by CSB generators. That is, if we 
consider that the random robot motion strategies use 
CSB generators for calculating the next move, we 
will be able to predict or learn the next move of the 
target robot in polynomial-time, if and only if we can 
obtain in polynomial-time the prime factorization of a 
number. 
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5 Discretization of the workspace and 

pseudo-random actions 
First of all we have discretize the directions 
to 9 possibilities (N, NW, W, SW, S, SE, E, 
NE, STOP). The second constraint is on the 
discretization of the possible situations that 
will become inputs to the automata of both 
robots. It must be clearly defined for each 
behavior what will be the input alphabet to 
which will react both robots. This can be 
done without modifying the algorithm The 
size of the input alphabet impact directly the 
learning algorithm performance, because it 
evaluates for each case all possible course of 
action. So, the table used for learning grows 
proportionally to the number of elements of 
the input alphabet. For more details about the 
construction algorithm see [1]. The 
discretization mentioned in the preceding 
paragraph constrains the set of values that 
can be given as output of a random robot 
motion strategy. 
    

6 The Quantum algorithm for random 

robot motion tracking. 
 
As we have seen in the section 3 and 4 if take into 
account that the random movements of the target are 
generated by CSB generators there is no hope to 
predict in polynomial-time the next move of target. 
The problem here is that under the standard Turing 
machine theoretical calculation model (TM for short), 
it has not yet been discovered a polynomial-time 
algorithm for the prime factorization problem, and it 
is conjectured that it doesn’t exist. By other side, 
there is relatively new theoretical computer science 
field called Quantum Computing. Roughly speaking, 
this new field propose to replace the Newton physics 
operation based Turing Machine theoretical model by 
a Quantum physics operation based Turing Machine 
denoted as QTM. The QTM has some extra features 
as for example, the capability of being in many states 
simultaneously. These new features give place to 
some hopes concerning the possibility to solve in 
polynomial-time with a QTM some very complex 
unsolvable in polynomial time under the standard TM 
model. For the moment it has not yet been proved 
that a QTM can solve NP-complete or NP-hard 
problems in polynomial-time but some progress has 
been made in the last twenty years in the conception 
of polynomial-time algorithms for solving some less 
hard problems that belong to the NP complexity 
class. Such is the case of the prime factorization 
problem. This algorithm was proposed by Peter W. 

Shor in [9] and solves the prime factorization 
problem in expected polynomial-time. Quantum 
algorithms are methods using quantum networks and 
processors to solve algorithmic problems. Quantum 
algorithms have been developed utilizing the power 
of quantum evolution, especially of such quantum 
phenomena as quantum superposition, parallelism 
and entanglement. For solving the prime factorization 
problem with a QTM algorithm, some number theory 
problems as integer factorization and the calculation 
of the order or period of a function 

)(mod)( NMME K

K = , that is, to find the smallest 

NMtsK K mod1.. ≡ , must be solved in 
polynomial-time. For the first problem the gcd solve 
it in )(log NO , and for the second we have to exploit 

the parallelism of a QTM and use the QFT (Quantum 
Fourier transform). The key idea of the Shor’s 
algorithm is to relate the calculation of the period of a 
function with the prime factorization problem using 
the QFT. So given that the random robot motion 
strategies use CSB generators for calculating the next 
move, and that it is equivalent to the prime 
factorization of a number, we can enounce our second 
result as follows. Theorem 2: The problem of 

tracking a target robot that behaves randomly can be 

learned in expected polynomial-time using the Shor 

prime factorization QTM algorithm.  
We have supposed along the present article that the 
target robot follows all the time a random strategy of 
movements. We can try to explore the case where the 
robot follows for some time a DFA and suddenly 
when it get stuck in a local minima, he starts a 
random walk, as is the case of robots following a path 
calculated by a planner of the kind proposed by 
Barraquand & Latombe in [11] or Erdmann in [16]. If 
we apply our DFA learning algorithm we can loss the 
target robot. So what we propose as solution is to run 
in parallel our DFA learning algorithm and quantum 
algorithm. 

 

7 Conclusions and future work 
As we have shown in the present paper, the random 
robot motion tracking problem is not polynomial-
time solvable under the standard TM by relating it 
with prime factorization problem. As consequence we 
have proposed an alternative to cope with this 
negative result by means of the application of 
quantum algorithms. As a future work we can explore 
what happen in the case of using quantum versions of 
a CSB generators. Another possible future research 
can be the mixed situation mentioned at the end of 
the section 6 of the present article. 
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