
The problem of Robot random motion tracking learning algorithms.

CARLOS RODRÍGUEZ LUCATERO

Dirección de Análisis e Información Académica

Universidad Iberoamericana Campus Ciudad de México
Prolongación Paseo de la Reforma 880 Lomas de Santa Fe Ciudad de México, C.P. 01210

MEXICO
carlosr.lucatero@uia.mx

Abstract: - The paper studies the problem of tracking a target robot that moves following a random walk
strategy, by constructing in the observer robot a model of the behaviour of the target. The strategy of the target
robot is supposed to be a random generator of movements. We make the assumption that the robot motion
strategies can be modelled as uniform random generator of movements. We suppose that the observations are
noise free. We will explore the hardness of the problem of trying to predict the numbers generated by a uniform
random generator and relate this problem with our motion tracking problem. At the end of the present article we
will propose some algorithmic alternatives to deal with the complexity of this problem.

Key-Words: - robot tracking, computational learning, random functions, Computational Complexity, Quantum
algorithms.

1 Introduction
In a previous article [1] we have talked about the
learning algorithms of robot motion tracking problem
under the assumption that the strategy followed by
the target robot as well as the observer robot was a
DFA (DETERMINISTIC FINIT AUTOMATA). In
this article, the agents observed the actions taken by
the other agents, and try to predict the behaviour of
them and react in the best possible way by means of
the construction of a model of the behaviour of the
target that was obtained by the automata learning
algorithm obtained in this work. This was possible in
a computationally tractable way because the DFA
obtained was not minimal in the number of states.
The fundamental assumption about the computational
power of the agents was that they were limited in
their computational power. Because of that we
proposed in [2] to state the robot tracking problem as
a repeated game. The solution obtained in [2]
outperform the solutions proposed in [4] [5] and [7]
given that our assumptions about the behaviour of the
implicated agents were more general than the evading
strategy of the target in the articles cited just before.
In the seminal paper on complexity and bounded
rationality written by Christos H. Papadimitriou and
M. Yannakakis [17] it was analyzed the complexity
of calculating the Nash equilibrium (the best strategy
for the two players) of a two player game in the case
of agents with limited rationality. In [17]
Papadimitriou studied the Nash equilibrium of
classical game theory prisioner’s dilemma and

observed that there is paradox on the non-cooperative
Nash equilibrium strategies of the players that is
opposed to the social experience of cooperative
behaviour showed by Axelrod in [18]. Papadimitriou
argues that a good measure of the limited
computational power (limited rationality) can be the
number of states of the automata executed by each
player. Depending on that the players can tend to play
cooperatively (cooperative Nash equilibrium). One
computational complexity obstacle for obtaining
efficient learning algorithms is related with the fact of
being a passive or an active learner. In the first case it
has been shown the impossibility to obtain in the
worst case an efficient algorithm [20][21]. In the
second case if we permit the learner to make some
questions (i.e. to be an active learner) we can obtain
efficient learning algorithms [3] . This work done on
the DFA learning area has given place to many
excellent articles on learning models of intelligent
agents as those elaborated by David Carmel & Shaul
Markovitch [23] [24] and in the field of Multi-agent
Systems those written about Markov games as a
framework for multi-agent reinforcement learning by
M.L. Littman [6]. In the present work we will try to
approach the same robot motion tracking problem
stated in [1] [2] but now the assumption on the
behaviour is that the robots follow a random walk
strategy. When we talk about a random walk strategy
we mean that the robots toss coins for calculating
their next move. In the present work we are assuming
again that observed moves are not noisy and that the

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 219

calculation power of each agent is limited. So we
have to talk about the computing complexity that we
have to face when we want to predict the next move
of an agent that has this type of behaviour. For this
end we will start our exposition by making some
definitions about pseudo-random functions and
pseudo-random behaviour. Given that the agents
behave randomly we will give a rough description of
how to construct random functions as well as how to
use them for constructing random strategies. Because
of that we have to talk about the complexity
challenges implied while one try to predict the next
move of a target robot that moves randomly and as
will be shown later it is a hard to solve problem, said
otherwise, it doesn’t exist a deterministic polynomial
time algorithm for solving it. As we will see this
problem is related to the problem of decryption of
RSA (RIVEST, SHAMIR & ADELMAN
ENCRYPTION PROTOCOL) that at the same time is
related with discovering the prime factors of a
number. It has not be discovered a deterministic
polynomial time algorithm for this last problem and
because of that it belongs to the NP complexity
class, but at the same time it has not been proved that
it is completeNP − neither. Consequently we will
propose a way to cope algorithmically with that
complexity under some new theoretical computing
model assumption.

2 How to implement pseudo-random

strategies.
Randomness has attracted the attention of many
computer scientists over the last twenty years. One of
the firsts subjects about that interested the researchers
was how to measure the string randomness. This give
place to the Kolmogorov string randomness notion,
which can be defined as the length of the shortest
description of a string. In a more recent approach, it
has been emerged the computational complexity
based notion of polynomial randomness measure of a
string, that can be defined as follows. A set S of
strings is polynomial random if programs running in
polynomial time produce the same results when fed
either with elements randomly selected in S or with
string selected randomly from the set of all the
strings. It means that there exist a polynomial time
algorithm that, upon input of a k-bit string, outputs a
poly(k)-bit string, such that, if one-way function
exist, then the set of all output strings is poly-random.
Under this approach of string randomness a function
is called poly-random if no polynomial time
algorithm, asking for the values of the function at
chosen arguments, can distinguish the computed
values of the function and values given by an

independent coin flips. Based on the existence of a
one way function, it can be defined the poly-random
collection as a set of all functions kkk IIH →:

where kI is the set of all k-bit strings. The cardinality

of kH is
kk 22 ⋅ so we need kk2 for the specification

of this set which is impractical for moderate values of
k . In [25] they cope with this problem by randomly
selecting for all k a subset kk HH ⊆

~
 of cardinality

k2 that belongs to the collection H
~ in such a way

that each element of this collection has a unique k-bit
index function. The objective of [25] was to make
random functions accessible for applications, being of
easy evaluation and hard to distinguish from random
chosen functions in kH . They achieve this goal by

choosing functions from a multiset kF (whose

elements are in kH) where the collection { }kFF =

has the properties of indexing, Poly-time evaluation

and pseudo-randomness. The pseudo-randomness

property means that no probabilistic polynomial time
algorithm in k can distinguish the function in kF

from the functions in kH . These functions just

mentioned are equivalent to the cryptographically
strong pseudorandom bit generators (CSB generators)
defined in [22] but outperform them in the sense that
they save coin tosses and storage in polynomial time
computation with random oracle. A CSB generator is
efficient deterministic program that stretch a random

k-bit-long input seed to a tk -bit-long output
pseudorandom sequence, for some 0>t ,
indistinguishable from a true randomly generated
string in polynomial time. The pseudo-random
sequence must have some statistical properties
present in true random sequences as for example,
having the same number of 0’s and 1’s. In [22]
Shamir presents a pseudorandom number generator
for which computing the next number in the sequence
from the preceding ones is as hard as inverting the
RSA function. For the sake of clarity we will give
some definitions and results obtained in [25] without
demonstration. Definition of Multiset: Let A be a
be a multiset with distinct elements naa …,1

occurring with multiplicities nmm …,1 , respectively.

Then ∑ =
=

n

i imA
1

. By writing Aa R∈ , we mean

that the element a has been randomly selected from
the multiset A . That is, an element occurring in A
with multiplicity m is chosen with probability

Am . Definition of CSB Generator: Let P be a

polynomial. A CSB generator G is a deterministic

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 220

poly(k)-time program that stretches a k-bit long
randomly selected seed into a P(k)-bit long sequence
(called CSB sequence) that passes all next-bit-tests:
Let P be a polynomial, kS a multiset consisting of

P(k)-bit sequences and kk SS ∪= . A next-bit-set

for S is a probabilistic polynomial time algorithm T
that on input k and the first i bits in a string

kk Ss∈ outputs a bit b . Let i

kp denote the

probability that b equals the 1+i st bit of s . We say
that S passes the next-bit-test T if, for all
polynomials Q , for all sufficiently large k , and for

all integers [))(,0 kPi∈ ;

)(

1

2

1

kQ
p i

k <−

It exist a more general kind of test called polynomial-
time statistical test where the condition change as
follows

)(

1

kQ
pp R

k

S

k <−

where S

kp denotes the probability that T outputs 1

on)(1 kP randomly selected strings in kS , and R

kp

represents the probability that T outputs 1 on)(1 kP

random bit strings, each of length)(kP .

We say that a multiset kk SS ∪= is samplable if

there is a probabilistic polynomial-time algorithm
that, given as input k , outputs kR Ss∈ .

Definition of one-way function: Let kk ID ⊆ . Let

kkk DDf →: be a sequence of functions and let the

function f defined as follows:)()(xfxf k= if

kDx∈ . Let if denote f applied i times. Let

k

i

k DD ⊆ such that i

kDy∈ if)(xfy i= for some

kDx∈ . f is a one-way function if

1) f polynomial time computable;

2) f is hard to invert; that is, for every

probabilistic polynomial-time algorithm A
and for all sufficiently large k , for every

31 ki ≤≤ ,)()(1 xfxA k

−≠ for at least a

constant fraction of i

kDx∈ ;

3) kU∪ is samplable.

3 Hardness of a random robot motion

tracking.

After all those definitions we can now resume
the main results of [25] that will allow us to
grasp the computational hardness on the
prediction of the bits generated by uniform
random function. This will enable us to
formally base our statements about the
computational complexity of the robot motion
tracking problem when the target robot follows
a random motion strategy. We will list the
results obtained in [25] as follows. Result 1:
Let kk SS ∪= be a samplable multiset of bit

sequences. The following statements are

equivalent:

i. S passes the next-bit-test.

ii. S passes all polynomial-time

statistical tests for strings.

iii. S passes all polynomial-time

statistical tests whose input consists

of a single string in S . (Rem. CSB

sequences pass all polynomial time

statistical tests)

Result 2: There exists a one-way function if

and only if there exists a CSB generator.
This last result allow us to ensure the
construction secure CSB generators. Given
that a CSB generator can be constructed
explicitly if one way functions exist, so can
poly-random collections. Result 3 (main

theorem): Let F be a collection of functions

constructed using a CSB generator G . Then

F passes all polynomial-time statistical

tests for functions. This lend us to the last
result in [25] that we state as follows. Result
4: Let { }kFF = be a collection of functions

satisfying the indexing, and the polynomial-

time evaluation conditions of a poly-random

collection. Then F cannot be polynomially

inferred if and only if it passes all

polynomial-time statistical tests for

functions. This last result give us the main
argument concerning the computational
complexity of random robot motion tracking
problem. So based in the preceding random
function construction results we are able to
state formally the next affirmation.
Theorem 1: The problem of tracking a target

robot that behaves randomly cannot be

learned in polynomial-time.

Proof: The strategy followed by the target

include a call to a random function. Then we

can predict the next move of the target if and

only if we can predict the next number

generated by a random function. So given

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 221

that it is not polynomially predictable then

the theorem is proved.

As we have done in [1] we assume that each
robot is aware of the other robot actions, i.e.

to ΣΣ , are common knowledge while the

preferences to uu , are private. It is assumed
too that each robot keeps a model of the
behaviour of the other robot. The strategy of
each robot is adaptive in the sense that a
robot modifies his model about the other
robot such that the first should look for the
best response strategy w.r.t. its utility
function. Given that the search of optimal
strategies in the strategy space is very
complex when the agents have bounded

rationality it has been proven in [10] that this
task can be simplified if we assume that each
agent follow a DFA strategy. For more
details about our DFA learning algorithm see
[1].

4 Relation between CSB generators

and decryption of RSA .

In this section we will roughly describe the relation
that exist between CSB generators and RSA
(RIVEST, SHAMIR & ADELMAN ENCRYPTION
PROTOCOL) as a formal tool to base our algorithmic
proposed solution to deal wit the random robot
motion tracking problem. For this end we will
mention some issues that were studied in [22]
concerning the generation of CBS sequences. In the
seminal work on cryptography done by Adi Shamir in
[22] he shows how to generate from a short random
seed a long sequence of pseudo-random numbers that
he called CSB sequences, based on the RSA
cryptosystem. He related the notion of
unpredictability with the property of the sequences of
being cryptographically strong. He defined
additionally the notion of cryptographic knowledge
as computed knowledge, that is, as the ability to
compute the desired value within certain time and
space complexity bounds. He related the one-way
functions with the easy to compute permutations on
some finite universe U that are everywhere difficult
to invert. That is, given a one-way function f ,
generate a long pseudo-random sequence of elements
of U , by the application of f to a standard sequence

of arguments derived from some initial seed S , for
example …,2,1, ++ SSS . The difficulty of

extracting S from a single value)(iSf + is

guaranteed by the one-way nature of f . In [22] is

given as an example of a good one-way function, the

RSA encryption function)(mod)(NMME K

K = .
Concerning this function Shamir shows that it can
give degenerate results if it is applied to the sequence

…,6,5,4,3,2=M and that this can be corrected if

applied to the sequence …,7,5,3,2=M . For the

sake of avoiding degenerancies he proposed an
iterated application of f to the secret seed S in

conjunction of the XOR operator denoted by ⊕ .
Based on that Shamir stated the following lemma.
Lemma 1: If f is a one-way function, then a new

element of the sequence cannot be computed from a

single known element.
Given that the ⊕ operator scrambles the sequences
making impossible the proofs in more complex
situations, he proposed the RSA public-key
encryption function with modulus N that maps the
secret cleartext M under the publicly known key K

to NM K mod . The corresponding decryption
function recovers the cleartext by taking the K -th
root of the ciphertext ()Nmod . The cryptographic
security of RSA cryptosystem is thus equivalent by
definition to difficulty of taking root Nmod . When
N is a large composite number with unknown
factorization, this root problem is believed to be very
difficult, but when his factorization (or the Euler
function)(Nϕ) is known an K is relative prime to

)(Nϕ , there is a fast algorithm for solving it. Each
pseudo-random sequence generator consists of a
modulus N and some standard easy-to-generate
sequence of keys …,, 21 KK such that)(Nϕ and all

the iK ’s are pairwise relative prime. In order actually

to generate a pseudo-random sequence of values
…,, 21 RR the two parties choose a random seed S

and use their knowledge of)(Nϕ to compute the

sequence of roots

() ()…,mod,mod 21 1
2

1
1 NSRNSR

KK ==
The security of this scheme depends only on the
secrecy of the factorization of N .
Because of that we can take state the equivalence
between the factorization of a number N and the
numbers generated by CSB generators. That is, if we
consider that the random robot motion strategies use
CSB generators for calculating the next move, we
will be able to predict or learn the next move of the
target robot in polynomial-time, if and only if we can
obtain in polynomial-time the prime factorization of a
number.

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 222

5 Discretization of the workspace and

pseudo-random actions
First of all we have discretize the directions
to 9 possibilities (N, NW, W, SW, S, SE, E,
NE, STOP). The second constraint is on the
discretization of the possible situations that
will become inputs to the automata of both
robots. It must be clearly defined for each
behavior what will be the input alphabet to
which will react both robots. This can be
done without modifying the algorithm The
size of the input alphabet impact directly the
learning algorithm performance, because it
evaluates for each case all possible course of
action. So, the table used for learning grows
proportionally to the number of elements of
the input alphabet. For more details about the
construction algorithm see [1]. The
discretization mentioned in the preceding
paragraph constrains the set of values that
can be given as output of a random robot
motion strategy.

6 The Quantum algorithm for random

robot motion tracking.

As we have seen in the section 3 and 4 if take into
account that the random movements of the target are
generated by CSB generators there is no hope to
predict in polynomial-time the next move of target.
The problem here is that under the standard Turing
machine theoretical calculation model (TM for short),
it has not yet been discovered a polynomial-time
algorithm for the prime factorization problem, and it
is conjectured that it doesn’t exist. By other side,
there is relatively new theoretical computer science
field called Quantum Computing. Roughly speaking,
this new field propose to replace the Newton physics
operation based Turing Machine theoretical model by
a Quantum physics operation based Turing Machine
denoted as QTM. The QTM has some extra features
as for example, the capability of being in many states
simultaneously. These new features give place to
some hopes concerning the possibility to solve in
polynomial-time with a QTM some very complex
unsolvable in polynomial time under the standard TM
model. For the moment it has not yet been proved
that a QTM can solve NP-complete or NP-hard
problems in polynomial-time but some progress has
been made in the last twenty years in the conception
of polynomial-time algorithms for solving some less
hard problems that belong to the NP complexity
class. Such is the case of the prime factorization
problem. This algorithm was proposed by Peter W.

Shor in [9] and solves the prime factorization
problem in expected polynomial-time. Quantum
algorithms are methods using quantum networks and
processors to solve algorithmic problems. Quantum
algorithms have been developed utilizing the power
of quantum evolution, especially of such quantum
phenomena as quantum superposition, parallelism
and entanglement. For solving the prime factorization
problem with a QTM algorithm, some number theory
problems as integer factorization and the calculation
of the order or period of a function

)(mod)(NMME K

K = , that is, to find the smallest

NMtsK K mod1.. ≡ , must be solved in
polynomial-time. For the first problem the gcd solve
it in)(log NO , and for the second we have to exploit

the parallelism of a QTM and use the QFT (Quantum
Fourier transform). The key idea of the Shor’s
algorithm is to relate the calculation of the period of a
function with the prime factorization problem using
the QFT. So given that the random robot motion
strategies use CSB generators for calculating the next
move, and that it is equivalent to the prime
factorization of a number, we can enounce our second
result as follows. Theorem 2: The problem of

tracking a target robot that behaves randomly can be

learned in expected polynomial-time using the Shor

prime factorization QTM algorithm.
We have supposed along the present article that the
target robot follows all the time a random strategy of
movements. We can try to explore the case where the
robot follows for some time a DFA and suddenly
when it get stuck in a local minima, he starts a
random walk, as is the case of robots following a path
calculated by a planner of the kind proposed by
Barraquand & Latombe in [11] or Erdmann in [16]. If
we apply our DFA learning algorithm we can loss the
target robot. So what we propose as solution is to run
in parallel our DFA learning algorithm and quantum
algorithm.

7 Conclusions and future work
As we have shown in the present paper, the random
robot motion tracking problem is not polynomial-
time solvable under the standard TM by relating it
with prime factorization problem. As consequence we
have proposed an alternative to cope with this
negative result by means of the application of
quantum algorithms. As a future work we can explore
what happen in the case of using quantum versions of
a CSB generators. Another possible future research
can be the mixed situation mentioned at the end of
the section 6 of the present article.

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 223

References:

[1] Carlos Rodríguez Lucatero & Rafael Lozano
Espinosa, Application of automata learning
algorithms to robot motion tracking, Proceedings
ISPRA2005 Austria, 2005.

[2] C.Rodríguez Lucatero, A. de Albornoz & R.
Lozano E., A game theory approach to the robot
tracking problem, WSEAS Transactions on

Computers, Issue 4, Volume 3, ISSN 1109-2750,
862-868, October 2004.

[3] Dana Angluin, A note on the number of queries
needed to identify regular languages, Information and

Control, 51, 76-87, 1981.

[4] S.M. La Valle, H.H. González Baños, Craig
Becker, & J.C. Latombe, Motion Strategies for
Maintaining Visibility of a Moving Target,
Proceedings of the IEEE International Conference on

Robotics and Automation, 731-736,April 1997.

[5] S.M. La Valle, David Lin, Leonidas J. Guibas,
J.C. Latombe & Rajeev Motwani, Finding an
Unpredictable Target in a Workspace with Obstacles,
Proceedings of the IEEE International Conference on

Robotics and Automation, April 1997.

[6] M.L. Littman, Markov games as a framework for
multiagent reinforcement learning, Proceedings of

the eleventh International Conference on Machine

Learning, 157-163 ,1994.

[7] R. Murrieta-Cid, H.H. González-Baños & B.
Tovar, A Reactive Motion Planner to Maintain
Visibility of Unpredictable Targets, Proceedings of

the IEEE International Conference on Robotics and

Automation, 2002.

[8] Christos H. Papadimitriou & John N.Tsitsiklis,
The complexity of Markov decision processes,
Mathematics of Operations Research, Vol. 12, No. 3,
August 1987.

 [9] Peter W. Shore, Polynomial time algorithms for
prime factorization and discrete logarithms on
quantum computer. SIAM Journal on computing, 26
(5):1484-1509, 1997.

[10] Ariel Rubinstein, Finite Automata Play the
Repeated Prisioner’s Dilemma, Journal of Economic

Theory, 39, 83-96, 1986.

[11] J.Barraquand & J.C. Latombe, Robot Motion
Planning: A distributed representation approach,
STAN-CS-89-1257, Technical report CS. Dept.
Stanford University , 1989.

 [12] Dana Angluin, Jeffery Westbrook, & Wenhong
Zhu, Robot Navigation with range Queries, ACM

STOC 96, 469-478, 1996.

[13] Ronald L. Rivest, & Robert E. Schapire,
Inference of Finite Automata using Homing
Sequences, Information and Computation, 103, 299-
347, 1993.
[14] A. Blum, P. Raghavan & B. Schieber,
Navigating in unfamiliar geometric terrain, ACM

STOC 91, 494-504, 1991.

[15] V. Lumelsky & A. Stepanov, Path planning
strategies for a point mobile automaton moving
amidst unknown obstacles of arbitrary shape,
Algoritmica, 2, 403-430, 1987.

[16] Erdmann, M.A., On Probabilistic Strategies for
Robot Tasks, MIT Artificial Intelligence Laboratory,
Technical Report, 1990.

[17] C.H.Papadimitriou & M. Yannakakis, On
Complexity as bounded rationality, STOC94 ACM,
Montreal, Quebec, Canada, 726-733, 2004.
[18] R. Axelrod, The Evolution of Cooperation,
Basic Books, 1984.
 [20] M.Kearns & L. Valiant Cryptographic
limitation on learning Boolean formulae and finite
automata , Proc. 21th ACM Symposium on Theory of

Computing ,pag 433-444, May 1989.
[21] L. Pitt & M.K. Warmuth, The minimal
consistent DFA problem cannot be approximated
within any polynomial, JACM 40(1):95-142, January
1993.

[22] Shamir A. , On the generation of
cryptographically strong pseudorandom sequences,
ACM Trans. Comput. Syst. 1, 1:38-44, Feb. 1983.

[23] David Carmel & Shaul Markovitch, Learning
Models of Intelligent Agents, Technical Report
CIS9606 Technion, 1996.

[24] David Carmel & Shaul Markovitch, How to
explore your oponent’s strategy (almost) optimally,
Proceedings ICMAS98 Paris France, 1998.

[25] Oded Goldreich, Shafi Goldwasser & Silvio
Micali , How to construct random functions, JACM

Vol. 33, No. 4, pp 792-807, October 1986.

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 224

