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Abstract: - This paper presents an alternative process, based on Neural Networks, for modeling greenhouses. 
The proposed modeling process takes into account environmental variables and greenhouse features. The model  
composed by a Perceptron Multi-layer Network is applied to actual greenhouse. Simulation results are compared 
to experimental values. The results have shown a good approximation between neural network method and 
measured values. 
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1 Introduction 
Artificial Intelligence (AI) is the field of Computer 
Science that attempts to give computers humanlike 
abilities. One of the primary means by which 
computers are endowed with humanlike abilities, is a 
Neural Network (NN). The human brain consists of a 
network of over a hundred billion interconnected 
neurons. Neurons are individual cells that can process 
small amounts of information and then activate other 
neurons to continue the process. Neural networks are 
often not suitable for problems where you must know 
exactly how the solution was derived. A NN can 
become very useful for solving the problem for which 
the neural network was trained [1]. 
The individual neurons that make up a NN are 
interconnected through the synapses. These 
connections allow the neurons to signal each other as 
information is processed. Not all connections are 
equal. Each connection is assigned a connection 
weight. If there is no connection between two 
neurons, then their connection weight is zero [2]. 
The neurons of a network can be connected in 
different ways, resulting in different architectures. 
One important NN architectures is the Multi-Layer 
model. The neurons are organized well-defined levels 
that are called layers. Each unit of a layer receives 
inputs comings from a preceding layer, and sends 
output signals for the following layer. These nets are 
known as nets feed-forward. Architecture of three 
layers - entered, occult layer and exit - are used in 
practical applications of the neural nets. Artificial the 
Neural Nets can be applied on different types of 
tasks, such as: pattern recognition (recognition of 

faces human beings), classification (recognition of 
characters OCR), transformation of data 
(compression of data), prediction (forecast of secular 
series in quotation of stock exchange or medical 
diagnosis), control of processes (applications in the 
robotics area), and so on [3]. 
Training is the process by which the connection 
weights of NN are assigned. Most training algorithms 
begin by assigning random numbers to the weight 
matrix. Then the validness of the NN is analyzed. 
Next, the weights are adjusted based on performance 
criteria. This process is repeated until the validation 
error is within an acceptable limit. NN training 
methods generally fall into the categories of 
supervised, unsupervised and various hybrid 
approaches [4]. Supervised training is accomplished 
by giving the NN a set of sample data along with the 
anticipated outputs from each of these samples. As 
supervised training proceeds, the NN is taken through 
several iterations, or epochs, until the actual output of 
the NN matches the anticipated output, with a 
reasonable error. Each epoch is one pass through the 
training steps [5]. 
Greenhouse is a dynamic system with distributed, 
non-linear and time varying parameters.  Therefore, 
modeling involves a broader knowledge of biotic and 
non-biotic factors, whose mathematical 
representation is given by differential equations of 
complex resolution. 
 This work has as objectives the development of a 
computational model of greenhouses based on NN. 
 The text is organized in six sections. The second 
section presents a description of the analytical model 
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and Fuzzy model for the control of the internal 
variable of a greenhouse. In section three, the NN 
model adopted in this paper is presented. The results 
from the NN are presented and analyzed in the 
following sections and, the last section, presents the 
general and specific conclusions. 
 
 
2  Analytical  and Fuzzy Modeling 
It has presented the analytical model that describes 
the greenhouse microclimate behavior using the 
balance equations of mass and heat and considering 
natural ventilation as air renew [7]. External air 
humidity, solar radiation wind speed and physical 
constants were extracted from [6]. Equation (1) 
shows  greenhouse energy balance. 
 

 Qr + Qm + Qso + Qsa + Qve = Qce + Qsp + Qsl + 
Qvs + Qft + Qtt  (1) 

Where: 
Qr - respiration sensible heat, W;  
Qm - equipments, illumination and engines heat, W;  
Qso- sun energy input, W;  
Qsa- sensible heat from heating system, W;  
Qve - entrance ventilation air sensible heat (naturally 
or forced), W;  
Qce - structure conduction sensible heat, W;  
Qsp - sensible heat transferred to the soil by 
perimeter, W;  
Qsl - sensible heat converted to latent heat inside 
internal space (vase water evaporating, irrigation 
system or hydropony and evapotranspiration), W;  
Qvs - Out ventilation air sensible heat (naturally or 
forced), W; 
Qft - sensible heat used for photosynthesis, W, and 
Qtt - thermal transmittance heat, W. 
  
The values of the Qr, Qft and Qsp terms are hundred 
times small if compared to the other terms values and 
may usually dismissed. Besides, Qsl value is difficult 
to be measured [7], and may also be ignored. 
 
Therefore,  equation (2) is obtained from equation 
(1). 
 

                ttspcevso QQQQQ ++=+                    (2) 
 
 For a better comprehension of the relationship among 
the external variables (temperature, radiation and 
wind speed) and the internal temperature, equation 
(2) is modified and yields the equation (3). 
 

( ) ( )( ) 044 =+−⋅−−−⋅−⋅ AITeGBVvTeFTiGBVvTiF carε
                     (3) 

Where: 

 ApA ⋅= τ   
 ρ⋅⋅⋅= AaEcpB   

 
ApF t ⋅⋅⋅= σγε sup   

 PerFAcUG ⋅−⋅=   
τ: Cover Transmittance in relation to global radiation 
Ie: External global radiation 
cp: External air specific heat 
E: Openings efficiency 
Aa: Openings area 
ρ: Air density 
εsup: vegetation or floor emissive 
γt: thermal transmittance of the plastic in the re-
irradiation 
σ: Stefan Boltzmann constant 
Ap: Plastic greenhouse floor area 
U: Global coefficient of transference of heat of the 
plastic 
Ac: Plastic greenhouse contour area with open or 
closed lateral 
F: Perimeter Factor 
Per: Plastic greenhouse perimeter  
Ie: External global radiation 
Vν: Wind speed 
Ti: Internal temperature 
Te: External temperature 
 
The average of the Internal Relative Humidity (URi) 
is obtained from the use of the average of Internal 
Temperature (Ti) within mass balance equation (Wi) 
as shown in equation (4) [8]. 
 

 MapWemWim +⋅=⋅  (4) 
where: 
m : dry air mass flow, kg s-1; 
Wi: absolute internal humidity, kg kg-1 (H2O vapor 
kilogram by dry air kilogram); 
We: external absolute humidity, kg kg-1 (H2O vapor 
kilogram by dry air kilogram); 
Map: mass flow of the water produced by the plants, 
kg s-1. 
 
Analytical modeling with large number of variables 
and equations, such as previously described, is 
difficult to be solved. In some cases, linearization and 
simplification are applied but it yields in error 
accumulation, compromising the model’s efficiency. 
Considering that, [9] proposed the use of Fuzzy Logic 
to model the microclimate behavior inside a 
greenhouse, with the purpose of surpassing the 
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limitations imposed by the analytical model.  This 
alternative method for modeling greenhouse was 
implemented and simulated.  The use of Fuzzy Logic 
show advantages like the easy modeling without 
detailed known about actual modeled process, which 
is mandatory at the analytical modeling. The 
simulation results show good accuracy compared to 
measured values and to values obtained by analytical 
model, which proved the correctness of the proposed 
method. 
 
 
3 Neural Network Modeling 
A multilayer NN with 2 hidden layers was proposed 
for the greenhouse model, as shown Fig.1.  
The first hidden layer has 40 neurons and second one 
has 20 neurons. A series of tests, from references, had 
been carried through until getting an acceptable 
configuration in what to refer it amount of hidden 
layers and the amount of neurons of those layers. The 
input of the NN is the values of External 
Temperature, External Global Radiation, External 
Relative Humidity and Wind Speed. The outputs are 
the values of Internal Temperature and Internal 
Relative Humidity. The hyperbolic tangent function, 
or TANH, was selected as activation method for input 
layer and for the first hidden layer. The linear 
function was selected as activation method for second 
hidden layer. 
 

 
Fig 1. Greenhouse Multilayer Neural Network  

 
The feed forward back propagation NN was chosen 
as the architectures. This NN architecture is very 
popular because it can be applied to many different 
tasks. “Feed forward" describes how this NN 
processes the pattern and recalls patterns. When using 
a "feed forward NN" neurons are only connected 
forward. Each layer of the NN contains connections 
to the next layer, but there are no connections back.  
 Back Propagation was the NN training method which 
is a supervised training. When using a supervised 
training method the network must be provided with 
sample inputs and anticipated outputs. Anticipated 
outputs will be compared against the anticipated 
outputs from the NN. Using anticipated outputs the 
"back propagation" training algorithm takes a 

calculated error and adjusts the weights of the various 
layers backwards from the output layer all the way 
back to the input layer.  
Error calculation is an important aspect of any NN. 
The goal of the training algorithms is to minimize the 
error. There are some components to the error that 
must be considered. First, the error for each of the 
training sets must be calculated. Secondly, the 
average across each sample for the training set we 
must be taken. Finally, after all training sets have 
been processed, the root mean square (RMS) error is 
determined. In the present case, the goal was RMS 
equal 10E-8. 
 
 
4 Simulation Results 
For the training of the NN, 14 inputs and output data 
sets had been selected, from the values gotten in an 
experiment lead in the College of Agricultural 
Engineering of State University of Campinas, as 
described in [10]. Others 13 data sets of the same 
experience had been used for the validation of the 
training of the network. 
The NN reached the goal after 22 epochs in the 
training, as shown in Fig. 2. 
 
 

 
 

Fig 2. Network Performance for error 1E-08 
 

The NN training was repeated for 200 epochs, 
considering goal at zero, in order to verify that the 
result reached after 22 epochs was not a local 
minimum, as shown in Fig. 3. Fig.4 and fig. 5 show 
the temperature and humidity error calculated 
between analytical and NN technique. Table 1 
shows the comparison between experimental and 
simulation results using analytical and proposed NN 
method. Each line of the Table 1 represents the 
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average values in one day.  It is possible to observe 
that in 10 dataset results the internal relative humidity 
has a better performance than analytical approach. As 
can be seen in Table 1, the simulation results from 
NN technique have been more precise when compare 
to analytical method in 81% cases. 

 

 
 

Fig 3. Network Performance for 200 epochs 
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Fig 4. Temperature Error 
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 Fig 5. Relative Humidity 
 
 
Besides, it can be noted that NN has also better 
results for the internal temperature. In this situation, 
the NN method had a good approximation in 77% 
cases. In 62% cases it can be observed that NN has 
been more efficient than analytical method. 
 

 
 
5. Conclusion 
In this work the NN was applied in order to  predict  
some parameters  in  a greenhouse.  A multiplayer 
perceptron NN  has been  trained using 
backpropagation algorithm. 
Despite the good results obtained, it is possible to 
improve the NN performance by using more dataset 
of the main system parameters. From the simulation 
results, the neural architecture can be a good 
alternative for another existing technique in this kind 
of application. 
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Table 1. Validation Results 

 
 
 
 
 

Ie Vve Ure Te Sensor Analitycal Network
Analitycal 

Error
Network 

Error Sensor Analitycal Network Analitycal Error
Network 

Error
292,94 0,95 80,1 19,93 81,9 71,1 73,5 13,2% 10,3% 22,3 21,9 22,1 1,8% 0,9%
354,07 1,24 76,8 19,28 62,7 68,1 59,1 8,6% 5,7% 22,5 21,2 22,0 5,8% 2,2%
782,34 2,09 65,5 18,94 54,2 54,5 50,1 0,6% 7,6% 22,6 21,9 22,5 3,1% 0,4%
398,01 1,52 83,1 20,65 77,2 74,1 74,0 4,0% 4,1% 22,8 22,5 22,4 1,3% 1,8%
623,88 1,88 69,0 19,73 59,2 58,9 60,1 0,5% 1,5% 23,3 22,3 23,0 4,3% 1,3%
513,95 1,17 76,2 20,98 72,4 62,9 65,7 13,1% 9,3% 24,2 24,1 24,3 0,4% 0,4%
763,33 1,36 64,8 20,60 54,6 49,9 54,9 8,6% 0,5% 24,6 24,9 24,9 1,2% 1,2%
571,84 1,33 79,1 21,33 72,8 65,1 68,3 10,6% 6,2% 24,8 24,5 24,6 1,2% 0,8%
637,73 1,22 80,8 21,66 77,7 63,9 79,0 17,8% 1,7% 25,5 25,6 25,8 0,4% 1,2%
739,54 2,39 53,9 21,73 51,7 46,3 48,5 10,4% 6,2% 25,6 24,2 24,8 5,5% 3,1%
722,44 1,45 64,5 22,46 58,3 51,3 59,8 12,0% 2,6% 25,6 26,3 25,2 2,7% 1,6%
440,72 1,05 69,5 22,50 67,9 58,3 62,3 14,1% 8,2% 25,8 25,4 25,5 1,6% 1,2%
759,16 1,24 65,5 22,49 54,8 49,6 61,0 9,5% 11,3% 26,6 27,2 26,2 2,3% 1,5%

Output
Input Relative Humidity Temperature
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