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Abstract: In this paper we consider the confidentiality aspects of particular Grid’s applications such as, for ex-
ample, genetic applications. The search of DNA similarities is one of the interesting areas of genetic biology.
However, DNA sequences comparisons need greedy and sensitive computations. We propose a model allowing to
search DNA similarities in a public DNA database on the Grid. The model is relatedto the private approximate
string matching problem where neither the inputs nor the outputs of the comparisons are revealed. We analyze the
performance of our proposed DNA disguising method by taking into account how the edit distances between the
client’s queries and their corresponding disguises are distributed along the DNA sequences.
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1 Introduction

In its computer science acceptation, a Grid is a widely
distributed system composed of resources of many com-
puting systems. Since a lot of different, and possibly
malicious, users are using these resources, the risks of
eavesdropping of data and information that are stored or
processed on Grid resources, or even that are traveling
on the Grid’s network, cannot be disregarded. More-
over, data stored on Grid’s resources may be related to
individual private information (e.g. medical data, bio-
logical data, genetic data, etc.), in this case, confiden-
tiality issues and protection of the users’ privacy must
be studied carefully. For example we have to take into
account the fact that data may be stored or processed
on a remote and probably untrusted Grid node. In this
work, the worddata will be taken in a broad sense in-
cluding data resulting from simulations and experiments
that are organized in databases on the Grid as well as
executables codes of jobs to be processed on the Grid.
We will show that existing solutions for confidentiality
issues in a Grid system as SSL for example ensure the
confidentiality of data during their transport phase but
do not guarantee the confidentiality to sensitive compu-
tations during their execution. We will focus our inter-
est on the confidentiality aspects of genetic applications
on the Grid; more precisely, in the search of DNA sim-
ilarities on DNA sequences stored in Grid’s databases.
The DNA sequence comparisons are expensive compu-
tations since one DNA sequence may contain thousands
to millions of nucleotides. Therefore such comparisons
need powerful computing resources. A Grid seems to

be of course an appropriate environment for such com-
putations. A remote DNA sequence comparison mech-
anism may be a sensitive computation in the sense that
we may have to ensure that the DNA sequences are not
subject to unauthorized tests whose outcome could have
such serious consequences [3] (as jeopardizing an indi-
vidual’s insurability or employability, etc).

On the basis of these security and computing power
requirements, we propose a disguise model allowing to
search DNA similarities in a public DNA database on
the Grid in such a way that neither the inputs nor the
outputs of the comparisons are revealed to the comput-
ing node. This work is related to problems of Private
Information Matching with a public database [7] where
a client searches similarities to a given item in a public
database without revealing neither the client’s item nor
the output of the comparison. Solutions to the private
information matching with private databases (PIM) are
proposed in [7]. These solutions are also used to private
information matching with a public database (PIMPD).
In this paper, we propose a specific solution to a PIMPD
problem that consider the fact that the database is pub-
lic. The model exploits the opportunities offered by the
data replication service in Grid system as the possibility
of replication of a database on several servers. The fact
that the database is public will be profitable in the sense
that the client will download as many as possible DNA
sequences. This avoids the use of a third untrusted en-
tity as it is done in PIM solutions. This work provides
an example of a practical grid enabled application that
preserves in addition the security of the application.
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2 Confidentiality of transmitted data

When we deal with confidential information, we have to
consider the fact that, among the entities involved in the
transport of the corresponding data or in their process-
ing, some may be authorized to read the data whereas
others may not. The “transport phase” concerns mes-
sages transmitted between Grid entities or jobs that are
migrating on Grid nodes. The protocol SSL is inte-
grated for confidentiality issues in the security layers
the two well-known grid middlewares Globus and UNI-
CORE. In Legion middleware [2], it is up to users to
choose which mechanisms they assume to be secure
enough for their security requirements (identification,
login, delegation, confidentiality). SSL is used to trans-
mit messages between Grid entities in such a way that
those only authorized to read the message can under-
stand it. The protocol is initiated between two enti-
ties. Via a chain of delegation, the protocol may in-
volve more than two entities that agree on peer-to-peer
messages protection. In consequence, messages may be
(symmetrically or asymmetrically) encrypted for their
recipients and therefore may be securely handled by
intermediary nodes. However, SSL fails to guarantee
the confidentiality to sensitive computations toward the
computing nodes. Indeed, during the execution of such
computations, they have to be deciphered (if they were
encrypted) before they are read, interpreted and exe-
cuted on different Grid’s nodes. Otherwise the execu-
tion of encrypted codes may lead to results from which
it is hard to deduce the results of the original codes.

3 Secure outsourcing

Outsourcing is used by an entity that has to execute a
task but does not have the appropriate hardware and/or
software to realize the execution. Another entity, that
has the appropriate resources, will execute the task and
provide the results to the task’s owner. Secure outsourc-
ing refers to an outsourcing in which security require-
ments, as integrity, authentication and confidentiality,
are involved. We assume that the nodes involved in a
computation are honest and execute the tasks correctly.
However, since the tasks and/or the corresponding out-
puts may refer to private data, the tasks’ owners may
want to prevent the executing nodes to know the tasks
related information. Therefore, secure outsourcing with
confidentiality requirement may be such that the nodes
involved in the computations never knows neither the

task’s inputs nor its outputs. There are, at least, two
ways to hide computation details to the agents that par-
ticipate in this computation: the disguise and the en-
cryption methods. A disguise operation realizes a func-
tional or mathematical transformation on the objects of
the disguise (for example input of sensitive computa-
tions). Generally, the execution of the disguised prob-
lem leads to results from which it is possible to deduce,
knowing some secret information about the disguise, the
results of the original problem. The encryption is even-
tually another kind of disguise method based on the us-
age of secret keys. However, it seems harder and less
efficient to recover the results of an original problem
that has been encrypted before execution than when the
problem has been disguised. Nevertheless, if disguise
methods seem to be more convenient solutions for se-
cure outsourcing, the disadvantage is that it seems that
there is no generic disguise method that fits all possible
problems. Since Grid systems are dedicated to a broad
range of applications, this disadvantage becomes, in this
framework, a serious problem.

4 Outsourcing of strings matching

Among Grid’s applications, some may be sensitive in a
secure point of view (e.g. medical and genetic applica-
tions). Therefore, before they are outsourced on Grid
nodes, they may need to be disguised. In this work, we
are interested in the outsourcing operations with confi-
dentiality requirements. On that context, we will focus
our interest on the disguise of string matching proce-
dures that allow errors. This problem is also called “ap-
proximate string matching problems” [7].

4.1 Related works

Many works have been done in the framework of se-
cure outsourcing [3, 4, 7, 10, 11, 12]. Unfortunately,
it seems that no general and generic solution seems
to exist. The different proposed secure outsourcing
models are appropriate tools resolving specific situa-
tions. In [3], the authors propose a model for sequences
comparison (in speech recognition, machine vision and
molecular sequence comparisons) involving three en-
tities: the client who needs the result of the compar-
ison of two sequences and two other agents that par-
ticipate in the comparison while ignoring the two se-
quences. In [4, 11], the problems of outsourcing and
speeding up secret computations are evoked. Solu-
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tions to mathematical applications (matrix multiplica-
tions, quadratures, edge detections, solutions of differ-
ential equations, etc.) are discussed. The problems of
secure outsourcing and speeding up fixed-based expo-
nentiation and variable-based exponentiation computa-
tions are also evoked in [12]. S. Hohenberger et al. in
[10] proposes two models of securely outsourcing cryp-
tographic computations: the outsource of a modular ex-
ponentiation and the outsource-secure encryption using
one trusted program. The approximate string matching
problem deals with the problem of finding all substrings
of a textT that match a given pattern with the exception
of at mostm differences, for some given integerm. The
differences being in the form of inserted, deleted or re-
placed characters [13]. The approximate string match-
ing is the realistic version of the exact pattern match-
ing where we have a databasex = x1, . . . , xn and a
user who has an itemxi and wants to verify whether
his item xi is in the database. If in addition to this
exact pattern matching, the user wants his query to be
kept confidential, we deal with the “private information
retrieval” [5, 6]. In the approximate matching frame-
work, the user has an itemxi and wants to find items
in a database that are similar toxi. The notion of dis-
tance can also be used, in the sense that the most sim-
ilar element to a given item is the element which is at
the minimum distance (compared to all the other ele-
ments in the database) to the item. Many algorithms to
solve the problem of approximate string matching are
proposed in [13, 14, 15, 16]. These solutions are ap-
plicable in matching fingerprint, voice, matching DNA
sequence, image template matching, etc. The private
information matching (PIM) problem is an approximate
matching problem where the confidentiality of client’s
queries and of the database content has to be preserved.
Solutions to this problem are proposed in [7] with the
metrics

∑n
i=0(ai − bi)

2 and
∑n

i=0 |ai − bi| where a and
b are the sequences that are being compared. These so-
lutions are also applicable to private information match-
ing with public database called in [7] “Public Informa-
tion Matching with a Public Database” (PIMPD). In this
work, we propose a specific solution to PIMPD that we
apply to DNA sequence comparisons.

4.2 DNA sequences comparisons

In this paper, as an example of possible string match-
ing framework, we will consider the problem of private
DNA sequence comparisons.

There are two types of nucleic acids: deoxyribonu-
cleic acid (DNA) and ribonucleic acid (RNA). These
molecules make it possible to living beings to repro-
duce their complex equipment from one generation to
another. The RNA is used as intermediary in the genetic
information flow of the DNA with proteins. DNA is a
polymer. The monomer units of DNA are nucleotides
and the polymer is known as a polynucleotide. There
are four different types of nucleotides found in DNA,
differing only in the nitrogen base. The four nucleotides
are given one letter abbreviation as shorthand for the
four bases:A for Adenine,G for Guanine,C for Cyto-
sine andT for Thymine. A DNA is a normally double
stranded macromolecule. Two polynucleotide chains
are held together by a weak thermodynamic force. In
the DNA helix, we have four different bondsA − T ,
T−A, C−G andG−C (by taking into account that one
base is on the first polynucleotide chain and the other
base is in the second chain). Theith characterλi of the
sequence may be one of the four base boundsA − T ,
T − A, C − G andG − C.

The searching of specific sequences appears as a
fundamental operation for problems such as looking for
given features in DNA chains or determining how two
genetic sequences are similar. For example a database
of over 3 millions of DNA individual profiles has been
constituted from 1995 in England and Wales [9]. One of
the practical utilities of such database is the elucidation
of crimes. Indeed, crimes are successfully solved when
DNA is recovered from the crime scene and the DNA
profiles are successfully loaded onto the DNA database.
Since such databases are greedy in storage spaces, the
Grid seems to be the right environment for their man-
agement.

We assume on the Grid, the existence of a DNA
database that is replicated on different storage servers.
The DNA database is public. The DNA’s owners are ei-
ther anonymous or their identities are stored on another
secured storage server. The management of such iden-
tities is out of the scope of this work. We consider a
client who has a DNA sequenceq = (λ1, . . . , λn) that
he has recovered from either a crime scene or from a
given living being. He wants to know whether his se-
quence exists already in the database or whether there
is a sequence which is similar to his sequence. How-
ever he does not need to reveal neither his sequence nor
the result of the comparison. Indeed, since the compar-
ison is done on a remote entity, if the DNA is revealed,
a dishonest remote entity may do some tests on one’s
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DNA. Such tests may reveal private information on the
DNA owner (as genetic diseases). Before going any fur-
ther, we define the notion of distance in the context of
DNA sequences.

Let consider two DNA sequencesq = (λ1, . . . , λn)
and q

′

= (λ
′

1, . . . , λ
′

n) over a finite alphabetΣ =
A − T, T − A, C − G, G − C. The distance between
the two sequences is the minimum cost of the sequence
of operations that transformq in q

′

. Such operations
may be deletion, insertion or substitution of characters
[3]. If the different operations have different costs or the
cost depends on the characters involved, we speak ofthe
general edit distance. Otherwise, if all the operations
cost 1, we speak ofsimple edit distance[7]. Without
lost of generality, we will consider the simple edit dis-
tance between two DNA sequences of the same length
and we will deal only with the substitution operation.

4.3 The DNA Private matching model

In this section, we propose a model allowing to out-
source DNA sequences comparisons on the Grid. We
assume the existence of a DNA public database which
is replicated onk replica servers. A client having a DNA
sequenceq = (λ1, . . . , λn) will query thek servers to
find in the database the most similar element to his item.
This similarity searching is done is such way that nei-
ther the client’s query nor the output of the comparisons
are revealed to the replica servers. We assume that the
servers do not collude against the client.

The client disguises his sequenceq = (λ1, . . . , λn)
in the sequenceq

′

= (λ
′

1, . . . , λ
′

n). This disguise opera-
tion is done by choosing random charactersλj in q that
we substitute byλ

′

j . The elementsλ
′

j are taken from
the DNA alphabetΣ = A − T, T − A, C − G, G − C.
This means that at random positionsi in q andq

′

, we
will have λi = λ

′

i whereas at other positionsj we
will have λj 6= λ

′

j . The numberk of all positions

where λj 6= λ
′

j is the simple edit distance between

q and q
′

. We assume that the client interacts withk

database replica servers to find the similar sequence
to his query. To the first server, the client sends the
disguised sequenceq

′

and the distancek. This server
chooses in the database the elementsq

′′

= (λ
′′

1 , . . . , λ
′′

n)
such thatd(q

′

, q
′′

) = min; wheremin is the smallest
distance betweenq

′

and the elementsq
′′

of lengthn in
the database. The client can reduce the number of such
elements by giving to the server in addition toq

′

andk,
one of the elementsλj suchλj 6= λ

′

j ; therefore, among

the elements such thatd(q
′

, q
′′

) = min, the server will
choose the elementsq

′′

such thatλj = λ
′′

j . Other-

wise, if there is not any element such thatλj = λ
′′

j ,
the server has to retrieve all the elements such that
d(q

′

, q
′′

) = min. The server chooses one of the ele-
mentsq

′′

and searches in the database the elementsp
′′

such thatλj = λ
′′

j andd(q
′′

, p
′′

) ≤ k+min. Among the

elementsp
′′

there is the most similar element toq. In-
deed, sinced(q, q

′

) = k andd(q
′

, q
′′

) = min therefore
d(q, q

′′

) ≤ k + min according to distance properties.
The server returns to the client the elementsp

′′

. The
client proceeds in the same way with the otherk − 1
replica servers. To each replica server, the client reveals
a different characterλj among thek characters where
λj 6= λ

′

j . The client computes the intersection of all the

elementsp
′′

returned by all thek replica servers. This
intersection contains the sequence which is the most
similar to sequenceq.

4.4 Distances distribution

Assumption on pair bases distribution. In order to
make an evaluation of the proposed model and for cal-
culation facilities, we will make an assumption on the
base bond distribution along a DNA sequence: we as-
sume that each base bond occurs in a given4-length
subsequence with a probability of0, 25. Two different
4-length DNA subsequences differ by the position of the
four base bonds in each subsequence. This distribution
constitutes the simplest and also the worst case toward
the quality of disguise. Indeed, we keep in mind that
there are other distributions where the occurrence of a
given base bond may be random in a DNA subsequence.
This might make more random the occurrence of a given
subsequence and subsequently improves the quality of
a disguise. If our model is secure (in the quality of dis-
guise point of view) in a worst case, we will be ensured
that this model will be more secure in other cases. It
is important to note that this assumption about the base
pairs distribution is incompatible with a certain distance
distribution between two DNA subsequences. Indeed, if
two 4-length DNA subsequences are at a distance 1 to
each other, there is at least one base bond which oc-
curs twice in one of the two subsequences. For example
the subsequencesA − T, T − A, C − G, G − C and
A − T, T − A, C − G, T − A are at distance1 to each
other, but there is the base bondT − A which occurs
twice (this is incompatible with the equiprobable pair
bases distribution). That’s why in order to stay in the
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context of the assumption on base bonds distribution,
we will consider in the rest of this paper that the dis-
tance between two4-length DNA subsequences is> 1
and thatk > 1.

Equiprobable distance distribution. Here we as-
sume that the distance between two DNA sequences is
distributed equiprobably along the sequences. We are
going to see that this distribution strengthens the secu-
rity of our model while causing loss in performance. In-
deed, in this section we will show that the quality of the
disguise is good when the distance is equiprobably dis-
tributed. The disadvantage of this distribution is that the
number of replica serversk is directly dependent ofn
(the DNA size). Since the DNA size is generally great,
the number of servers becomes rapidly prohibitory.

Firstly, we show that the revelation of the distance
k in the model we proposed does not affect the security
of the disguised sequenceq. Indeed, if twon-length
sequencesq andq

′

are distant ofk, therefore two corre-
sponding4-length subsequences fromq andq

′

are dis-
tant of 4k

n
since the distance is distributed equiproba-

bly. By corresponding subsequences, we mean sub-
sequences that are at the same position in respective
DNA sequences. Thus, given a4-length subsequence of
q
′

, the number of corresponding4-length subsequences
from q that are distant of4k

n
is

( 4
4k

n

)

with n dividing 4k

and 4k
n

> 1.
Since in an-length DNA sequence, there aren4

4-length DNA subsequences and each of such sub-
sequences has

( 4
4k

n

)

corresponding4-length DNA se-

quences that are at4k
n

of distance; therefore, given
a n-length DNA sequenceq

′

(as the one sent to
storage servers in the model), there areS(n, k) =

(n
4 )

( 4
4k

n

)

= n23!
4k( 4k

n
−1)!(4− 4k

n
)!

4-length DNA subsequences

from which we can constructn-length different se-
quencesq that are at a distancek to the givenn-length
sequenceq

′

. We can precisely construct
(S(n,k)

0,25n

)

n-

length DNA sequencesq that are at a distancek from q
′

.
This means that the user’s queryq is disguised among
(S(n,k)

0,25n

)

elements that are at a distancek to q. In the
model, when the server chooses in the database the ele-
mentsq

′′

= (λ
′′

1 , . . . , λ
′′

n) such thatd(q
′

, q
′′

) = min.
The number of such elements is

(S(n,min)
0,25n

)

. We can
have an idea of how the number of such elements is re-
duced when the client reveals one of the elementsλj

such thatλj 6= λ
′

j and that the server chooses the el-

ementsq
′′

such thatλj = λ
′′

j . Indeed,λ
′′

j ∈ in a

4-length subsequence fromq
′′

which is at 4min

n
to the

corresponding4-length subsequence fromq
′

. Normally
there are

( 4
4min

n

)

such elements. However ifλ
′′

j is fixed,

this number is reduced to
( 3

4min

n

)

. This means that there

are
( 3
( 4min

n
)−1

)

elements that are not considered (since
( 4

4min

n

)

=
( 3

4min

n

)

+
( 3
( 4min

n
)−1

)

). The number of elementsp
′′

suchd(q
′′

, p
′′

) ≤ k+min is
∑k+min

i=2

(S(n,i)
0,25n

)

when there

is not any elementλj = λ
′′

j ; otherwise, this number

is reduced since at each iteration, there are
( 3
( 4i

n
)−1

)

4-

length subsequences that are not considered.

Given two different4-length DNA subsequences,
the distance between the two DNA subsequences varies
from 2 to 4. When we consider our model, this means
that 4k

n
varies from 2 to 4 andk varies from0, 5n to n.

For example withn = 200 andk distributed with a ra-
tio 2 in each4-length DNA subsequence, we will have
k = 100. In the model,k is also the number of servers
with which the user interacts. This number of servers
depends on the DNA sequence size. Such amount of
servers is prohibitory. We are going to see hereunder a
way to distribute the distance along the sequences which
reduces this amount of servers.

Distance distributed randomly along the DNA
sequences.We are going to consider the case where
the distancek is distributed randomly in then-length
DNA sequencesq andq

′

. By random distribution, we
mean that in despite of distributing the distancek in all
4-length DNA subsequences, the client can distribute
the distancek in random chosen4-length subsequences.
For example, the client can distribute the distancek in
k
2 random4-length subsequences with the ratio 2. In
this case, the distancek (and implicitly the number of
servers) does not depend on the DNA sizen.

We assume that the distancek is distributed in
random k

2 4-length DNA subsequences, each4-length
DNA sequence fromq (where the distance k is dis-
tributed) being at a distance2 to the corresponding4-
length DNA subsequence fromq

′

. We will analyze
how the quality of the disguise and the performance
of the model are affected by this distribution. Given
two corresponding4-length DNA subsequences distant
of 2 each other, this means that they differ by one
of the positions of two base bonds; for example the
two subsequencesA − T, C − G, T − A, G − C and
A − T, C − G, G − C, T − A. In our model, given a
4-length DNA subsequence fromq

′

where the distance
is distributed, there are

(4
2

)

=6 4-length subsequences
from q that are at a distance2. Since the distancek
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is distributed ink
2 4-length DNA subsequences, we have

k
2∗

(4
2

)

=3∗k such4-length subsequences from which we
can construct the sequencesq that are at a distancek to
the sequenceq

′

. Precisely we can construct
(3∗k

k

2

)

n-

length DNA sequencesq that are at a distancek to the
DNA sequenceq

′

. We note that this amount ofn-length
DNA sequencesq that are at a distancek to the DNA
sequenceq

′

with a random distribution of the distance
k is small in comparison of the amount of then-length
DNA sequencesq we can construct with an equiprob-
able distribution of the same distance (

(S(n,k)
0,25n

)

). This
allow us to state that the quality of the disguise is better
with an equiprobable distribution of the distance than
with a random distribution. Nevertheless, we estimate
that the quality of the disguise with random distance
distribution still is efficient to hide the client’s queryq.
For example with the distancek = 6 distributed with
the ratio2 in random4-length subsequence, there are
(18

3

)

=816n-length DNA sequencesq that are at a dis-
tancek from the n-length sequenceq

′

. This loss in
quality of disguise is compensated by a profit in per-
formance especially in the number of servers which is
reduced with a random distance distribution. Indeed,
with the random distribution of the distance, the num-
ber of serversk is equal to the distance between the two
n sequences and the client still is able to adapt the dis-
tancek to the number of servers which is available. This
is not possible with the distancek that is equiprobable
distributed along the DNA sequence since the distancek

depends on the DNA size. With a large DNA sequence,
the number of servers becomes prohibitory.

Considering together the quality of disguise and the
performance of the model, we see that it is advantageous
to the client to distribute randomly the distancek when
he is disguising his query.
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