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Grid’s confidential outsourcing of string matching
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Abstract: In this paper we consider the confidentiality aspects of particular Grigiicaions such as, for ex-
ample, genetic applications. The search of DNA similarities is one of the inteyestias of genetic biology.
However, DNA sequences comparisons need greedy and sensitigeitaidions. We propose a model allowing to
search DNA similarities in a public DNA database on the Grid. The model is refatda: private approximate
string matching problem where neither the inputs nor the outputs of the commmeee revealed. We analyze the
performance of our proposed DNA disguising method by taking into acduam the edit distances between the
client’'s queries and their corresponding disguises are distributed alerigNA sequences.
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1 Introduction be of course an appropriate environment for such com-
putations. A remote DNA sequence comparison mech-

In its computer science acceptation, a Grid is a widé}{ﬂism may be a sensitive computation in the sense that
distributed system composed of resources of many coff§ may have to ensure that the DNA sequences are not
puting systems. Since a lot of different, and possibijeCt to unauthorized tests whose outcome could have
malicious, users are using these resources, the risk§W¥th serious consequences [3] (as jeopardizing an indi-
eavesdropping of data and information that are stored/éfual’s insurability or employability, etc).

processed on Grid resources, or even that are traveling

on the Grid’s network, cannot be disregarded. More- On the basis of these security and computing power
over, data stored on Grid's resources may be relatedequirements, we propose a disguise model allowing to
individual private information (e.g. medical data, bicsearch DNA similarities in a public DNA database on
logical data, genetic data, etc.), in this case, confid¢he Grid in such a way that neither the inputs nor the
tiality issues and protection of the users’ privacy musutputs of the comparisons are revealed to the comput-
be studied carefully. For example we have to take intay node. This work is related to problems of Private
account the fact that data may be stored or procest#drmation Matching with a public database [7] where
on a remote and probably untrusted Grid node. In tlaslient searches similarities to a given item in a public
work, the worddatawill be taken in a broad sense indatabase without revealing neither the client’s item nor
cluding data resulting from simulations and experimeritee output of the comparison. Solutions to the private
that are organized in databases on the Grid as wellirfermation matching with private databases (PIM) are
executables codes of jobs to be processed on the Guithposed in [7]. These solutions are also used to private
We will show that existing solutions for confidentialitynformation matching with a public database (PIMPD).
issues in a Grid system as SSL for example ensure bhéhis paper, we propose a specific solution to a PIMPD
confidentiality of data during their transport phase bptoblem that consider the fact that the database is pub-
do not guarantee the confidentiality to sensitive comgdic. The model exploits the opportunities offered by the
tations during their execution. We will focus our interdata replication service in Grid system as the possibility
est on the confidentiality aspects of genetic applicationfsreplication of a database on several servers. The fact
on the Grid; more precisely, in the search of DNA sinthat the database is public will be profitable in the sense
ilarities on DNA sequences stored in Grid’s databasésat the client will download as many as possible DNA
The DNA sequence comparisons are expensive compeguences. This avoids the use of a third untrusted en-
tations since one DNA sequence may contain thousatitisas it is done in PIM solutions. This work provides
to millions of nucleotides. Therefore such comparisoas example of a practical grid enabled application that
need powerful computing resources. A Grid seemspgeserves in addition the security of the application.
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2 Confidentiality of transmitted data task’s inputs nor its outputs. There are, at least, two
ways to hide computation details to the agents that par-
When we deal with confidential information, we have tgcipate in this computation: the disguise and the en-
consider the fact that, among the entities involved in thg/ption methods. A disguise operation realizes a func-
transport of the corresponding data or in their procesignal or mathematical transformation on the objects of
ing, some may be authorized to read the data whergas disguise (for example input of sensitive computa-
others may not. The “transport phase” concerns mesns). Generally, the execution of the disguised prob-
sages transmitted between Grid entities or jobs that Ry leads to results from which it is possible to deduce,
migrating on Grid nodes. The protocol SSL is int&nowing some secret information about the disguise, the
grated for confidentiality issues in the security layergsults of the original problem. The encryption is even-
the two well-known grid middlewares Globus and UNkually another kind of disguise method based on the us-
CORE. In Legion middleware [2], it is up to users tage of secret keys. However, it seems harder and less
choose which mechanisms they assume to be seaffigient to recover the results of an original problem
enough for their security requirements (identificatiothat has been encrypted before execution than when the
login, delegation, confidentiality). SSL is used to trangroblem has been disguised. Nevertheless, if disguise
mit messages between Grid entities in such a way th@éthods seem to be more convenient solutions for se-
those only authorized to read the message can unde¥e outsourcing, the disadvantage is that it seems that
stand it. The protocol is initiated between two entihere is no generic disguise method that fits all possible
ties. Via a chain of delegation, the protocol may irproblems. Since Grid systems are dedicated to a broad
volve more than two entities that agree on peer-to-pegnge of applications, this disadvantage becomes, in this
messages protection. In consequence, messages magahgework, a serious problem.
(symmetrically or asymmetrically) encrypted for their
recipients and therefore may be securely handled by ) ) )
intermediary nodes. However, SSL fails to guarantde Outsourcing of strings matching
the confidentiality to sensitive computations toward the . o o
computing nodes. Indeed, during the execution of suMong Grid's applications, some may be sensitive in a
computations, they have to be deciphered (if they wey@cure point of view (e.g. medical and genetic applica-
encrypted) before they are read, interpreted and eligns). Therefore, before they are outsourced on Grid
cuted on different Grid’s nodes. Otherwise the exediedes, they may need to be disguised. In this work, we
tion of encrypted codes may lead to results from whi@e interested in the outsourcing operations with confi-

our interest on the disguise of string matching proce-

dures that allow errors. This problem is also called “ap-
3 Secure outsourcing proximate string matching problems” [7].

Outsourcing is used by an entity that has to executg g Related works

task but does not have the appropriate hardware and/or

software to realize the execution. Another entity, thitany works have been done in the framework of se-
has the appropriate resources, will execute the task ande outsourcing [3, 4, 7, 10, 11, 12]. Unfortunately,
provide the results to the task’s owner. Secure outsoutcseems that no general and generic solution seems
ing refers to an outsourcing in which security requirée exist. The different proposed secure outsourcing
ments, as integrity, authentication and confidentialitpjodels are appropriate tools resolving specific situa-
are involved. We assume that the nodes involved irti@ns. In [3], the authors propose a model for sequences
computation are honest and execute the tasks correciynparison (in speech recognition, machine vision and
However, since the tasks and/or the corresponding aublecular sequence comparisons) involving three en-
puts may refer to private data, the tasks’ owners mtyjes: the client who needs the result of the compar-
want to prevent the executing nodes to know the tasken of two sequences and two other agents that par-
related information. Therefore, secure outsourcing witkipate in the comparison while ignoring the two se-
confidentiality requirement may be such that the nodgsences. In [4, 11], the problems of outsourcing and
involved in the computations never knows neither tlspeeding up secret computations are evoked. Solu-
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tions to mathematical applications (matrix multiplica- There are two types of nucleic acids: deoxyribonu-
tions, quadratures, edge detections, solutions of diffeleic acid (DNA) and ribonucleic acid (RNA). These
ential equations, etc.) are discussed. The problemsraflecules make it possible to living beings to repro-
secure outsourcing and speeding up fixed-based exghace their complex equipment from one generation to
nentiation and variable-based exponentiation compus@other. The RNA is used as intermediary in the genetic
tions are also evoked in [12]. S. Hohenberger et al. imformation flow of the DNA with proteins. DNA is a
[10] proposes two models of securely outsourcing crypelymer. The monomer units of DNA are nucleotides
tographic computations: the outsource of a modular ead the polymer is known as a polynucleotide. There
ponentiation and the outsource-secure encryption usarg four different types of nucleotides found in DNA,
one trusted program. The approximate string matchidifering only in the nitrogen base. The four nucleotides
problem deals with the problem of finding all substringee given one letter abbreviation as shorthand for the
of atextT that match a given pattern with the exceptidiour bases:A for Adenine,G for Guanine (' for Cyto-

of at mostm differences, for some given integer. The sine andl” for Thymine. A DNA is a normally double
differences being in the form of inserted, deleted or retranded macromolecule. Two polynucleotide chains
placed characters [13]. The approximate string mat@re held together by a weak thermodynamic force. In
ing is the realistic version of the exact pattern matctire DNA helix, we have four different bond$ — T,

ing where we have a database= zi,...,x, and a T—A, C—G andG—C (by taking into account that one
user who has an item; and wants to verify whetherbase is on the first polynucleotide chain and the other
his item z; is in the database. If in addition to thidbase is in the second chain). Ttk characten,; of the
exact pattern matching, the user wants his query todeguence may be one of the four base boutds T,
kept confidential, we deal with the “private informatiod” — A, C — G andG — C.

retrieval” [5, 6]. In the_approximate match_ing _frame— The searching of specific sequences appears as a
work, the user has an itemy and wants to find itemsn4amental operation for problems such as looking for
in a database that are similarto. The notion of dis- giyen features in DNA chains or determining how two
tance can also be used, in the sense that the most getic sequences are similar. For example a database
ilar element to a given item is the element which is gf oyer 3 millions of DNA individual profiles has been
the minimum distance (compared to all the other elgsnstituted from 1995 in England and Wales [9]. One of
ments in the database) to the item. Many algorithmsi, nractical utilities of such database is the elucidation
solve the problem of approximate string matching 8¢ crimes. Indeed, crimes are successfully solved when
proposed in [13, 14, 15, 16]. These solutions are agya is recovered from the crime scene and the DNA
plicable in matching fingerprint, voice, matching DNAyfijes are successfully loaded onto the DNA database.

sequence, image_template matching, etc. The_pﬂvgﬁﬁce such databases are greedy in storage spaces, the
information matching (PIM) problem is an approximaig i seems to be the right environment for their man-
matching problem where the confidentiality of C"ent'ﬁgement.

queries and of the database content has to be preserved. _ _

Solutions to this problem are proposed in [7] with the V€ assume on the Grid, the existence of a DNA
metricsS"_ o (a; — b;)? andS>"_, |a; — b;| where a and database that is repllcateo_l on dlfferen,t storage servers.
b are the sequences that are being compared. These 85-DNA database is public. The DNAs owners are ei-
lutions are also applicable to private information matcH1€r @honymous or their identities are stored on another
ing with public database called in [7] “Public InformaSecured storage server. The management of such iden-
tion Matching with a Public Database” (PIMPD). In thigt_'es is out of the scope of this work. We consider a

work, we propose a specific solution to PIMPD that V\fé'ent who has a DNA Sequenge= _()‘1’ +y An) that
apply to DNA sequence comparisons. he has recovered from either a crime scene or from a

given living being. He wants to know whether his se-

guence exists already in the database or whether there
4.2 DNA sequences comparisons is a sequence which is similar to his sequence. How-

ever he does not need to reveal neither his sequence nor
In this paper, as an example of possible string matdhe result of the comparison. Indeed, since the compar-
ing framework, we will consider the problem of privatéson is done on a remote entity, if the DNA is revealed,
DNA sequence comparisons. a dishonest remote entity may do some tests on one’s
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DNA. Such tests may reveal private information on thike elements such thdtq',¢") = min, the server will
DNA owner (as genetic diseases). Before going any fehoose the elements’ such that)\; = )\;-'. Other-
ther, we define the notion of distance in the context @ise, if there is not any element such thgt = 2\

9

DNA sequences. the server has to retrieve all the elements such that
Let consider two DNA sequences= (A, ..., An) d(q',q") = min. The server chooses one of the ele-
andg = (\,...,\,) over a finite alphabeE = mentsq” and searches in the database the elements

A-T,T-AC-G,G~C. The distance betweersuchthat\; = \; andd(q",p") < k-+min. Among the

the two sequences is the minimum cost of the sequegggnents)” there is the most similar element 4o In-

of operations that transform in ¢ . Such operations jeed, sincel(q, ') = k andd(q,q") = min therefore
may be deletion, insertion or substitution of charactefg; ;") < k + min according to distance properties.
[3]. If the different operations have different costs or thene server returns to the client the elemenits The
costdepends on the characters involved, we spedileofcjient proceeds in the same way with the otier 1
general edit distance Otherwise, if all the operationsreplica servers. To each replica server, the client reveals
cost 1, we speak adfimple edit distancg7]. Without g different charactek; among thek characters where
lost of generality, we will consider the simple edit dis)‘j # )\;. The client computes the intersection of all the

tance betyveen two DN_A sequences of the same Ien@f@mentqf’ returned by all the: replica servers. This
and we will deal only with the substitution operation. j,iarsection contains the sequence which is the most
similar to sequence.

4.3 The DNA Private matching model

In this section, we propose a model allowing to ouf-4 Distances distribution

source DNA sequences comparisons on the Grid. Weq,mntion on pair bases distribution. In order to
assume the existence of a DNA public database whigh e an evaluation of the proposed model and for cal-
is replicated otk replica servers. Aclienthaving a DNA jation facilities, we will make an assumption on the
sequencg = (A1, ..., An) Will query thek servers to 0 hong distribution along a DNA sequence: we as-
flnql m_th_e dzfltabase th_e m.ost5|m|I_areIement to his 'teé_‘['rme that each base bond occurs in a givéength
This similarity searching is done is such way that neéUbsequence with a probability 6f25. Two different
ther the client's query nor the output of the comparisoi§ength DNA subsequences differ by the position of the
are revealed to the replica servers. We assume thatfiig hase honds in each subsequence. This distribution
servers do not collude against the client. constitutes the simplest and also the worst case toward
~ The client disguises his sequenge- (A1, ..., M) the quality of disguise. Indeed, we keep in mind that
in the sequence = (Ay, ..., ;). This disguise opera-ihere are other distributions where the occurrence of a
tionis dope by chposmg random charact&;sn q that given base bond may be random in a DNA subsequence.
we substitute by\;. The elements\; are taken from g might make more random the occurrence of a given
the DNA alphabet: = A =T, T — A,C — G, G — C. gypsequence and subsequently improves the quality of
This means that at random positions ¢ andq , we g gisguise. If our model is secure (in the quality of dis-
will have A; = A, whereas at other positionswe g ise point of view) in a worst case, we will be ensured
will have A; 7% Aj- The numberk of all positions ha¢ this model will be more secure in other cases. It
where \; # \; is the simple edit distance betweef important to note that this assumption about the base
g andg’. We assume that the client interacts with pairs distribution is incompatible with a certain distance
database replica servers to find the similar sequemltgtribution between two DNA subsequences. Indeed, if
to his query. To the first server, the client sends theo 4-length DNA subsequences are at a distance 1 to
disguised sequencg and the distancé. This server each other, there is at least one base bond which oc-
chooses in the database the elements: ()\'1', e )\;;) curs twice in one of the two subsequences. For example
such thatd(q',¢") = min; wheremin is the smallest the subsequence$ — 7,7 — A,C — G,G — C and
distance betweeq and the elements of lengthnin A —T,7 — A,C — G, T — A are at distancé to each

the database. The client can reduce the number of satiter, but there is the base bofid— A which occurs
elements by giving to the server in additiongfeandk, twice (this is incompatible with the equiprobable pair
one of the elements; such)\; # )\;; therefore, among bases distribution). That’s why in order to stay in the
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context of the assumption on base bonds distributimorresponding-length subsequence frogn Normally
we will consider in the rest of this paper that the dishere are( 1. ) such elements. However)fj/ is fixed,
tance between twd-length DNA subsequencesis 1 i numbe7rz is reduced
and thatc > 1.

Equiprobable distance distribution. Here we as-
sume that the distance between two DNA sequenceé@)#@)+((@)71)). The number of elemens
distributed equiprobably along the sequences. We §[%hd(q”,}”> < k’;mm is ki (S020) \when there
going to see that this distribution strengthens the secu- .

: ) ) ) iS not any elemenh;, = \_; otherwise, this number
rity of our model while causing loss in performance. In- y J J

deed, in this section we will show that the quality of thi§ reduced since at each iteration, there (‘i‘ﬁgq) 4-
disguise is good when the distance is equiprobably d@gbgth subsequences that are not considered.
tributed. The disadvantage of this distribution is that the Given two different4-length DNA subsequences,
number of replica servers is directly dependent of the distance between the two DNA subsequences varies
(the DNA size). Since the DNA size is generally gregtom 2 to 4. When we consider our model, this means
the number of servers becomes rapidly prohibitory. that% varies from 2 to 4 and varies from0, 5n to n.
Firstly, we show that the revelation of the distandeor example withn = 200 andk distributed with a ra-
k in the model we proposed does not affect the secutiity 2 in eachd-length DNA subsequence, we will have
of the disguised sequenege Indeed, if twon-length % = 100. In the modelk is also the number of servers
sequenceg andq are distant ok, therefore two corre- with which the user interacts. This number of servers
spondingd-length subsequences frograndq’ are dis- depends on the DNA sequence size. Such amount of
tant of 4= since the distance is distributed equiprobgervers is prohibitory. We are going to see hereunder a
bly. By corresponding subsequences, we mean suly to distribute the distance along the sequences which
sequences that are at the same position in respeat@guces this amount of servers.
DNA sequences. Thus, giventdength subsequence of Distance distributed randomly along the DNA

¢, the number of correspkopdirﬂglength subsequencegeq ences.We are going to consider the case where
from ¢ that are distant of’ is (ax) with n dividing 4k 0" gistance: is distributed randomly in the-length

and% > 1. DNA sequenceg andq . By random distribution, we
Since in an-length DNA sequence, there afe mean that in despite of distributing the distaricie all

4-length DNA subsequences and each of such subength DNA subsequences, the client can distribute

sequences ha@j) correspondingi-length DNA se- the distancé in random chose#-length subsequences.

H ’ ’

a n-length DNA sequence; (as the one sent tog random4-length subsequences with the ratio 2. In

storage servers in the model), there &, k) = this case, the distande(and implicitly the number of
4N _ 231 : ’ servers) does not depend on the DNA size

(%)(%)—WM 4-length DNA subsequences ) P

from which we can construct-length different se-

We assume that the distanéeis distributed in
kg
quencesgy that are at a distandeto the givenn-length random3 4-length DNA subsequences, eatliength
n,k)

/ . DNA sequence fromy (where the distance k is dis-
. W n precisely constru¢t - )
sequencey e canp y (étso’%”) " tributed) being at a distanceto the corresponding-

0.2 ). This means that there
are ((4&-%)71) elements that are not considered (since

Ien_gth DNA sequencegthat are at_a di_stan_daefromq. length DNA subsequence fromi. We will analyze
T;w(l?;s,kr)neans that the user's queyys disguised amongy, ., the quality of the disguise and the performance
(O,Qén) elements that are at a d|_stank:eto g. Inthe of the model are affected by this distribution. Given
model, when the server chooses in the database the §i8- . responding-length DNA subsequences distant
mentsq = (A, ..., Ay) such thatd(q ,q ) = min. ot 5 each other, this means that they differ by one
The number of such elements @g(&éﬁn))- We can of the positions of two base bonds; for example the
have an idea of how the number of such elements is §gz subsequenced — T,C — G,T — A,G — C and
duced when the/client reveals one of the elements 4 _ T,C —G,G — C,T — A. In our model, given a
such tha/t/Aj 7 A; and that tr)/e server ch(?/oses the el:jength DNA subsequence from where the distance
ementsqg such thath; = A;. Indeed,\; € ina s distributed, there ar¢))=6 4-length subsequences
4-length subsequence frog which is atme to the from ¢ that are at a distanc2 Since the distancé
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is distributed in’QE 4-length DNA subsequences, we havi®] B. Chor, N. GilboaComputationally Private Infor-
% +(3)=3+k suchd-length subsequences from whichwe mation Retrieval ACM symposium on Theory of
can construct the sequencgethat are at a distandeto computing, pp.304-313, 1997.

the sequence’. Precisely we can constru¢ti’) n-

length DNA sequencegthat are at a distandtho the
DNA sequence’. We note that this amount eflength
DNA sequenceg that are at a distance to the DNA

sequence; with a random distribution of the distancgz] W. Du, M. Atallah. Protocols for Secure Remote
k is small in comparison of the amount of thdength Database Access with Approximate Matchifth
DNA sequenceg we can construct with an equiprob-  ACM Conference of Computer and Communica-

able distribution of the same distandg (:*))). This tions Security, 25 pages, 2000.
allow us to state that the quality of the disguise is better

with an equiprobable distribution of the distance thdfl] G. Navarro A Guided Tour to Approximate String
with a random distribution. Nevertheless, we estimate Matching ACM Computing Surveys, 33(1):pp.31-
that the quality of the disguise with random distance 88, 2001.

distribution still is efficient to hide the client’'s quety
For example with the distande = 6 distributed with
the ratio2 in random4-length subsequence, there are
('y)=816n-length DNA sequenceg that are at a dis-

tancek from the n-length sequence’. This loss in [10] S. Hohenberger, A. Lysyanskaya How
quality of disguise is compensated by a profit in per- To Securely Outsource Cryptographic Computa-
formance especially in the number of servers which is tions Theory of Cryptography Conference, LNCS,
reduced with a random distance distribution. Indeed, Springer, Vol 3378, pp.264-282, 2005.

with the random distribution of the distance, the num-

ber of serverg: is equal to the distance between the twid1] T. Matsumoto, K. Kato, H. ImaBpeeding Up Se-
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tancek to the number of servers which is available. This Proceedings of Crypto, LNCS, Springer, Vol 403,
is not possible with the distandethat is equiprobable ~ Pp.497-506, 1988.

distributed along the DNA sequence since the distanc 12] M. Dijk, D. Clarke, B. Gassend G. Suh, S. De-

depends on the DNA size. With a large DNA sequencg, vadas Speeding up Exponentiation using an Un-

the number of servers becomes prohibitory. . .
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