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Abstract: - This work presents a co-design methodology for the definition of ad-hoc HW/SW architectures for modern 
DBMSs. The main goals of such a methodology are: to analyze the DBMS specification in order to identify the 
operators that could benefit from ad-hoc executors, to explore the solutions design space, and to define the 
architecture that optimize the relevant design metrics (e.g. performance, power, cost, etc.) depending on the reference 
target (e.g. handheld PC, DB server, smartcard, etc.). A meta-example is presented to give the flavour on how such a 
metodology could work when supported by the proper toolchain. 
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1  Introduction 
In the last years, database technology has become 
fundamental in several application domains (e.g. 
Geographic Information Systems, Bioinformatics 
Information Systems, Multimedia Information Systems, 
etc.). Very often, such domains involve the heavy use of 
application-specific data-types (e.g. spatial geometries, 
protein structures, audio-video data, etc.), and related 
operators, that are generally very different from the ones 
that traditional DBMSs have coped within the past 
(which historically handled simple data types like 
numbers and alphanumeric characters). 
These custom data types and their associated operators 
present new challenges to the designer of DBMSs 
because they upset the traditional implementation 
guidelines (e.g. [4]) that focused on the optimization of 
the I/O cost as the dominant one. Instead, it has been 
recently realized that the computational cost of some 
application-specific operators can be orders of 
magnitude higher than the associated I/O cost. For 
example, in the GIS domain [2], it has been shown that 
in spatial selections for point geometries, the I/O cost is 
the dominant one, but for more complex geometries 
(e.g. polygons), both costs are significant. 
The primary consequence of this kind of “revolution” is 
the emerging need of a specific support for the classical 
DBMSs in order to efficiently manage such complex 
data. So, in order to provide such a support several 
attempts have been made in the recent years to add 
some kind of “accelerators” ([1][3][12][13]). 
Actually, the idea of a dedicated DB machine is very old 
and periodically re-proposed in the past ([5][6][7]). 
However, the technological limitations of the related 
epochs have always “pushed-back” the idea of a 
computer architecture dedicated to DBMS execution. 
Nowadays, with the availability of cost-effective FPGA 
(Field-Programmable Gate Array) and application-
specific processors (e.g. GPU, Graphical Processing 
Unit) the idea of providing ad-hoc support to DBMS 
machines is more than an opportunity and it is gaining 
(again) a lot of consideration in the research community 

([8][9][10][11]). Recent approaches mainly focus on the 
exploitation of GPU ([1][3][13]) and partially on FPGA 
([12]). 
However, such works lack of generality because they 
target the acceleration of specific operators by means of 
specific executor classes selected according to the 
experience of the designer. Moreover, it is worth noting 
that acceleration is not the only issue that should be 
considered when referring to modern DBMS 
applications. In fact, with the increasing diffusion of 
portable devices to support the pervasive-ubiquitous 
computing paradigm, different factors (i.e. energy-
consumption, reliability, cost, etc…) should be taken 
into account not only for the application-specific 
scenarios depicted above but also for other ones (e.g. 
portable DBMSs with standard data types and operators 
[14][15], resource-limited flash-based smartcard 
DBMSs [16]). 
In essence, what is still lacking is a general 
methodology supporting the designer to take 
implementation choices suitable to exploit the unique 
features of each class of executors (General Purpose 
Processors, GPU, FPGA, etc.), while keeping also in 
consideration the other relevant aspects (i.e. 
communication and storage mechanisms), with the goal 
of optimizing relevant factors. 
To fill such a gap, this work follows an hw/sw co-design 
approach, suitable to support the designer in the 
selection of those operators that could benefit from an 
ad-hoc executor, identifying also the system architecture 
(i.e. number and class of executors) appropriate to reach 
such a goal. The choice of a co-design approach arises 
because a lot of issues that emerge in the considerations 
presented above are very similar to those historically 
coped with the design and implementation of hw/sw 
embedded systems (see Section 2). Such a similarity has 
been already identified in the past [19] but the main goal 
was to show the effectiveness of the approach with 
reference to a specific algorithm without delineating a 
general methodology. The definition of such a 
methodology is the main objective of this work that is 
structured as follows. 
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The next section provides some background information 
about the hw/sw co-design discipline. Then, Section 3 
presents the hw/sw co-design methodology proposed for 
the ad-hoc implementation of DBMS operators and, 
finally, Section 4 concerns conclusions and the future 
work. 
 
 
2  HW/SW Co-Design 
HW/SW co-design (i.e. hw/sw concurrent design) 
[17][18] is a relatively young discipline that has lead out 
to several methodological approaches devoted to 
support an embedded systems designer during the 
exploration of the system design space keeping a unified 
view of the problem instead of the typical separate 
design approach between the hardware and software 
parts. 
The interest in co-design research has been steadily 
increasing from the beginning of the 1990s. Initially, the 
dominating research issue was the partitioning of a 
system description into an ASIC (Application Specific 
Integrated Circuit) part and a software part to be 
executed on a tightly coupled processor. Later, an 
increasing number of research works has considered the 
problem of defining a co-design methodology for 
heterogeneous multiprocessor embedded systems (e.g. 
[20][21][22]). 
Such modern approaches consider, as the entry point, a 
(often executable) system-level specification expressed 
by means of languages similar to common programming 
languages (e.g. C, C++, Java, etc…). In general, starting 
from such a specification, they allow the identification 
of the (sub)optimal heterogeneous multiprocessor 
hw/sw architecture and the partitioning/allocation of the 
functionalities of the system on such an architecture that 
optimizes a given cost function. 
From a general point of view, a modern co-design 
methodology can be decomposed into several steps 
(Figure 1). For the purposes of this work it is important 
to analyze with some details only the high-level ones. 

 High-Level Flow 
• Co-Specification 
• Co-Analysis 
• Co-Verification (Co-Validation) 
• Design Space Exploration 

o Architecture Selection 
o Partitioning 
o Co-Simulation 

 
Low-level flow 

• Low-Level Synthesis 
o Hardware Synthesis 
o Compilation 

• Interfaces generation & Integration 
• Low-Level Co-Verification 

 
Figure 1. Modern co-design methodology 

During the co-specification step the requirements are 
translated from an informal language into a formal (or 

semi-formal) description of the system functionalities. 
An abstract homogeneous behavioral (i.e. algorithmic) 
description is given for the complete heterogeneous 
system, regardless of the target architecture that will be 
chosen and how, later, the different parts will be 
implemented. 
Next, in the co-analysis step, several techniques allow 
early estimation of the final implementation 
characteristics (e.g. performance, power consumption, 
etc.). Such analysis methods are necessary to allow a 
comparison between different implementation 
candidates in the early steps of the methodology. 
Then, the functional correctness of the system is 
verified: the specification is simulated to check its 
behavior with respect to representative test-benches. 
The step calledis “design space exploration” could be 
decomposed (at least logically) in three interacting 
tasks: partitioning, architecture selection and co-
simulation. When deciding on the implementation, the 
designer needs to choose the components to include and 
how them should be connected in the hardware 
architecture. It must also be decided which parts of the 
behavior should be implemented on which of the 
selected components. The first of these activities is 
called architecture selection and the second is known as 
partitioning. Architecture selection and partitioning are 
influenced by performance requirements, 
implementation cost, reconfigurability, and application-
specific issues. Co-simulation evaluates the system 
behavior from a functional point of view or a timing 
point of view, in order to validate either the 
specification or the performed partitioning. 
 
 
3  The Proposed Methodology 
The all-sw implementation of a DBMS could be 
considered as a system-level executable specification to 
be used as entry point for a co-design methodology. At 
the best of our knowledge, it does not exist a co-design 
methodology tailored to the peculiarity of DBMSs. 
Therefore, a DBMS co-design methodology (based on an 
existing methodology for the co-design of 
heterogeneous multiprocessor embedded systems [22] 
that follows the general schema depicted in Section 2) is 
presented in the following, as the main result of this 
work, by taking into account both the considered target 
architecture and the proposed co-design flow. Finally, a 
meta-example is provided in order to clarify how such a 
methodology could work when fully supported by a 
proper toolchain. 
 
 
3.1  The target architecture 
The reference methodology [22] is oriented to the co-
design of embedded systems based on a heterogeneous 
multiprocessor architecture in which various kinds of 
communication links interconnect processing elements 
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and memories. Such an architecture may consist of 
GPP, Digital-Signal Processors (DSP), Application-
Specific [Instructions] Processors (ASP or ASIP), 
ASIC, FPGA, and memory modules, properly 
interconnected by some kind of network topology 
(point-to-point, bus, multiple busses, mesh, etc. [23]) to 
perform application-specific functions. 
However, an optimal general architecture does not exist 
but a viable solution could be found by defining a sort 
of template architecture to be optimized for the specific 
characteristics of the application domain. 
In this work, where the focus is on ad-hoc executors 
(i.e. co-processors) for DBMS operators, it seems 
natural to consider a GPP-centric template architecture 
(i.e. an architecture in which there is a main GPP that 
executes the core of the DBMS and that demands tasks 
to co-processors while mastering also the bus) with an 
heterogeneous multi-co-processors support that shares 
memory with DMA (Direct Memory Access) 
capabilities and have an associated amount of local 
memory sufficient to store the executed code and the 
local data. Considering a number of co-processors in the 
order of ten, it is possible to limit the interconnection 
media to a shared bus so depicting the template 
architecture shown in Figure 2. Such an architecture, 
that could be considered viable both for desktop and 
portable devices, is considered as the reference one in 
the proposed methodology. 

 
 
 
 
 
 
 
 

Multi-Co-Processors 

GPP 
1..n 

DSP 
1..m 

Shared 
Memory 

Main GPP 
(Bus Master) 

ASIP 
1..k 

FPGA 
1..p 

Secondary 
Storage 

Local 
memory 

Local 
memory 

Local 
memory 

Local 
memory 

 
Figure 2. The reference template architecture 

 
 
3.2  The co-design flow 
Figure 3 defines the co-design flow oriented to the ad-
hoc implementation of DBMS operators. Such a flow is 
detailed in the following. 
 
3.2.1  DBMS specification 
As stated before, the all-sw implementation of a DBMS 
could be considered as a system-level executable 
specification to be used as entry point in the co-design 
flow. However, with respect to traditional co-design 
methodologies, there are some issues to be considered 
carefully: 
• The source code of the all-sw implementation of the 

DBMS could be not available. In this work, it is 
considered to be available, at least, the source code 

related to the selected operators to be implemented 
ad-hoc. 

• The all-sw implementation will be probably not 
synthesizable (i.e. not suitable to be automatically 
translated into a format compatible with the target 
executors class) so, some manual (or semi-
automatic) refinement steps could be required. 

DBMS 
Specification 

Static 
Analysis 

Dynamic 
Analysis 

- Profiling 
- Timing 
- Communication Cost
- Load 

- Affinity 
- Energy 
- Size 

Partitioning 
& 

Allocation 

System Design Exploration 

Architectural 
Constraints 

Selected 
Operators 

Reference 
Workload 

Design 
Constraints 

 For each selected operator: 
- Class executor 
- Executor istance 

Executor 
Classes 

 
Architecture 

Selection 

 
Figure 3. The DBMS co-design flow 

 
3.2.2  Static analysis 
The Static Analysis step provides quantitative 
information (i.e. metrics) useful to take system-level 
decisions such as architecture selection, partitioning and 
allocation. The underlying idea is that the relevant 
metrics of a final design can be related to the properties 
of the specification itself. Therefore, the core of this 
step involves the identification and evaluation of 
functional and structural properties of the specification, 
which could affect its implementation on different 
architectural platforms. 
Given the system specifications and the involved 
Executor Classes (e.g. GPP, DSP, FPGA, etc…) to be 
considered in the design, this step provides the 
following output information for each selected operator: 
Affinity 
The Affinity metric [22] is defined as a triplet of values 
in the interval [0, 1] that provides a quantification of the 
matching between the structural and functional features 
of a function (i.e. a DBMS operator) and the 
architectural features of each one of three executor 
classes (i.e. GPP, DSP, FPGA). In the DBMS context, 
the original Affinity metric should be extended to 
consider some ASIP executors class. In particular it 
should consider also GPU and NPU (Network Processor 
Unit) classes [8][9]. 
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Energy 
The Energy metric [25][26] provides a set of 
estimations of the energy required by HW and SW 
executors for the execution of each single statement that 
composes the specification of the selected operators. 
Such information, combined with the profiling, is very 
important to optimize the energy consumption of the 
whole system. 
Size 
The Size metric [27] provides a set of 
estimations/evaluations of the memory space (i.e. KB 
for SW and FPGA cells for HW) required by the data 
structures and each single statement that composes the 
specification of the selected operators. Such information 
is very important in order to avoid overloading of the 
system resources. 
 
3.2.3  Dynamic analysis 
The Dynamic Analysis provides different information 
useful to take system-level decisions such as 
architecture selection, partitioning and allocation. The 
underlying idea is that the relevant metrics of a final 
design can be related to the execution of the 
specification itself when fed with meaningful input data 
set. 
A fundamental task associated with this step consists in 
the identification of a Reference Workload. Such a task 
could be performed with two different goals: to 
optimize the implementation with respect to a target DB 
schema, and to optimize the implementation generally. 
In the first case, the target DB schema, and a 
meaningful set of typical queries on it, represent the 
reference workload in order to stress the DBMS in a 
specific manner. In the second one the analysis should 
be performed using a set of meaningful and typical DB 
schemas each one with related queries. Generally, more 
specific is the target application more appreciable are 
the optimization results. 
Once defined the reference workload, by means of the 
dynamic analysis, performed during the execution of 
such a workload, it is possible to extract the following 
information: 
Profiling 
By means of the Profiling [22] it is possible to evaluate 
the number of executions of each function (i.e. 
procedures, methods, etc…) involved in the all-sw 
implementation of the selected operators. Moreover, for 
each such a function, it is possible to evaluate the 
number of executions of each statement composing it. 
Timing 
The Timing metric [24], applied to the proposed DMBS 
co-design flow, should provide a set of evaluations of 
the time required by a GPP for the execution of selected 
operators. 

Communication Cost 
The Communication Cost [22] represents the amount of 
data exchanged between the functions involved in the 
all-sw implementation of the selected operators, and 
between such functions and the rest of the system (i.e. 
the DBMS). This cost is very important in order to 
determine which functions should be allocated on the 
same co-processor and which ones should be executed 
directly by the main GPP in order to limit the cost of the 
whole communications. 
Load Estimation 
The Load Estimation [22], combining some of the data 
provided by the previous steps of the design flow (i.e. 
profiling and timing) with the designer imposed timing 
constraints allows the estimation of the load that each 
functions will impose to a GPP that should execute it. 
The extraction of these data is an important task that 
allows the evaluation of the number of needed 
processing elements and the identification of those 
functions that will probably need an executor different 
than a GPP. 
 
3.2.4  System design exploration 
Finally, the flow reaches the System Design Exploration 
step that is constituted of two interacting tasks: 
Partitioning & Allocation and Architecture Selection. 
All the data produced in the previous steps of the flow 
are used to guide the process, together with additional 
information provided by the designer. Such information 
expresses the Architectural Constraints (e.g. max 
number of GPP, cells limitation for FPGA, etc.). 
Such a step [22] explores the design space to identify 
feasible solutions, supporting also the selection of the 
final architecture by suggesting the type and number of 
executors that should be included. It takes into account 
several issues while trying to identify a system 
implementation that optimizes a cost function composed 
of a suitable combination of the metrics described 
above. 
The output of this step is the allocation of the selected 
DBMS operators on the proposed architectural 
components. More in detail, for each selected operator it 
will be suggested an executor (type and instance 
number). So, the set of the suggested executors provides 
a specialization of the template architecture considered 
above. 
 
3.3  A meta-example 
To give the flavour of how the methodology could 
actually work a meta-example on ad-hoc 
implementation of DBMS operators is reported in the 
following. 
Let S be the specification of a DBMS, and {Op1, Op2, 
Op3} three operators to consider for an ad-hoc 
implementation (i.e. the selected operators). Let each 
operator be implemented in sw by means of a unique 
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C++ method {Op1m, Op2m, Op3m} whose source code is 
available. 
Let the design constraint be oriented exclusively to 
performance issues, that is, to accelerate selected 
operators in order to obtain an execution time of each 
one of 50% less than the all-sw execution on a single 
GPP architecture. 
Considering only two executor classes (i.e. GPP and 
FPGA), the Static Analysis applied to the three methods 
{Op1m, Op2m, Op3m} provides the quantitative 
information in Table 1. 

  Affinity Size 
 GPP FPGA SW (KB) HW (FPGA Cells) 
Op1m 0.62 0.24 458 122 
Op2m 0.43 0.49 356 145 
Op3m 0.44 0.87 812 213 

 
Table 1. Static analysis results 

It is worth noting that the affinity metric (the only 
relevant for performance issues) suggests that Op3m is 
very suitable for a FPGA implementation, Op1m is 
better executed by a GPP, and an equivalence is 
indicated for Op2m. 
Proceeding to the next step of the flow (Figure 3), the 
first task for a meaningful Dynamic Analysis is the 
definition of the reference workload. For this purpose, it 
is possible to consider a single DB schema designed for 
a specific application and a set (e.g. 100) of diferent 
queries representative of a typical DB utilization (the 
implementation will then be optimized specifically for 
such a DB). 
During the execution of the selected queries the 
following average values about the methods have been 
collected: profiling, timing and load estimation, and 
communication cost. 

 Profiling 
(#executions/query) 

Timing 
(second/#executions) 

Load Estimation 
(50% exe time reduction) 

Op1m 2.3 0.8 0.21 
Op2m 0.8 1.2 0.09 
Op3m 3.3 1.9 0.34  
Table 2. Dynamic analysis results: profiling, timing and load estimation 

The results (Table 2) show that Op3m is the more used 
and computationally intensive operator, while (Table 3) 
Op1m is the one that exchanges more data with the 
DBMS core. It is worth noting (Table 3) that the 
operators are independent one from each other and so 
they don’t exchange any data. 

 (#bytes/execution) DBMS-Core Op1m Op1m Op1m 
DBMS-Core 0 112 32 66 
Op1m 112 0 0 0 
Op2m 32 0 0 0 
Op3m 66 0 0 0  

Table 3. Dynamic analysis results: communication cost 

The final step of the proposed flow is the System Design 
Exploration. Such a step takes as input all the 
information provided by the previous step plus some 
Architectural Constraints by the designer. Let such 

constraints be set to a maximum of one FPGA and one 
GPP (other than the main one). 
Collecting all the gathered information in a proper 
annotated graph (Procedural Interaction Graph [22]), it 
is possible to exploit a proper tool (EmuP [22]) to 
perform the design space exploration. Defining a cost 
function with equal weights for affinity, communication 
cost and load, such a tool provides the following result 
(Table 4): the DBMS-Core and two methods are 
allocated on GPP#0 and one method on FPGA#0, for a 
total of 1 GPP and 1 FPGA. 

  DBMS-Core Op1m Op2m Op3m 
Executor Class GPP GPP GPP FPGA 
#instance 0 0 0 0  

Table 4. Suggested partitioning/allocation/architecture 

The suggested system architecture, derived from the 
reference template, is shown in Figure 4. Due to affinity 
and load considerations, Op3m has been allocated on a 
FPGA, while Op1m (mainly for the communication cost) 
and Op2m (mainly for the low imposed load) have been 
kept together with the DBMS Core on the main GPP. 
This step ends the high-level co-design flow providing 
fundamental information to approach the low-level one 
(Figure 1) to reach a physical implementation of the 
system. 

Shared 
Memory 

Main GPP 
(Bus Master) 

FPGA 
1..p 

Secondary 
Storage 

Local 
memory 

DBMS 
Core 

Op3m 

Op2m

Op1m

 
Figure 4. The suggested system architecture 

 
 
4  Conclusion and Future work 
This work has presented a co-design methodology for 
the definition of ad-hoc HW/SW architectures for 
DBMSs. In detail, the main goals of such a 
methodology are to analyze the DBMS specifications in 
order to identify the DBMS operators that could benefit 
from an ad-hoc executor and to define the architecture 
that optimize the relevant design aspects depending on 
the reference target. 
Future work will be devoted to enhancements of the 
presented methodology (e.g. to consider different 
components of a DBMS other than operators), the 
development of a related toolchain, and the design flow 
validation by means of real-world case studies. 
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