
Ad-hoc HW/SW Architectures for DBMSs: a Co-Design Approach

L. POMANTE, P. DI FELICE
Università degli Studi dell’Aquila-Facoltà di Ingegneria, 67040 Poggio di Roio (AQ), ITALY

Abstract: - This work presents a co-design methodology for the definition of ad-hoc HW/SW architectures for modern
DBMSs. The main goals of such a methodology are: to analyze the DBMS specification in order to identify the
operators that could benefit from ad-hoc executors, to explore the solutions design space, and to define the
architecture that optimize the relevant design metrics (e.g. performance, power, cost, etc.) depending on the reference
target (e.g. handheld PC, DB server, smartcard, etc.). A meta-example is presented to give the flavour on how such a
metodology could work when supported by the proper toolchain.

Key-Words: - DBMS, Co-Design, Database, Embedded Systems, HW/SW Architectures

1 Introduction
In the last years, database technology has become
fundamental in several application domains (e.g.
Geographic Information Systems, Bioinformatics
Information Systems, Multimedia Information Systems,
etc.). Very often, such domains involve the heavy use of
application-specific data-types (e.g. spatial geometries,
protein structures, audio-video data, etc.), and related
operators, that are generally very different from the ones
that traditional DBMSs have coped within the past
(which historically handled simple data types like
numbers and alphanumeric characters).
These custom data types and their associated operators
present new challenges to the designer of DBMSs
because they upset the traditional implementation
guidelines (e.g. [4]) that focused on the optimization of
the I/O cost as the dominant one. Instead, it has been
recently realized that the computational cost of some
application-specific operators can be orders of
magnitude higher than the associated I/O cost. For
example, in the GIS domain [2], it has been shown that
in spatial selections for point geometries, the I/O cost is
the dominant one, but for more complex geometries
(e.g. polygons), both costs are significant.
The primary consequence of this kind of “revolution” is
the emerging need of a specific support for the classical
DBMSs in order to efficiently manage such complex
data. So, in order to provide such a support several
attempts have been made in the recent years to add
some kind of “accelerators” ([1][3][12][13]).
Actually, the idea of a dedicated DB machine is very old
and periodically re-proposed in the past ([5][6][7]).
However, the technological limitations of the related
epochs have always “pushed-back” the idea of a
computer architecture dedicated to DBMS execution.
Nowadays, with the availability of cost-effective FPGA
(Field-Programmable Gate Array) and application-
specific processors (e.g. GPU, Graphical Processing
Unit) the idea of providing ad-hoc support to DBMS
machines is more than an opportunity and it is gaining
(again) a lot of consideration in the research community

([8][9][10][11]). Recent approaches mainly focus on the
exploitation of GPU ([1][3][13]) and partially on FPGA
([12]).
However, such works lack of generality because they
target the acceleration of specific operators by means of
specific executor classes selected according to the
experience of the designer. Moreover, it is worth noting
that acceleration is not the only issue that should be
considered when referring to modern DBMS
applications. In fact, with the increasing diffusion of
portable devices to support the pervasive-ubiquitous
computing paradigm, different factors (i.e. energy-
consumption, reliability, cost, etc…) should be taken
into account not only for the application-specific
scenarios depicted above but also for other ones (e.g.
portable DBMSs with standard data types and operators
[14][15], resource-limited flash-based smartcard
DBMSs [16]).
In essence, what is still lacking is a general
methodology supporting the designer to take
implementation choices suitable to exploit the unique
features of each class of executors (General Purpose
Processors, GPU, FPGA, etc.), while keeping also in
consideration the other relevant aspects (i.e.
communication and storage mechanisms), with the goal
of optimizing relevant factors.
To fill such a gap, this work follows an hw/sw co-design
approach, suitable to support the designer in the
selection of those operators that could benefit from an
ad-hoc executor, identifying also the system architecture
(i.e. number and class of executors) appropriate to reach
such a goal. The choice of a co-design approach arises
because a lot of issues that emerge in the considerations
presented above are very similar to those historically
coped with the design and implementation of hw/sw
embedded systems (see Section 2). Such a similarity has
been already identified in the past [19] but the main goal
was to show the effectiveness of the approach with
reference to a specific algorithm without delineating a
general methodology. The definition of such a
methodology is the main objective of this work that is
structured as follows.

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 153

The next section provides some background information
about the hw/sw co-design discipline. Then, Section 3
presents the hw/sw co-design methodology proposed for
the ad-hoc implementation of DBMS operators and,
finally, Section 4 concerns conclusions and the future
work.

2 HW/SW Co-Design
HW/SW co-design (i.e. hw/sw concurrent design)
[17][18] is a relatively young discipline that has lead out
to several methodological approaches devoted to
support an embedded systems designer during the
exploration of the system design space keeping a unified
view of the problem instead of the typical separate
design approach between the hardware and software
parts.
The interest in co-design research has been steadily
increasing from the beginning of the 1990s. Initially, the
dominating research issue was the partitioning of a
system description into an ASIC (Application Specific
Integrated Circuit) part and a software part to be
executed on a tightly coupled processor. Later, an
increasing number of research works has considered the
problem of defining a co-design methodology for
heterogeneous multiprocessor embedded systems (e.g.
[20][21][22]).
Such modern approaches consider, as the entry point, a
(often executable) system-level specification expressed
by means of languages similar to common programming
languages (e.g. C, C++, Java, etc…). In general, starting
from such a specification, they allow the identification
of the (sub)optimal heterogeneous multiprocessor
hw/sw architecture and the partitioning/allocation of the
functionalities of the system on such an architecture that
optimizes a given cost function.
From a general point of view, a modern co-design
methodology can be decomposed into several steps
(Figure 1). For the purposes of this work it is important
to analyze with some details only the high-level ones.

 High-Level Flow
• Co-Specification
• Co-Analysis
• Co-Verification (Co-Validation)
• Design Space Exploration

o Architecture Selection
o Partitioning
o Co-Simulation

Low-level flow

• Low-Level Synthesis
o Hardware Synthesis
o Compilation

• Interfaces generation & Integration
• Low-Level Co-Verification

Figure 1. Modern co-design methodology

During the co-specification step the requirements are
translated from an informal language into a formal (or

semi-formal) description of the system functionalities.
An abstract homogeneous behavioral (i.e. algorithmic)
description is given for the complete heterogeneous
system, regardless of the target architecture that will be
chosen and how, later, the different parts will be
implemented.
Next, in the co-analysis step, several techniques allow
early estimation of the final implementation
characteristics (e.g. performance, power consumption,
etc.). Such analysis methods are necessary to allow a
comparison between different implementation
candidates in the early steps of the methodology.
Then, the functional correctness of the system is
verified: the specification is simulated to check its
behavior with respect to representative test-benches.
The step calledis “design space exploration” could be
decomposed (at least logically) in three interacting
tasks: partitioning, architecture selection and co-
simulation. When deciding on the implementation, the
designer needs to choose the components to include and
how them should be connected in the hardware
architecture. It must also be decided which parts of the
behavior should be implemented on which of the
selected components. The first of these activities is
called architecture selection and the second is known as
partitioning. Architecture selection and partitioning are
influenced by performance requirements,
implementation cost, reconfigurability, and application-
specific issues. Co-simulation evaluates the system
behavior from a functional point of view or a timing
point of view, in order to validate either the
specification or the performed partitioning.

3 The Proposed Methodology
The all-sw implementation of a DBMS could be
considered as a system-level executable specification to
be used as entry point for a co-design methodology. At
the best of our knowledge, it does not exist a co-design
methodology tailored to the peculiarity of DBMSs.
Therefore, a DBMS co-design methodology (based on an
existing methodology for the co-design of
heterogeneous multiprocessor embedded systems [22]
that follows the general schema depicted in Section 2) is
presented in the following, as the main result of this
work, by taking into account both the considered target
architecture and the proposed co-design flow. Finally, a
meta-example is provided in order to clarify how such a
methodology could work when fully supported by a
proper toolchain.

3.1 The target architecture
The reference methodology [22] is oriented to the co-
design of embedded systems based on a heterogeneous
multiprocessor architecture in which various kinds of
communication links interconnect processing elements

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 154

and memories. Such an architecture may consist of
GPP, Digital-Signal Processors (DSP), Application-
Specific [Instructions] Processors (ASP or ASIP),
ASIC, FPGA, and memory modules, properly
interconnected by some kind of network topology
(point-to-point, bus, multiple busses, mesh, etc. [23]) to
perform application-specific functions.
However, an optimal general architecture does not exist
but a viable solution could be found by defining a sort
of template architecture to be optimized for the specific
characteristics of the application domain.
In this work, where the focus is on ad-hoc executors
(i.e. co-processors) for DBMS operators, it seems
natural to consider a GPP-centric template architecture
(i.e. an architecture in which there is a main GPP that
executes the core of the DBMS and that demands tasks
to co-processors while mastering also the bus) with an
heterogeneous multi-co-processors support that shares
memory with DMA (Direct Memory Access)
capabilities and have an associated amount of local
memory sufficient to store the executed code and the
local data. Considering a number of co-processors in the
order of ten, it is possible to limit the interconnection
media to a shared bus so depicting the template
architecture shown in Figure 2. Such an architecture,
that could be considered viable both for desktop and
portable devices, is considered as the reference one in
the proposed methodology.

Multi-Co-Processors

GPP
1..n

DSP
1..m

Shared
Memory

Main GPP
(Bus Master)

ASIP
1..k

FPGA
1..p

Secondary
Storage

Local
memory

Local
memory

Local
memory

Local
memory

Figure 2. The reference template architecture

3.2 The co-design flow
Figure 3 defines the co-design flow oriented to the ad-
hoc implementation of DBMS operators. Such a flow is
detailed in the following.

3.2.1 DBMS specification
As stated before, the all-sw implementation of a DBMS
could be considered as a system-level executable
specification to be used as entry point in the co-design
flow. However, with respect to traditional co-design
methodologies, there are some issues to be considered
carefully:
• The source code of the all-sw implementation of the

DBMS could be not available. In this work, it is
considered to be available, at least, the source code

related to the selected operators to be implemented
ad-hoc.

• The all-sw implementation will be probably not
synthesizable (i.e. not suitable to be automatically
translated into a format compatible with the target
executors class) so, some manual (or semi-
automatic) refinement steps could be required.

DBMS
Specification

Static
Analysis

Dynamic
Analysis

- Profiling
- Timing
- Communication Cost
- Load

- Affinity
- Energy
- Size

Partitioning
&

Allocation

System Design Exploration

Architectural
Constraints

Selected
Operators

Reference
Workload

Design
Constraints

 For each selected operator:
- Class executor
- Executor istance

Executor
Classes

Architecture

Selection

Figure 3. The DBMS co-design flow

3.2.2 Static analysis
The Static Analysis step provides quantitative
information (i.e. metrics) useful to take system-level
decisions such as architecture selection, partitioning and
allocation. The underlying idea is that the relevant
metrics of a final design can be related to the properties
of the specification itself. Therefore, the core of this
step involves the identification and evaluation of
functional and structural properties of the specification,
which could affect its implementation on different
architectural platforms.
Given the system specifications and the involved
Executor Classes (e.g. GPP, DSP, FPGA, etc…) to be
considered in the design, this step provides the
following output information for each selected operator:
Affinity
The Affinity metric [22] is defined as a triplet of values
in the interval [0, 1] that provides a quantification of the
matching between the structural and functional features
of a function (i.e. a DBMS operator) and the
architectural features of each one of three executor
classes (i.e. GPP, DSP, FPGA). In the DBMS context,
the original Affinity metric should be extended to
consider some ASIP executors class. In particular it
should consider also GPU and NPU (Network Processor
Unit) classes [8][9].

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 155

Energy
The Energy metric [25][26] provides a set of
estimations of the energy required by HW and SW
executors for the execution of each single statement that
composes the specification of the selected operators.
Such information, combined with the profiling, is very
important to optimize the energy consumption of the
whole system.
Size
The Size metric [27] provides a set of
estimations/evaluations of the memory space (i.e. KB
for SW and FPGA cells for HW) required by the data
structures and each single statement that composes the
specification of the selected operators. Such information
is very important in order to avoid overloading of the
system resources.

3.2.3 Dynamic analysis
The Dynamic Analysis provides different information
useful to take system-level decisions such as
architecture selection, partitioning and allocation. The
underlying idea is that the relevant metrics of a final
design can be related to the execution of the
specification itself when fed with meaningful input data
set.
A fundamental task associated with this step consists in
the identification of a Reference Workload. Such a task
could be performed with two different goals: to
optimize the implementation with respect to a target DB
schema, and to optimize the implementation generally.
In the first case, the target DB schema, and a
meaningful set of typical queries on it, represent the
reference workload in order to stress the DBMS in a
specific manner. In the second one the analysis should
be performed using a set of meaningful and typical DB
schemas each one with related queries. Generally, more
specific is the target application more appreciable are
the optimization results.
Once defined the reference workload, by means of the
dynamic analysis, performed during the execution of
such a workload, it is possible to extract the following
information:
Profiling
By means of the Profiling [22] it is possible to evaluate
the number of executions of each function (i.e.
procedures, methods, etc…) involved in the all-sw
implementation of the selected operators. Moreover, for
each such a function, it is possible to evaluate the
number of executions of each statement composing it.
Timing
The Timing metric [24], applied to the proposed DMBS
co-design flow, should provide a set of evaluations of
the time required by a GPP for the execution of selected
operators.

Communication Cost
The Communication Cost [22] represents the amount of
data exchanged between the functions involved in the
all-sw implementation of the selected operators, and
between such functions and the rest of the system (i.e.
the DBMS). This cost is very important in order to
determine which functions should be allocated on the
same co-processor and which ones should be executed
directly by the main GPP in order to limit the cost of the
whole communications.
Load Estimation
The Load Estimation [22], combining some of the data
provided by the previous steps of the design flow (i.e.
profiling and timing) with the designer imposed timing
constraints allows the estimation of the load that each
functions will impose to a GPP that should execute it.
The extraction of these data is an important task that
allows the evaluation of the number of needed
processing elements and the identification of those
functions that will probably need an executor different
than a GPP.

3.2.4 System design exploration
Finally, the flow reaches the System Design Exploration
step that is constituted of two interacting tasks:
Partitioning & Allocation and Architecture Selection.
All the data produced in the previous steps of the flow
are used to guide the process, together with additional
information provided by the designer. Such information
expresses the Architectural Constraints (e.g. max
number of GPP, cells limitation for FPGA, etc.).
Such a step [22] explores the design space to identify
feasible solutions, supporting also the selection of the
final architecture by suggesting the type and number of
executors that should be included. It takes into account
several issues while trying to identify a system
implementation that optimizes a cost function composed
of a suitable combination of the metrics described
above.
The output of this step is the allocation of the selected
DBMS operators on the proposed architectural
components. More in detail, for each selected operator it
will be suggested an executor (type and instance
number). So, the set of the suggested executors provides
a specialization of the template architecture considered
above.

3.3 A meta-example
To give the flavour of how the methodology could
actually work a meta-example on ad-hoc
implementation of DBMS operators is reported in the
following.
Let S be the specification of a DBMS, and {Op1, Op2,
Op3} three operators to consider for an ad-hoc
implementation (i.e. the selected operators). Let each
operator be implemented in sw by means of a unique

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 156

C++ method {Op1m, Op2m, Op3m} whose source code is
available.
Let the design constraint be oriented exclusively to
performance issues, that is, to accelerate selected
operators in order to obtain an execution time of each
one of 50% less than the all-sw execution on a single
GPP architecture.
Considering only two executor classes (i.e. GPP and
FPGA), the Static Analysis applied to the three methods
{Op1m, Op2m, Op3m} provides the quantitative
information in Table 1.

 Affinity Size
 GPP FPGA SW (KB) HW (FPGA Cells)
Op1m 0.62 0.24 458 122
Op2m 0.43 0.49 356 145
Op3m 0.44 0.87 812 213

Table 1. Static analysis results

It is worth noting that the affinity metric (the only
relevant for performance issues) suggests that Op3m is
very suitable for a FPGA implementation, Op1m is
better executed by a GPP, and an equivalence is
indicated for Op2m.
Proceeding to the next step of the flow (Figure 3), the
first task for a meaningful Dynamic Analysis is the
definition of the reference workload. For this purpose, it
is possible to consider a single DB schema designed for
a specific application and a set (e.g. 100) of diferent
queries representative of a typical DB utilization (the
implementation will then be optimized specifically for
such a DB).
During the execution of the selected queries the
following average values about the methods have been
collected: profiling, timing and load estimation, and
communication cost.

 Profiling
(#executions/query)

Timing
(second/#executions)

Load Estimation
(50% exe time reduction)

Op1m 2.3 0.8 0.21
Op2m 0.8 1.2 0.09
Op3m 3.3 1.9 0.34
Table 2. Dynamic analysis results: profiling, timing and load estimation

The results (Table 2) show that Op3m is the more used
and computationally intensive operator, while (Table 3)
Op1m is the one that exchanges more data with the
DBMS core. It is worth noting (Table 3) that the
operators are independent one from each other and so
they don’t exchange any data.

 (#bytes/execution) DBMS-Core Op1m Op1m Op1m
DBMS-Core 0 112 32 66
Op1m 112 0 0 0
Op2m 32 0 0 0
Op3m 66 0 0 0

Table 3. Dynamic analysis results: communication cost

The final step of the proposed flow is the System Design
Exploration. Such a step takes as input all the
information provided by the previous step plus some
Architectural Constraints by the designer. Let such

constraints be set to a maximum of one FPGA and one
GPP (other than the main one).
Collecting all the gathered information in a proper
annotated graph (Procedural Interaction Graph [22]), it
is possible to exploit a proper tool (EmuP [22]) to
perform the design space exploration. Defining a cost
function with equal weights for affinity, communication
cost and load, such a tool provides the following result
(Table 4): the DBMS-Core and two methods are
allocated on GPP#0 and one method on FPGA#0, for a
total of 1 GPP and 1 FPGA.

 DBMS-Core Op1m Op2m Op3m
Executor Class GPP GPP GPP FPGA
#instance 0 0 0 0

Table 4. Suggested partitioning/allocation/architecture

The suggested system architecture, derived from the
reference template, is shown in Figure 4. Due to affinity
and load considerations, Op3m has been allocated on a
FPGA, while Op1m (mainly for the communication cost)
and Op2m (mainly for the low imposed load) have been
kept together with the DBMS Core on the main GPP.
This step ends the high-level co-design flow providing
fundamental information to approach the low-level one
(Figure 1) to reach a physical implementation of the
system.

Shared
Memory

Main GPP
(Bus Master)

FPGA
1..p

Secondary
Storage

Local
memory

DBMS
Core

Op3m

Op2m

Op1m

Figure 4. The suggested system architecture

4 Conclusion and Future work
This work has presented a co-design methodology for
the definition of ad-hoc HW/SW architectures for
DBMSs. In detail, the main goals of such a
methodology are to analyze the DBMS specifications in
order to identify the DBMS operators that could benefit
from an ad-hoc executor and to define the architecture
that optimize the relevant design aspects depending on
the reference target.
Future work will be devoted to enhancements of the
presented methodology (e.g. to consider different
components of a DBMS other than operators), the
development of a related toolchain, and the design flow
validation by means of real-world case studies.

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 157

References:
[1] N. Bandit, C. Sun, D. Agawal, and A. El Abbadi.

Hardware Acceleration in Commercial
Databases: A Case Study of Spatial Operations.
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004.

[2] R. K. Kothuri and S. Ravada. Efficient processing
of large spatial queries using interior
approximation. In Proceedings of the 7th
International Symposium on Advances in Spatial
and Temporal Databases (SSTD’01), pages 404–
421. ACM Press, 2001.

[3] C. Sun, D. Agrawal, and A. El Abbadi. Hardware
acceleration for spatial selections and joins. In
Proceedings of the ACM SIGMOD international
conference on on Management of data, pages
455–466. ACM Press, 2003.

[4] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database System Implementation. Chapter 4.
Prentice Hall, 1999.

[5] D. K. Hsiao. Advanced Database Machine
Architectures. Prentice Hall, Englewood Cliffs,
N.J., 1983, pp. 1-18.

[6] E. Ozkarahan. Database Machine and Database
Management. Prentice Hall, Vol. 10, 1986, pp.
319-337.

[7] C. Lee, S. Y. Su, and H. Lam. Algorithms for
Sorting and Sort-Based Database Operations
Using a Special-Function Unit. Database
Machines and Knowledge Base Machines.
Kluwer Academic Publishers, 1988, pp. 103-116.

[8] A. Ailamaki. Database Architectures for New
Hardware. Proceedings of the 21st International
Conference on Data Engineering (ICDE 2005).

[9] A. Ailamaki, N. K. Govindaraju, and D.
Manocha. Query Co-Processing on Commodity
Hardware. Proceedings of the 22nd International
Conference on Data Engineering (ICDE’06).

[10] DAMON 2005, www.cs.cmu.edu/~damon2005/
[11] DAMON 2006, www.cs.cmu.edu/~damon2006/
[12] K. T. Leung1, M. Ercegovac, and R. R. Muntz.

Exploiting Reconfigurable FPGA for Parallel
Query Processing in Computation Intensive Data
Mining Applications. In UC MICRO Technical
Report, Feb. 1999.

[13] K. E. Hoff III, A. Zaferakis, M. Lin, and D.
Manocha. Fast and simple 2d geometric
proximity queries using graphics hardware. In
Proceedings of the Symposium on Interactive 3D
Graphics, pages 145–148. ACM Press, 2001.

[14] C. Bobineau, L. Bouganim, P. Pucheral, and P.
Valduriez. PicoDBMS: Scaling down Database
Techniques for the Smartcard. Proceedings of the
26th International Conference on Very Large
Databases, Cairo, Egypt, 2000.

[15] C. Bolchini, C. Curino, M. Giorgetta, A. Giusti,
A. Miele, F. A. Schreiber, and L. Tanca.
PoLiDBMS: Design and Prototype
Implementation of a DBMS for Portable Devices.
Proc. SEBD’04, June 2004, pp. 166-177.

[16] C.Bolchini, F. Salice, F. A. Schreiber, L. Tanca.
Logical and Physical Design Issues for Smart
Card Databases. ACM Transactions on
Information Systems, Vol. 21, No. 3, July 2003,
Pages 254–285.

[17] W. H. Wolf. Hardware-Software Co-design of
Embedded Systems. Proceedings of the IEEE.
Vol. 82, NO. 7., July 1994.

[18] G. De Micheli, and R. Gupta. Hardware/Software
Co-Design. Proceedings of the IEEE, Vol 85.,
No. 3, March 1997, pp349-365.

[19] W. M. Badawy, A. Kumar and M. A. Bayoumi. A
Co-design Based High-Performance Real-Time
GIS Systems. IEEE Workshop on Signal
Processing Systems (SiPS), Taipei, Taiwan, Oct.
20-22, 1999, pages 410-419.

[20] A. Baghdadi, N.E. Zergainoh, W.O. Cesario and
A.A. Jerraya. Combining a performance
estimation methodology with a
hardware/software codesign flow supporting
multiprocessor systems. IEEE Trans. on Software
Engineering, vol. 28, no. 9, 2002, pp. 822-831.

[21] B.P. Dave, G. Lakshminarayana and N.K. Jha.
COSYN: Hardware-software co-synthesis of
heterogeneous distributed embedded systems.
IEEE Trans. on Very Large Scale Integration
Systems, vol. 7, no. 1, March 1999, pp. 92-104.

[22] C. Brandolese, W. Fornaciari, L. Pomante. F.
Salice, and D. Sciuto. Affinity-Driven System
Design Exploration for Heterogeneous
Multiprocessor SoC. IEEE Transactions on
Computers, vol. 55, no. 5, May 2006.

[23] D. Sima. Advanced computer architectures.
Addison-Wesley, 1997.

[24] C. Carraras et al. A Co-Design Methodology
Based On Formal Specification And High-Level
Estimation. Proc. of IEEE Codes/CASHE’96,
Pittsburgh, Pennsylvania, 1996.

[25] C. Brandolese, F. Salice, W. Fornaciari, and D.
Sciuto. Static power modeling of 32-bit
microprocessors. Computer-Aided Design of
Integrated Circuits and Systems, IEEE
Transactions on Volume 21, Issue 11, Nov. 2002
Page(s):1306 – 1316.

[26] C. Brandolese. A co-design approach to software
power estimation for embedded systems. Ph.D.
thesis, 2000. DEI, Politecnico di Milano, Italy.

[27] C. Brandolese, W. Fornaciari, and F. Salice. An
area estimation methodology for FPGA based
designs at systemc-level. Design Automation
Conference, 2004. Proceedings. 41st, 2004
Page(s):129 – 132.

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 158

