
 On the Refinement of Web Application Systems

from Upper-Stream Models to Program Models

Nobuoki Mano Takakazu Kaneko
Graduate School of Informatics,

Meisei University
2-590 Nagabuchi, Ome-shi, Tokyo-to 198-8655 Japan

Abstract: - We propose a knowledge-based approach of refining web application systems from upper-stream
models to program-models. The uppermost specifications and upper-stream models have significant effects on
the program models from which we can derive source programs in text format. For deriving program models,
analysis of upper-stream models and design integration of information obtained from the analysis are required,
as program models and the structure of them often include those parts which are not included explicitly in the
upper-stream model. We discuss specifications, models, knowledge, and refinement process on each of
domains: user interaction, communication subsystem and database.

Keywords:- Client-Server system, Refinement, Upper-stream model, Program model, Knowledge-base

1 Introduction
 We have been making researches on the
upper-stream modeling of web application software
consisting of hetero-genius domains: user-interaction,
communication subsystem (client-server system),
and database (at present, data structure handling
program) [1], and also on the derivation of the
upper-stream models from their uppermost
specifications [2]. In this paper, we propose a
knowledge-based approach of refining upper-stream
models to program models. Program models are
finally transformed into source codes in Java. Our
approach belongs to a logical state-based approach
using specifications expressed in the modified
predicate 1ogic [3][4][5].

The purpose and the goal of our approach are
close to those of the MDA (Model Driven
Architecture) [6] using OCL (Object Constraint
Language [7]) expressions. In MDA, PDM (Platform
Dependent Model) is derived from PIM (Platform
Independent Model), using class diagrams as their
context. MDA process seems to employ just local
transformation of upper-stream models by
transformation rules. Invariant conditions are part of
their programs in the declarative format and finally
transformed to procedure programs. MDA is

proposed as a programmer-oriented refinement
method.

On the contrary, our refinement method is
knowledge-based and employs a uniform logical
representation formalism from upper-stream level to
lower program-model level so that it is more suited
for automated refinement. In addition, our method
comprises of both analysis of upper-stream model
and design integration of the result, because structure
of program models are often different from their
upper-stream models, and there exist some parts
introduced through design decisions.
 The contents of this paper are as follows. In Chapter
2, we briefly introduce our refinement process, and
refer to the uppermost specifications, the
upper-stream models, and the program-models. In
Chapter 3, we describe implementation knowledge
and the program knowledge base of our system. Then
in Chapter 4, we explain the process of refining
upper-stream models to program models, where we
use some problem-solving methods. From our
program model we can derive complete Java source
program with exception handling and package import
statements, which we do not mention in this paper.
We explain our refinement method, using ATM
system as an example.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 86

Uppermost derivation

Refinement

Translator

Uppermost specifications

Upper-stream model

Program model

Program
Knowledge-base

 Fig.1 Development process of target systems
: process : knowledge and data
: control flow : data flow and use of knowledge

2 Specifications and models related
with refinement

2.1 Overview of our development process
 We show our development process for target
systems in Fig.1. As shown in the figure,
uppermost specifications and upper-stream
models with knowledge in the knowledge base
have effects on refining upper-stream models to
program models. Specifications, models, and
knowledge are dependent on each of domains:
user interaction, communication subsystem
(client-server system), and database (at present, data
structure handling program). So we explain the
feature of each domain in the following sections.
2.2 Uppermost specifications
 The uppermost specifications of our system are as
follows.

Processing structure of a target system
Representation of the processing structure of a

target system is given with the multiplicity
information between adjacent components.
Interaction command sequence and server-side
database composition are also shown there.
Parametric design pattern and architectural pattern
definitions [8] [9] bring us flexible usage of
knowledge on actions [10]. In our system,
send-action and receive-action specifications of
components are determined by using client-server
and multi-client server architecture patterns.
 User interface

Specification of interaction sequences are
specified with functional definition of each
command :such as verify, enumerate, retrieve, update,
select, and so on.
 Data structure

Specification on the structure and internal

constraints such as keys and functional dependency
are given for database in the server.
2.3 Upper-stream models [1]

Whole movement of system control in target
systems are represented with transition graphs
consisting of interaction-phases and system states
and transitions between them. Each interaction-phase
corresponds to the pursuit of a certain command by
some cooperating independent components using
passive elements such as database. The operations of
each component (including message-sending and
message-receiving operations) or passive-element are
defined by their action definitions using
precondition-post-condition specifications. Our
upper-stream models use only string-type data.
2.4 Program models

Our system is a meta-system for synthesizing
program-models in the
program-model-knowledge-base, so that our
program models are not only coarse-grained but
also fine-grained. We take up the following classes
as the classes for our program-model
knowledge-base: ClassM, FieldM, MethodM,
ConstructorM, Statement, MethodCall,
CreateInstance, ControlConstructs, InnerVariable,
Predicate, LogicalOperator, and so on. Super-class
(or sub-class) relationships between the instances of
classes are also defined.
The inner structure of a method is represented as

the amalgamation of a program-tree (see Fig.4) and
hierarchical plan structures. Each level of a program
tree corresponds to a plan which is directed acyclic
graph consisting of instances of Statement node in
the level and edges representing “before”
relationships between nodes.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 87

Table 1 Domain Knowledge related with the refinement of
upper-stream level to program model level.

problem specifications implementation
knowledge

use of information
in the upper-stream model

program model
knowledge base

communication subsystem:
processing structure

selection of
communication stream

BFU (master-server,
slave-server, client)

user interface:
interaction sequence command realization transition graph on

interaction-phases BFU (dialog, etc)

database:
structure description
of data and its invariant

implementation data
structure

ordering relationships,
reference relationships

BFU
(data-types)

overall: transformation rules

transformation of assertions
in system states from
upper-stream model to
program model

Java API model,
meta-code statement

3 Knowledge and knowledge-base
3.1 Overview
 Table 1 is the table of problem specifications,
implementation knowledge, use of information in the
upper-stream model, and knowledge and program
model knowledge base, in each domain of
communication system, user-interface, server-side
data structure, and overall domain in the refinement
of upper-stream level to program model level. The
details are explained in the following sections.
3.2 Implementation knowledge

Design decision rules are used in the
implementation in our refinement process.

As for communication subsystem, user of our
system selects a stream type (text stream, or byte
stream such as object stream), which leads to
decision of read-write-operations to be used in the
implementation.

As for user Interface, each command in the
uppermost specification has some graphic methods to
implement, one of which is to be selected.

As for the data structure in the server, some
concrete data structures have to be selected to
implement abstract data-types.

As for the overall issues, decision of
implementation method leads to employ concrete
transformation rules for state-assertions in
upper-stream models to those in program models.
3.3 Use of information in upper-stream

models
 Information included in the upper-stream models
can be used to decide not only the structure and
elements of their program models but also
relationships between them.

・The transition graph on interaction-phases of target
systems are preserved even in the
program-model level.

・ Assertions attached to system states in the
upper-stream level are transformed to those in
the program-model level, where constructed
program-models are checked for their
consistency.

・ Ordering relationships of operations in the
upper-stream models have significant effects on
those of operations in the program model.

・Reference relationships in the upper-stream models
work as the specification for its program model.

・The data transmitted from client to server introduce
the data class (such as ObjectStream class).

・Some data extracted from upper-stream models are
classified and grouped with some interpretation,
for composing graphical layout and for
constructing object-stream.

3.4 Knowledge in the program-model
knowledge base

 Knowledge in the program-model knowledge base
is roughly classified into those related with codes and
production rules.
A. Knowledge related with codes

Knowledge related with codes is further classified
into those in the model level and those in the
meta-model level. For use, meta-level knowledge has
to be patched for its parameterized parts.
Model level

(1) Usual classes with invariant conditions and
methods wrapped with
precondition-postcondition specifications:
Each classes and methods in Java API has the
counterpart knowledge in our knowledge base.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 88

model formation of target problem
(design of skeletal structure)

design decision by implementation
-rule selection

introduction of preparation- and
cleaning up parts

construction and completion of
problem program models

output

problem processing structure,
architecture pattern

class-association graph

design decision rules and subsidiary rules

design decision, state assertions

meta-models, transformed assertions

skeleton program models for methods

meta-model of various statements,
data-flow in upper－stream model

detail program-trees for methods

input

output

input

output

input

output

input

construction of body part
by transformation of contents

interaction-phase in upper-stream model

main part of programoutput

input

Fig.2 Flow of refinement process.

(2) Customized Functional Unit (CFU): These
are obtained from customizing Basic Functional
Units in the meta-level (described later).

(3) Application modules generated by our system:
Classes and their methods in our knowledge
base are represented in the form described in
2.4.

 Our knowledge-base has an index system to
retrieve efficiently method-models which have the
specified predicates in their precondition or
post-condition，because our system wants to know
whether newly inserted statement might have some
effects on the causal links of the target CFU.
Meta-Model level
(1) Meta-code-statement with its precondition,

post-condition, and program meta-code
 Meta-code representation can be applied to a wide

range. For example, statements of assigning a
value passed to instance field are used often in
constructors. Statements of generating instances
(and its assignment to a variable of the same type)
are also used quite often in object languages.

(2) Basic functional unit (BFU)
 BFUs are domain-dependent general and

meaningful units for constructing methods (and
sometimes, classes). For example, essential part of
the operations of client, master-server, or
slave-server and their operation sequences can be
extracted and stored as one of BFUs. These BFUs

are useful for constructing multi-client-servers in
the ATM system.

(3) Design patterns and architecture patterns
[2],[10]

These patterns are also very useful as the
knowledge for automating refinement process.

B. Production rules
 Design process is a process of integrating results
of analysis, which can be done using production
rules. For example, constructing a graphical
hierarchical structure consisting of graphic elements
with necessary attributes requires bottom up
composition process using production rules.

4 Refinement to program model
4.1 Outline of refinement process

Fig.2 shows the outline of the procedure to derive
the program model of a target system from its system
specification and its upper-stream model. We
describe some central issues in the following
sections.
4.2 Generation of classes and their methods
 Fundamental classes for each domain of a target
system are introduced from the program-model
knowledge base by the design decision of
implementation, and their associations are specified.
Methods for each of those classes are introduced
through the inspection of upper-stream models.
 Of course, in the primary classes corresponding to

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 89

ATMClient
Consortium
MasterServer

Consortium
SlaveServer

Bank
MasterServer

Bank
SlaveServer

1..* 1 1..* 1 User
AccountBase

1 1

* *

1

1
1..*

1..*

c
re
at
e

c
re
at
e

OperationDialog

BalanceDialog

PassDialog

create

1 1

Fig.3 Class-Association Diagram of the ATM System.

ATMClient

ConsortiumMS

Rep

MSbMSc

MSd

CbCc Cd

BankMS

Rep

MSb

MSd

main

MSc

main

ConsortiumSS

SSbSSc SSd

CbCc Cd

BankSS

SSbSSc SSd

main

run run

ud = new
UserAccountBase()

MSpMSp

verify /
deposit /
withdraw

Fig.4 Program-tree models of some methods in the ATM system.
C: Client, SS: SlaveServer, MS: MasterServer, p: preparation –part,

c: connect-part, b: body-part, d: disconnect-part

components in the upper-stream-model, main method
are required to create instances of these fundamental
classes.

ATM example: Fig.3 shows the classes and their
associations of the ATM system.
4.3 Construction of method programs
 Main techniques for constructing methods of
classes in the program-model are (a) construction
of plans, (b) insertion of statements, and (c) access
path generation. Each of these processes require
consistency checking.

ATM example: The Inner structures of some

methods in the ATM system are shown in Fig.4.
(a) Construction of plans [11]

Complete program models consist of both
essential parts and subordinate parts. For example,
the introduction and attachment of network connect
part before the body part is indispensable. This
construction is realized through plan formation
process using causal links between assertion of local
state and postcondition of “Prepare” CFU.
(b) Insertion of statements

 Usually, use of BFU requires modification by
inserting statements.
ATM example: A statement generating an

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 90

instance of UserAccountBase class is inserted
into BankMasterServer, as shown in Fig.4.

(c) Access path generation
 To fulfill the reference specification of
upper-stream model, we need search to find the
reference path from a sink to its source along
associations represented in the application program
model, and from the result of successful search we
insert suitable elements to make flow of data along
the path of instance generation of another class.

ATM example: Tracing "create path" along the
opposite direction from BankSlaveServer to
BankMasterServer, and from BankMasterServer to
the UserAccountBase along the normal direction we
can find the reference path that satisfies the
requirement of dataflow from Bank to
UserAccountBase in the upper-stream model. Along
the reverse direction of this path we can make the
reference path by adding a formal argument of type
“UserAccountBase” to the constructor of
BankSlaveServer class and inserting a statement for
preserving the value to newly added instance field of
the class.

.5 Conclusion
 We proposed a refinement approach using models
in the knowledge base for the system design in the
upper software development process and explained
how these models are used in the refinement
processes using the ATM simulator as an example.
We also try to refine a student-teacher-schedule
managing system, and are now implementing our
refinement system.

Finally, the authors thank anonymous reviewers
for their comments, which are very helpful for
making our paper easy to read. Also the authors
would like to express our appreciation to Prof. K.
Saishu and the staff of our Graduate School of
Informatics for their help and support.

References:
 [1] N.Mano and T.Kaneko: A Knowledge-Based

Modeling Approach for Verification, Direct
Execution and Plan Synthesis of System Design,
WSEAS Trans. on Information Science &
Applications Issue 8, Volume 2, 2005,
pp.1065-1070.

 [2] T.Kaneko and N.Mano: Derivation of
Upper-Stream Models for Web Application

Systems from their Uppermost Specifications,
WSEAS Trans. on Information Science &
Applications Issue 4, Volume 4, 2007,
pp.885-892.

 [3] C.B.Jones: Systematic Software Development
using VDM [Second Edition], Prentice-Hall,
1990.

 [4] J.Fitzgerald and P.G.Larsen: Modelling Systems,
Cambridge University Press, 1998.

 [5] B.Meyer, Object-Oriented Software Costruction
[Second Edition], Prentice-Hall (1997).

 [6] A.Kleppe, J.Warmer, and W.Bast: MDA
Explained - The Model Driven Architecture:
Practice and Promise, Addison-Wesley, 2003.

 [7] J.Warmer and A.Kleppe: The Object Constraint
Language [Second Edition]: Getting your
Models Ready for MDA, Addison-Wesley, 2003.

 [8] E.Gamma, R.Helm, R.Johnson, and J.Vlissides:
Design Patterns: Elements of Reusable
Object-Oriented Software [Second Edition],
Addison-Wesley, 1998.

 [9] F.Buschmann, et al.: A System of Patterns:
Pattern-Oriented Software Architecture, Wiley,
1996.

[10] R.B.France, et. al. A UML-Based Pattern
Specification Technique, IEEE Trans on
Software Engineering, Vol.30, No.3, 2004,
pp.193-206.

[11] S.Russel, and P.Norvig: Artificial Intelligence -
A Modern Approach [Second Edition],
Prentice-Hall, 2003.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 91

