
Empirical Evaluation and Critical Review of Complexity
Metrics for Software Components

Arun Sharma
Amity Institute of Information
Technology
Amity University, Uttar Pradesh

Rajesh Kumar
School of Mathematics and Computer
Applications
Thapar Institute of Engineering. &
Technology, Patiala.

P. S. Grover
Dept. of Computer Science
Delhi University, Delhi

Abstract - Component-based development has become
a highly widespread approach for application
development. Various metrics have been developed by
researchers for improving the quality of software
components as traditional software products and
process metrics are neither suitable nor sufficient in
measuring the complexity of these components. The
paper proposes a complexity metric for components
based on the different constituents of the components,
like inheritance of classes, methods and attributes.
This metric is applied to various JavaBean
components for empirical evaluation. Further, a
correlation study has been conducted for this metric
with another metric called Rate of Component
Customizability (RCC), available in the literature. The
study conducted shows the negative correlation
between the two which confirms the assumption that
high complexity of the components leads to the high
cost of maintainability.

Keywords: Component, Component-based systems,
Complexity

1. INTRODUCTION
There is a trend of using components in software
application development, due to its obvious
advantages of low cost, decreased development
time and increased usability. The kind of
flexibility required by open systems are presently
best supported by component oriented Software
technology better known as component based
software engineering (CBSE). Component Based
Development (CBD) is expected a big future and
thus a tremendous scope in research. There are
many software component models available in
the industry, some of these are Microsoft’s COM
(Component Object Model), DCOM, .NET
Framework, Sun’s Java Beans, EJB (Enterprise
Java Beans), J2EE specification and OMG’s
(Object Management Group) CORBA (Common
Object Request Broker Architecture)
specification.

As the technology in software and hardware is
changing very fast, it is important to manage the
complexity and rapidly adapt to change [1].
Researchers have proposed a wide range of
complexity metrics for software systems.
However, these metrics are not sufficient for
components and component-based system and
are restricted to the module-oriented systems and
object-oriented systems. We propose here a
metric called Component Complexity metric,
which may be used to limit the complexity of the
component.

This paper is divided into eight sections. Section
2 describes some of the most widely used
complexity metrics for procedure-oriented and
object-oriented systems. Section 3 describes the
proposed complexity metric for components.
Section 4 evaluates the proposed metric against
Weyuker's properties. Section 5 carries an
empirical evaluation of the proposed metric on
several JavaBean components along with a
correlation study with a metric, called Rate of
Component Customizability (RCC) in Section 6.
Conclusions and future directions are given in
the Section 7 and Section 8 of the paper.

2. RESEARCH PROBLEM
Complexity is a major driver of the cost,
reliability, and functionality of software systems.
To control complexity, one must be able to
measure it. Several metrics have been created for
measuring various aspects of complexity such as
size, control flow, data structures, and
intermodule structure. The most widely used
complexity metric is Cyclomatic Complexity
proposed by McCabe [2] in 1976. This metrics is
based on the program graph and is defined as

V(G) = e - n +2p

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 24

mailto:arunsharma@aiit.amity.edu
mailto:rajnagdev@yahoo.co.in
mailto:groverps@hotmail.com

Where e is the number of edges, n is the number
of nodes in the graph and p is the no. of
connected components. McCabe proposed that
V(G) can be used as a measure of procedure
complexity of the program. Kafura and Henry
[3] also proposed the complexity metrics based
on the number of local information flows
entering (fan-in) and exiting (fan-out) in each
procedure. This metrics is given as

Complexity=(Proc. Length) * (fan-in * fan-out)2

But in component context, both the metrics
defined above may not be used to measure the
complexity of entire component as these metrics
measure the complexity for procedures only and
does not consider the other aspects of the
component like classes and attributes, which
may contribute a good amount of complexity to
the component [4].

Li et. al. [5] proposed other metrics for
complexity, based on size measures such as
number of methods and attributes. In an object-
oriented environment, Chidamber and Kemerer
[6] proposed a set of quality measures for class
complexity. They proposed Depth of Inheritance
Tree (DIT), Number of Children (NOC), and
Weighted Methods Complexity (WMC)
Coupling between Objects (CBO), Response for
a Class (RFC) and Lack of Cohesion in Methods
(LCOM). Out of these metrics DIT, NOC, CBO
and RFC evaluate the external complexity of the
relation between classes and do not depend upon
the code complexity of the methods. WMC
measures the complexity of the methods and is
defined as

 N
WMC(C) = Σ Ci
 i=1

Where Ci is the static complexity of the
corresponding method Mi. This metric evaluates
the complexity of methods for a class.

For Component- based systems, Gill and Grover
[7] proposed a metric, called Component
Interface Complexity Metric (CICM). The paper
discusses the interface characterization of
software components and assumes that the
complexity of a component is mainly due to
interface signature, interface constraints and
interface packaging and configurations. Interface
signature characterizes the functionality of the
component and consists of properties, operations

and events. Interface constraints involve the
individual elements and the relationships among
these elements. Last is the Interface packaging
and configurations, which deals that how a
component will be used in an application or in
another component. First two parts of this metric
deal with the internal functioning of the
component and depend on the coding involved
during the development while the third one deals
with the use of the component after the
development.

We extend the approaches adopted in WMC (C)
and CICM (C) metrics to propose a new metric
for measuring the design complexity of the
component. During the designing of the
component, the designer usually has one or more
use scenarios in mind which may or may not fit
at the time of implementation so it is very
difficult to decide at the time of designing that in
which environment this component will be used.
Therefore, we are taking only the interface
signature and interface constraints into
consideration for our work and not considering
the packaging complexity.

3. PROPOSED METRICS
We assume that the complexity of a component
depends closely on what contributes to develop
components. Strictly, in an object-oriented
context, component may consist of classes (base
class and derived classes), which in turn may
involve various methods, attributes and
interfaces. So, we take these aspects into
consideration to propose the new metric. The
metric is defined as

Component Complexity (CC)

= α CV(C) + β CM (C) + γ CI(C)

where α, β and γ are the coefficients for CV, CM
and CI(C) and are dependant on the nature of
software component.
CV(C) is the complexity of the variables defined
in the component. Variables may consist of
member variables having scope for the entire
class and the parameters, which are local to a
particular method. This may be defined as

CV(C) =

 N
 Σ wi Vi
 i=1

where N is the total number of variables in the
component and

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 25

wi is the corresponding weight value of the
variable Vi .

Similarly, CM (C) is the rate of complexity of the
methods given in the component and is given as

CM(C) =

 M
 Σ wj Mj
 j=1

where M is the total number of methods in the
component and wj is the corresponding weight
value of the method Mj .

Lastly, CI(C) is the rate of complexity due to the
interface methods used in the components.
Interfaces are the access points of component,
through which a component can request a service
declared in an interface of the service providing
component. CI(C) is defined as

CI(C) =

 L
 Σ wk Ck
 k=1

where L is the total number of interface methods
in the component and wk is the corresponding
weight value of the method Ck . Therefore the
complexity of the component will be

CC
 N
=α Σ wi Vi
 i=1

 M
 + β Σ wj Mj
 j=1

 L
+ γ Σ wk Ck
 k=1

The weight values of all the parts (variables,
methods and interfaces) can be assigned on the
basis of complexity involved and their nature.
We have categorized variables into three
categories; primitive, structured and enumerated.
Primitive variables are the variables, which are
of primitive data type such as int. User
defined/derived variables having derived data
types such as string and date. Last are
enumerated variables having complex nature like
link list, stack and queue etc. These variables are
put into three categories called simple, medium
and complex which may have different weight
values.

Methods are categorized on the basis of their
arguments and return types. Arguments and
return types can have any of the three data types
discussed earlier (primitive, user defined and
structured/class). The following table categorizes
methods into four categories, called simple,
medium, complex and highly complex. The

weight values can be assigned to these methods
by considering the total number of methods in
each category.

 Arguments

Return Type

N
o

Pr
im

iti
ve

St
ru

ct
ur

ed

En
um

er
at

ed

No S S M C
Primitive S S M M
Structured S M M C
Enumerated M M C HC

 Classification of Methods

Classes contained in a component are derived
into base class and derived classes. Base classes
are imported classes from other reused library or
packages. Derived classes are identified classes
during component design in a domain. For the
experimentation, we have restricted this
inheritance only upto one level. Classes can be
categorized on the basis of methods and
attributes used in the class. The weight values to
these classes are assigned on the basis of total
number of methods and variables used in that
class.

4. THEORETICAL EVALUATION OF
PROPOSED METRIC USING WEYUKER'S
PROPERTIES

Weyuker has proposed an axiomatic framework
for evaluating complexity measures [8]. The
properties are not without critique and these have
been discussed in various literatures. The
properties, however, have been used to validate
the C-K metrics by Chidamber & Kemerer [6]
and, as a consequence, we will employ the same
framework for compatibility’s sake. We show
the modified properties below; the original
definitions are available at [8]. The properties
are:

Property 1: There are programs P and Q for
which M(P)≠ M(Q).

Property 2: If c is non-negative number, then
there are only finitely many programs P for
which M(P)=c

Property 3: There are distinct programs P and Q
for which M(P)=M(Q)

Property 4: There are functionally equivalent
programs P and Q for which M(P) ≠ M(Q)

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 26

Property 5: For any program bodies P and Q,
we have M(P) ≤ M(P;Q) and M(Q) ≤ M(P;Q).

6. For two methods with different functionality
but having same complexities, it may always
be possible to extend for some common
functionality. But in result the newly
developed constituents now may have the
different complexities due to for example
different type of interactions, values
returned etc. This ensures for 6th property.

Property 6: There exist program bodies P, Q
and R such that M(P)=M(Q) and M(P;R) ≠
M(Q;R).

Property 7: There are program bodies P and Q
such that Q is formed by permuting the order of
statements of P and M(P) ≠ M(Q).

7. Permutation on component's constituents
does not affect on the metric value.
Therefore it satisfies 7th property.

Property 8: If P is a renaming of Q, then M(P) =
M(Q).

Property 9: There exist program bodies P and Q
such that M(P)+M(Q) < M(P;Q).

8. It is obvious that renaming a method or

variable will not affect the complexity of
that method or interface, thus satisfying this
property.

We evaluate these properties for our proposed
metric.

1. As per the assumptions made above, a

component comprises of various design
constituents like interfaces, methods and
variables, which may always have different
complexities, thus satisfying first property.

9. In an object-oriented perspective,
modularity reduces the complexity. Thus the
total complexities of the two modules will
be lesser than the complexity of the
combined module, which satisfies the last
property.

2. As a component will have only the finite
number of methods and variables, which
always will have a finite value of the
complexities, thus resulting a finite
complexity for the entire component.

5. EMPIRICAL EVALUATION

To get the values of the above metrics, an
experiment is conducted on various JavaBean
components (from www.componentsource.com
and www.acme.com). These JavaBean
components have different LOC, number of
methods, attributes etc. The weight values for
variables and methods are assigned on the basis
of total number of variables/methods in that class
and is given in the following table. 20 is
suggested as an upper limit for methods in a
nominal class [9] so we are assuming that more
than 20 methods or variables in a component will
have the highest weight value in each of the
category discussed.

3. There may always be two distinct

components having the same complexities
thus satisfying the third property. We can
have the same assumptions for the
constituents of the components also.

4. There may be two methods, which have the

same functionality but with different logic
and algorithm thus will have the different
complexities. The same thing may also exist
for two different components with the same
functionality but having different
complexities, as these components may be
designed by using different technologies and
programming concepts.

Category

Number

Si
m

pl
e

M
ed

iu
m

C
om

pl
ex

H
ig

hl
y

C
om

pl
ex

1-5 0.05 0.30 0.55 0.80
5-10 0.10 0.35 0.60 0.50
10-15 0.15 0.40 0.65 0.90
15-20 0.20 0.45 0.70 0.95
>20 0.25 0.50 0.75 1.0

5. If we increase the functionality of a method

by adding some logic to it, it may increase
the complexity as compared to the original
method, thus satisfying property 5 for the
proposed metric.

Weight values for variables and methods

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 27

Component
Class Methods Attributes CV(C) CM (C) CI(C) CC

ACME01 2 5 1 0.30 0.5 0.6 1.4
SimpleBean 2 5 2 1.1 0.25 0.6 1.95
WordBean 2 11 2 0.35 1.55 0.35 2.25
ACME02 2 7 3 0.9 1.1 0.6 2.6
ACME03 2 7 3 0.9 1.1 0.6 2.6
DocBean 2 8 5 2.5 1.4 0.35 4.45
ACME04 2 16 9 2.4 3.35 0.85 6.7
ACME05 2 26 11 2.50 5.6 0.85 8.95

GameBean 2 36 10 0.75 0.3 0.32 11.65
ACME06 2 28 12 3.05 7.5 1.1 11.65
ACME07 2 43 14 4.0 14.75 1.35 20.1

ACME08 2 43 15 4.35 14.75 1.35 20.45

Results of Complexity Metric

These weight values are used to compute the
complexity metric defined above. The above
table gives the value of the complexity metrics
on these components.

6. VALIDATION
To validate the proposed metric, we considered a
metric called Rate of Component
Customizability (RCC) defined by Washizaki et.
al. [10]. RCC(C) is the percentage of writable
properties in all attributes in a class of a
component. It is given by

 Pw(C)
RCC(C) = A (C) >0
 A(C)

 0 otherwise
where Pw(C) is the number of writable
properties in C and can be measured by counting
the setter methods used in the JavaBean
component.
 A(C) is the number of attributes in C.

The same JavaBean components are used to get
the value of this metric and the result obtained is
given in table:

Component RCC(C)
ACME01 1
SimpleBean 0.5
WordBean 0.5
ACME02 0.5
ACME03 0.5
DocBean 0.375
ACME04 0.375
ACME05 0.375

GameBean 0.33
ACME06 0.33
ACME07 0.5
ACME08 0.44
Results of RCC Metric

A correlation analysis was carried out for
complexity metric (CC) and Rate of Component
Customizability (RCC) by using the Karl
Pearson Coefficient of Correlation. The
correlation coefficient between CC and RCC is -
0.31, which shows a negative correlation
between these two metrics.

The result justifies that high complexity leads to
the low customizability thus results in high
maintainability. The proposed metric seems to be
logical and fits into the empirical evaluation also
but may not be the sole criteria for deciding the
complexity of the software component on the
basis of the computed values of this metric. The
empirical evaluation is restricted to only one
level of inheritance and ignores the complexity
involved due to the multi-level inheritance.
Moreover this metric involves only the design
issues of the component and does not consider
the packaging and the deployment complexity.

7. FUTURE WORK
The proposed metric seems to be logical and fits
into the empirical evaluation also but may not be
the sole criteria for deciding the complexity of
the software component on the basis of the
computed values of this metric. Moreover this
metric involves only the design issues of the
component and does not consider the packaging
and the deployment complexity. The proposed

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 28

work is preliminary and more work is required
towards the empirical validation of this metric
for some of the other existing component models
like Enterprise Java Beans, .NET etc, so that a
confidence can be established on this metric to
be used for quality development.

8. CONCLUSION

Several previous papers [2,3,5,7,9] have
discussed the maintainability and complexity for
procedure- oriented systems and object-oriented
systems. Not much work has been done to
evaluate quality metrics for components and
component-based systems. The present work
assumes that the complexity of the whole system
can be considerably reduced if the component(s)
used in that system is/are not so complex. Paper
proposes a metric to measure the complexity of
software components, which is evaluated
theoretically by standard Weyuker's properties.
Higher complexity leads to the high cost of
maintainability. It is very difficult to customize
an application, which is highly complex. The
work conducts an empirical study on various
JavaBeans components and ensures the same
assumption for components also.

8. REFERENCES
[1] Sedigh Ali, S Gafoor, A. Paul, Raymond A.,
"Software Engineering Metrics for COTS-based
Systems", IEEE Computer, May 2001. pp 44-50

[2] McCabe T, "A Software Complexity Measure",
IEEE Trans. Software Engineering SE-2 (4), 1976,
308-320.
[3] Kafura, D. and S. Henry, "Software Quality
Metrics Based on Interconnectivity", Journal of
Systems and Software, June 1981, pp 121-131

[4] Arun Sharma, P S Grover, Rajesh Kumar,
"Classification of component metrics",
International Conference on Software
Engineering Research and Practices (SERP) June
2005.

[5] Li, Henry, "Object-oriented metrics that
predict maintainability", Journal of Systems and
Software 1993, Volume 23 Issue 2, pg: 111-122

[6] Chidamber, Shyam and Kemerer, Chris, "A
metrics Suite for Object-oriented Design", IEEE
Transactions on Software Engineering, June
1994, pp. 476-492

[7] Nasib S. Gill, P. S. Grover: "Few important
considerations for deriving interface complexity

metric for component-based systems", ACM
SIGSOFT Software Engineering Notes, March
2004 Volume 29 Issue 2

[8] E.J. Weyuker: "Evaluating Software
Complexity Measures", IEEE Transactions on
Software Engineering, September 1988 (Vol. 14,
No. 9) pp. 1357-1365

[9] Robert V. Binder, “Design for Testability in
Object-oriented Systems”, Communications of
the ACM, September 1994, Vol. 37, No. 9, pp
87-100

 [10] Hironori Washizaki, Hirokazu Yamamoto
and Yoshiaki Fukazawa: "A Metrics Suite for
Measuring Reusability of Software
Components", Proceedings of the 9th
International Symposium on Software Metrics
September 2003

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 29

	1. INTRODUCTION

