
A Platform Based on Reconfigurable Architectures and Virtual
Instrumentation Applied to the Driving Automobile Problem.

Anderson Correia1, Carlos H. Llanos1, Rodrigo W. Carvalho1 and Sadek A. Alfaro1

1 Department of Mechanical Enginneering – GRACO
Univerity of Brasília

Campus Universitário Darcy Ribeiro, Faculdade de Tecnologia, Brasília, Distrito Federal
Brazil

Abstract: - This paper describes the implementation of a control system for hands-free driving car based on
reconfigurable architectures and the virtual instrumentation concepts. The reconfigurable architecture approach
means the use of an embedded microprocessor (Microblaze, Xilinx) jointly with several hardware modules,
which were described in VHDL hardware description language. The virtual instrumentation approach refers to
the use of LabVIEW environment in order to develop a simulation/validation tool, suitable for several
mechatronic applications. This work is focused on a vehicle control system design and its validation using a
LabVIEW program. The control system was developed for solving a well-known problem: the hands-free driven
car. The car control (implemented in the FPGA) and the LabVIEW program are communicated by means of a
RS232 interface. A protocol was defined allowing the user to send defined commands to the controller (typing
commands in a keyboard). This approach opens a wide variety of possibilities for validating and simulating
solutions for several problems in the robotic and mechatronic areas.

Key-Words: - Embedded Processors, Hands-free driving vehicle, Virtual Instrumentation.

1 Introduction
This paper describes the implementation of a control
system for hands-free driven car based on
reconfigurable architectures and the virtual
instrumentation concepts. The reconfigurable
architecture approach means the use of an embedded
microprocessor (Microblaze, Xilinx) jointly with
several hardware modules, which were described in
the VHDL hardware description language. The virtual
instrumentation approach refers to the use of
LabVIEW environment in order to develop a
simulation/validation tool, suitable for several
mechatronic applications. This work is focused on a
vehicle control system design and its validation using
a LabVIEW program. The control system is
developed for solving a well-known problem: the
hands-free vehicle driving. Many researches in hands-
free vehicle problem as well as Car-Like Mobile
Robot (CLMR) [3][10] have been done, which apply
several techniques based on complex mathematical
models [11], neural networks [5][6], genetic
algorithms, fuzzy logic [13], among others. Steering a

car is confined with conditions of the car’s capability
mechanism and the environment. Due to these
reasons, it is very difficult to design a continuously
global controller for a car in order to perform all the
maneuvering behaviors. Over the years, numerous
systems have been developed to provide automatic
control for the hands-free driving problem of
automobiles [1]. These systems automate either
steering control (related to as lateral control), throttle
and/or brake control (related to longitudinal control),
and the clutch control. When the automobile control
involves all partial control system is called as an
Automated Highway System (AHS) [9].

Given the complexity of the hands-free driving
problem It is very important to define a design
environment that just allows the testing and validation
of different control strategies, apart from a rapid
prototyping of the electronic control system. In the
last years embedded systems has been investigated for
automotive industry applications, especially by using
reconfigurable architecture approaches.
Reconfigurable architectures are based on the use of

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 242

processors (based on the von Neumann Model),
which are implemented in FPGAs (Field
Programmable Gates Arrays), jointly with several
hardware parts described through HDLs (High-Level
Description Languages).

FPGAs devices provide high performance for parallel
computation and enhanced flexibility (if compared
with ASICs implementations) and are the best
candidates for several kinds of hardware
implementations. The FPGA can be configured by
means of software tools, allowing the easy
implementation of complex systems such as those
related to control/automation applications,
communications, parallel computing, among others.

Virtual instrumentation combines mainstream
commercial technologies [7], such as the PC, with
flexible software and a wide variety of measurement
and control hardware. Then engineers and scientists
can create user-defined systems, which meet their
exact application needs. Virtual instrumentation
approach has been widely used in the context of
prototyping of automation/control systems. National
Instruments LabVIEW software uses
symbolic/graphical representations to speed up the
system development of instrumentation systems. The
software symbolically represents functions through
icons. Additionally, the environment permits the
representation in real time of system’s processes,
allowing the designer the rapid validation of the
results.

The objective of this work is to study and solving the
hands-free driving automobile problem using
reconfigurable architectures and virtual
instrumentation. Our strategy distinguishes oneself
from the classical design flow because of the FPGA-
based control system design and the use of LabVIEW
environment, in order to represent the current status of
the vehicle even in real time. The car control was
implemented using the Microblaze embedded
processor [12]. The control and the LabVIEW
program are communicated by a RS232 interface, in
which was developed a communication protocol. The
protocol was defined for allowing the user to send
commands to the controller (typing in a keyboard),
and the controller sends predefined data packages to

the LabVIEW environment in order to update the
current status of the car in real time.

A few researches have been reported in the use of
FPGA and LabVIEW applied to the CLMR or hands-
free driving problems. A FPGA implementation of a
Fuzzy Garage Parking Control (FGPC) is discussed
in [10]. Otherwise, the use of FPGA and LabVIEW is
discussed in [4] for an accelerator control system
design.

In section 2 the overall architecture of the system is
described. Section 3 presents the basic concepts of the
proposed embedded architectural system in the
FPGA. Section 4 discuses the defined command set
for the control system. Section 5 describes the virtual
environment for simulating the vehicle motion.
Section 6 describes the communication protocol.
Before concluding, section 7 describes our results.

2 The proposed Architecture
The overall control system is composed of an
embedded control system based on the soft-
embedded-processor Microblaze [12], which is
implemented in a Spartan 3–based FPGA, and a
virtual simulator environment implemented in
LabVIEW. The architecture is shown in figure 1,
where a communication system is implemented using
RS232 standard. Additionally, a keyboard is used for
sending pre-defined commands to the control (that is
implemented in the FPGA).

Figure 1: The overall System

The embedded microprocessor implements the main
control car tasks in software functions, namely: break,
clutch, steering wheel, gear and throttle sub-systems
of a real vehicle. Each function was described in C
language in a structured software approach. Several
hardware modules were incorporated to the hardware
design such as RS232, buttons, display using the EDK

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 243

tool options [2] during the project specification.
Finally, a specific keyboard module that was
described in VHDL was added to the design.

2.1 The Keyboard Interface

The user can send commands to the controller
(implemented in the Microblaze embedded
microprocessor). The keyboard can be substituted
easily by a joystick (see section 4).

2.2 The FPGA Embedded Controller

The controller is implemented in the Microblaze
embedded microprocessor, which run several
software functions implemented in C language (see
section 5).

2.3 The Simulator System (LabVIEW)
The simulator environment was developed in the
LabVIEW system and it is connected to the controller
through a RS-232 based interface. Additionally, a
communication protocol was defined to achieve the
communication between the controller and the
simulator (see section 6).

Figure 2: The Hardware System

Figure 3: Software Project of the Controller

3 The FPGA Embedded System

The use of FPGAs to implement different type of
algorithms is very attractive because these devices
offer a trade-off between ASICs (Application Specific
Integrated Circuits) and general-purpose processors.
The control module was defined using the EDK tool
[2], in which the Microblaze processor is the system
core. This processor has a RISC architecture with
thirty-two 32-bit general purpose registers, an
Arithmetic Logic Unit (ALU), a shift unit and
interrupts, among others possible peripherals.

The EDK tool is a embedded development
environment that includes a library of peripheral IP
cores, where the Xilinx Platform Studio tool suites for
intuitive hardware system creation. Additionally, a
Built-On Eclipse software development environment,
GNU compiler and a debugger are included as well.
Figure 2 shows the architecture of the control system,
which was synthesized using the EDK. The
communication of the processor with peripherals
devices is achieved by the OPB bus (On-chip
Peripheral Bus). There are several hardware
peripherals related to the FPGA-based board
resources such as display, keyboard, RS232, push-
buttons, dip-switches and leds. The processor
controls the operation flow of the system by running
different special designed software functions, which
were written in C language and stored in the bRAM-
block (see figure 2).

3.1 The Software Modules of the Controller

Once the processor system was configured and your
peripheral were defined all the programming was
made in standard C, compiled and tested inside of the
EDK environment.

The software modules were described in a structured
way, whose block diagram is depicted in figure 3. The
module descriptions are the following:

a) The break.c module: it receives a defined
command to operate the car-break (see section 4). The
module verifies what is the current position of the
brake is and it gives the proper direction to the
actuator. A PWM (Pulse-Width Modulation) signal is
used to control the actuator-speed.

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 244

b) The clutch.c module: it receives commands
from the user (see section 4) and verifies the current
position of the clutch, executing a special procedure
to drive the pneumatic-system. This module has an
alternative way to execute the clutch control by a
stepper-motor.

c) The steering.c wheel module: it receives
defined commands (see section 4) to achieve a user-
defined position. The module verifies what is the
current position is and it gives the proper direction to
the wheel actuator.

d) The throttle.c module: It works in too ways: the
first one works for controlling the butterfly position,
which is represented by a potentiometer. The second
one executes a control strategy, where a rotation
reference is set by the user. Then, the system controls
the position until the required rotation is
accomplished. A PWM signal is used to control the
actuator-speed.

Figure 4: Overall Hardware System

e) The gear.c module: this module receives the
command of the operator (see section 4) and verifies
the current position for exchanging the gear-position.
This is achieved by two DC-motors, which moves the
gear-lever in the X and Y axes in a predefined way.
The DC-motor’s speed is controlled by two PWM-
signals.

3.2 The Hardware Modules of the Controller

The hardware modules are depicted in figure 4. The
led, display and pushbutton modules were
automatically generated by the EDK system. On the
other hands, the keyboard module was described in a

VHDL file, which implements the PS2 protocol and
afterwards it was incorporated as a peripheral device
in the overall design. The PWM blocks are
responsible for generating modulated speed control
signals of the DC-motors related to the throttle and
gear devices.

The PWM signals were implemented using
Microblaze’s timers, which can be added to the design
depending on the necessities of the system. In this
case, only two PWM modules have been generated.
Other PWM modules can be easily added to the
design using the EDK environment. Each timer has
two programming registers, namely TCSR0 and
TCSR1, which are used for implementing different
functions, depending on the programming modes
(generate, capture and PWM modes).

4 The Commands for the Control
System
Several commands were defined in order to control
the car and its definitions with a specific syntax and
semantic are described in table 1. The commands are
organized into two sets, describing manual and
automatic modes. The first mode defines commands
for debugging actions, including arrow keys for
increasing/reducing the current positing of steering
wheel, clutch and engine rotation, among others.
Other manual commands can be seen in table 1.

The second mode presents commands for using either
via keyboard or into the C program. Each command
was implemented in a specific C function. For
example, the commands related to the clutch (EBA,
EBR and EBC) have specific syntax/semantic. In this
case, EBA and EBR commands have not parameters
as long as EBC needs one parameter, which
represents a value among 0 to 100% of the total clutch
position.

The commands are put by the user using the keyboard
and then the Microblaze identifies and processes
them, before to send the appropriate control signals
(to the actuators) using the RS232-base protocol (see
section 6).

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 245

5 The Simulator System Environment
LabVIEW is a general-purpose graphical
programming system with extensive libraries of
functions for any programming tasks. In addition, this
system includes libraries for data acquisition,
instrument control, data analysis, data presentation,
and data storage.

For the modeling of the vehicle kinematics there were
applied the three canonical equations that describe the
positioning in x and y of the nonholonomic vehicle
[10]. The equations (1, 2 and 3) define the path and
the position in x and y. The equation 3 describes the
instantaneous position of the angle of the wheel.

The program was designed by means of several
software modules, involving the RS232 interface, the
car design, the new position calculation and the user
interface. Some parts of the calculation module were
directly implemented in C language in order to
implement the equations. Figure 5 shows a part of the
block of RS232-based serial communication.
Additionally, there were implemented modules for the
kinematics equation implementation (which were
implemented in C into the LabVIEW program) and
the real time vehicle movement implementation.

Figure 5: Software Structure of the Virtual Simulator
Environment – Kinematics Control

User's interface is shown in figure 6 that represents
the car position and several blocks for monitoring the
current engine rotation, gear position, throttle, among
others. The main task of the vehicle simulation
module is the simulation of the kinematics and
general behavior of the vehicle in normal situations. It
was applied the concepts of Virtual Instrumentation
by programming in LabVIEW environment in order
to generate the appropriated signals, depending on the
control and status variables. This module is
responsible for manipulating the virtual car model,
which is composed of the corresponding control parts,
namely steering wheel, brake, gear, clutch and
throttle.

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 246

Figure: 6 The User interface in the LabVIEW

6 The communication protocol
A communication protocol was defined in order to
implement a full-duplex communication between the
control module (FPGA) and the LabVIEW program
(see figure 1). The controller sends to the LabVIEW a
3-bytes package, where the first one represents a
specific car state-variable, encoded in 3 bits (namely,
front-wheel_1, front-wheel_2, x-position of the gear,

y-position of the gear, break-position and clutch-
position). The second byte represents the information
for controlling the clutch, in which the 4-most-
significant bits are used for generating the stepper-
motor signals and the other bits for electro-valve
system control. The last byte is used for generating
and sending PWM signals for throttle (2-bits),
steering wheel (2-bits) and break (2-bits).

For example, the first bit of the throttle is used to
represent the direction and the second is used for

generating the proper PWM signal. Given that the
packages are sent in a sequence, the LabVIEW is
capable to rebuild the PWM signal using only one bit
in the serial communication.

In the case of the LabVIEW, It sends to the controller
the state-information related with several variables.
To achieve this, a 2-bytes package is used. The first
byte is used to encode a specific state variable (front-
wheel_1, front-wheel_2, x-position of the gear, y-
position of the gear, break-position and clutch-
position), by using the 3-most significant bits.

The second byte represents the current value of the
state variable. In this case, the LabVIEW program
responds to the controller about the required state
information.

7 Results
The FPGA synthesis results were obtained in the
EDK project report. The results are shown in table 2
for the main modules of the control system. It was
used a Spartan 3 device (xc3s200ft256-4) for the
hardware implementation of the controller. The main

resources consumption is related to the Microblaze
implementation. The clock frequency is depicted for
each implemented device. The results (in percentage
of the total of resources available in Spartan 3 device)
are related to slices, slices-flip-flops, LUTs, IOB,
Ram-Blocks (Bram). There are also timing results for
each hardware modules, and the critical frequency is
for the 7-segment driver (about 68 MHz). The same
table depicts only a peripheral implementation for
PWM signal. However, other PWM devices can be

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 247

easily added in the design depending on the design’s
requirements. The software implementation of the
controller (written in C and compiled) is stored in the
Bram-bloc (second line of the table 2). In this case the
total FPGA-RAM-elements was 66%.

The LabVIEW program was capable to represent the
kinematics and behavior of the vehicle in real time
and a realistic way. This performance includes the
serial communication (with the implemented
protocol), the car position calculation and the
computational cost of the system interface in the PC.
The baud-rate of serial communication can be
changed in both programs: controller (in the
Microblaze) and the LabVIEW. The current baud-
rate of the serial communication is 9600 bauds. The
PWM-signals are transmitted through the RS-232-
based protocol and the movement of the vehicle is
shown in the control-panel of the LabVIEW program
taking into account this information.

8 Conclusion
A flexible environment for studying the hands-free
driving automobile problem was implemented based
on reconfigurable architecture and virtual
instrumentation tool (LabVIEW). The car control was
implemented using the Microblaze embedded
processor. A serial-based communication protocol
was defined in order to control the car motion, which
includes the steering wheel, clutch, gear, break and
throttle subsystem. Additionally, the protocol was
defined and tested for allowing the user to send
commands to the controller (typing in a keyboard),
and the controller sends predefined data packages to
the LabVIEW environment in order to update the
current status of the car in real time.
Otherwise, this approach opens a wide variety of
possibilities for validating and simulating solutions
for several problems in the robotic and mechatronic
areas [8].

Acknowledgments. This work is partially supported
by FINATEC (Fundação de Empreendimentos
Científicos e Tecnológicos), UnB and CNPq
(Conselho Nacional de Desenvolvimento Científico e
Tecnológico), Brasília/DF, Brasil.

References:

[1] Donecker, S. M., Lasky, T. A., Ravani, B.: A
Mechatronic Sensing System for Vehicle Guidance
and Control. IEEE-Transactions on Mechatronics,
Vol.8, n.4, December (2003) 500 – 510
[2] EDK: Platform Studio, User Guide. Available at
http://www.xilinx.com/ise/embedded/edk_docs.htm.
Accessed in November of 2006.
[3] Baltes, J., and Lin, Y. Lin: Path- Tracking Control
of a Non-Holonomic Car-like Robot with
Reinforcement Learning. CITR, Tamaki Campus,
University of Auckland, (1999) 1–17
[4]Giove, D., Martinis C. D., Mauri, M.:
Reconfigurable Hardware Resource in Accelerator
Control System. EPAC, Lucerne, Switzerland (2004)
701 – 703
[5] Gu, D., Hu. H. .: Neural Predictive Control for a
Car-like Mobile Robot. International Journal of
Robotics and Autonomous Systems, Vol. 39, No. 2-3,
May, (2002). 1-15
[6] Li, J. H, Lee, Li, P. M. A Neural Network
Adaptive Controller Design for Free-Pitch-Angle
Diving Behavior of an Autonomous Underwater
Vehicle. Robotics and Autonomous Systems.
Elsevier, 52 (2005) 132 - 147
[7] National Instruments. Avail.
http://www.ni.com./labview/whatis/ Acc. in 2006
[8] Petko, M., Uhl, T.: Embedded controller design-
mechatronic approach. IEEE, Second Workshop on
Robot Motion and Control. (2001) 195-200
[9] Tan, H.S., Guldner, J., Patwardhan, S., Chen, C.,
Bougler, B.: Development of an Automated Steering
Vehicle Based on Roadway Magnets A Case Study of
Mechatronic System Design. IEEE/ASME
Transactions on Mechatronics, Vol. 4, No. 3 (1999)
258 - 271
[10] Tzuu-Hseng, S., Chang, S-J., Chen, Y-X.:
Implementation of Autonomous Fuzzy Garage-
Parking Control by an FPGA-Based Car-Like Mobile
Robot Using Infrared Sensors. International
Conference on Robotics & Automation, Taipei,
Taiwan, September (2003) 3776 – 3781
[11] Yang, E., Gu, D., Mita, T., Hu, H..: Nonlinear
Tracking Control of A Car-Like-mobile Robot via
Dynamic Feedback Linearization. Control 2004,
University of Bath, UK, September 2004
[12] Xilinx. Inc. Available at http://www.xilinx.com/
Accessed in 2006
[13] Zhao, Y., Collins, Jr. E.G..: Robust Automatic
Parallel Parking in Tight Spaces via Fuzzy Logic.
Robotics and Autonomous Systems. (2005) 111 – 127

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 248

