
Roadmap Methods vs. Cell Decomposition in Robot Motion Planning

MILOŠ ŠEDA
Institute of Automation and Computer Science

Brno University of Technology
Technická 2, 616 69 Brno

CZECH REPUBLIC

Abstract: - The task of planning trajectories plays an important role in transportation, robotics, information
systems (sending messages), etc. In robot motion planning, the robot should pass around obstacles from a given
starting position to a given target position, touching none of them, i.e. the goal is to find a collision-free path
from the starting to the target position. Research on path planning has yielded many fundamentally different
approaches to the solution of this problem that can be classified as roadmap methods (visibility graph method,
Voronoi diagram) and methods based on cell decomposition. Assuming movements only in a restricted number
of directions (eight directional or horizontal/vertical) the task, with respect to its combinatorial nature, can be
solved by decomposition methods using heuristic techniques. We present drawbacks of this approach
(combinatorial explosion, limited granularity and generating infeasible solutions). Then, using the Voronoi
diagrams, we need only polynomial time for finding a solution and, choosing a Euclidean or rectilinear metric,
it can be adapted to tasks with general or directional-constrained movements.

Key-Words: - motion planning, cell decomposition, roadmap method, visibility graph, Voronoi diagram

1 Introduction
The task of planning trajectories of a mobile robot
in a scene with obstacles, has received considerable
attention in the research literature [2,6,11,13]. A
robot is usually represented by a single point or a
circle. There are three basic types of robot motion
planning algorithms [9].

The first type is the potential field method. The
goal has an attractive potential and the obstacles
have a repulsive potential. The robot moves in the
direction of the gradient of a potential field
produced by the goal configuration and the
obstacles. Unfortunately, this algorithm often
converges to a local minimum in the potential field
and therefore we will not deal with it.

The second type is the cell decomposition
method. Here, the scene is decomposed into cells
and the outcome of the search is a sequence of
adjacent cells between start and target from which a
continuous path can be computed. The square cell
decomposition can be used for 8-directional
(horizontal, vertical and diagonal) robot motion in
the plane with static rectangular obstacles.
Unfortunately, this approach has many drawbacks
such as combinatorial explosion, limited granularity
and generating infeasible solutions as we briefly
show in the next paragraph. This approach can be

slightly improved using a case-based reasoning
procedure [5].

The third type of motion planning algorithm is
referred to as a roadmap method. The roadmap is
built by a set of paths where each path consists of
collision free area connections. There are several
different methods for developing the roadmap such
as visibility graphs and Voronoi diagrams [7]. As
these methods do not have the drawbacks of the
previously-mentioned ones, we will study them in
more detail trying to combine them.

2 Cell Decomposition
First, let us consider robot motion planning reduced
to navigating a point in a free space F. Then the cell
decomposition can be stated as follows [9]:
1. Divide F into connected regions called cells.
2. Determine which cells are adjacent and construct

an adjacency graph. The vertices of this graph
are cells, and edges join cells that have a
common boundary.

3. Determine which cells the start and goal lie in,
and search for a path in the adjacency graph
between these cells.

4. From the sequence of cells found in the last step,
compute a path connecting certain points of cells

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 127

such as their midpoints (centroids) via the
midpoints of the boundaries.

Fig. 1 shows a decomposition using rectangular
strips. The cells joining the start and target are
shaded. The resolution of the decomposition is
chosen to get a collision-free path dependent on the
sensitivity of controlling our robot’s motion.

Fig. 1: Vertical strip cell decomposition of the scene
with 3 polygonal obstacles.

This approach is not usable for 8-directional

motion planning. For movements in 8 directions, the
scene decomposition shown in Fig. 2 may be used.
Here, all cells have the same square shape.

Fig. 2: Grid representation of 2D space with starting
and target positions of the robot and static obstacles

Fig. 3 shows one of the possible paths from the
starting to the target position.

The cell decomposition-based path planning in 8
directions has the following drawbacks:
• Robot size must be smaller than cell size. In the

opposite case, we are not able to determine
uniquely the robot position. This decreases the
possible range of grid.

• If we use stochastic heuristic techniques (genetic
algorithms, simulated annealing, tabu-search, …)
for finding trajectories, then their crossover,

mutation and neighbourhood operators generate
many infeasible solutions (movements out of
grid, collisions with obstacles). In Fig. 4 we can
see that, although the neighbouring cells are free,
the robot cannot move between them without
colliding with obstacles.

• Increasing the range of the grid, satisfying the
first condition results in combinatorial explosion.
Assume m=n (square grid). Then the cardinality
of the search space is equal to 82n = (23)2n = 26n,
which, even for not very high values of m and n,
leads to a rather intractable amount of possible
paths, for m=n=20, for example, we get 26n = 2120
= (210)12 = (1024)12 > 1036 paths, which gives no
chance to achieve the optimal solution in a
reasonable amount of time.

Fig. 3: A path with movements in 8 directions

Fig. 4: Collisions with obstacles and collision-free
paths

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 128

The computation may include a case-based
reasoning procedure [5].

Case-based reasoning (CBR) is based on the
retrieval and adaptation of old solutions to new
problems.

A general CBR cycle may be given by the
following steps:
• Retrieve the most similar case or cases;
• Reuse the information and knowledge in that

case to solve the problem;
• Revise the proposed solution;
• Retain the parts of this experience likely to be

useful for future problem solving.

If, for a given start cell cs
0 and a given goal cell

cg
0, the case-base does not contain a path leading

from cs
0 to cg

0, a similar path is retrieved according
to the formula

 (1)

The problem is that the new solution gained as
an adaptation of the most similar case in old
solutions can be worse than a new computation that
is not based on the stored cases as Fig. 5 shows.

Fig. 5: 1-2-3-4 = old solution;
1’-1-old solution-4-4’ = new solution;
1’-2-3-4’ = optimal solution

3 Roadmap Methods
The most important approaches included in roadmap
methods are based on visibility graphs and Voronoi
diagrams.

A visibility graph is a graph whose vertices
include the start, target and the vertices of polygonal

obstacles [2,7]. Its edges are the edges of the
obstacles and edges joining all pairs of vertices that
can see each other. Unfortunately, the shortest paths
computed by using visibility graphs touch obstacles
at the vertices or even edges of obstacles and thus
are not very good in terms of safety. This drawback
can be removed using Voronoi diagrams.

A Voronoi diagram of a set of sites in the plane
is a collection of regions that divide up the plane.
Each region corresponds to one of the sites and all
the points in one region are closer to the site
representing the region than to any other site [1,3,9].

More formally, we can define Voronoi diagrams
in mathematical terms. The distance d(pi , pj)
between two points pi = (xi, yi) and pj = (xj, yj) in the
plane can be defined by the Euclidean metric

 2(,) () ()i j i j i jd p p x x y y= − + − 2 (2)
()

0 0

(,) ,
(,) arg min

(,) , (,)

s g
s g

s s g g

F P c c
or rectilinear (or Manhattan) metric

 (,) | | | |i j i j i jd p p x x y y= − + − (3)

Definition: Let P={p1, p2, … , pn}⊂ ℜ2 be a set of
points with the Cartesian coordinates (x1, y1), … ,
(xn, yn) where 2 < n < ∞ and pi ≠ pj for i ≠ j. We call
the region
 { }2() | (,) (,) for i i jV p q d q p d q p j i= ∈ℜ ≤ ≠ (4)

the planar Voronoi polygon associated with pi (or
the Voronoi polygon of pi) and the set given by

 { }(), , ()iV V p V p= … n (5)

the planar Voronoi diagram generated by P (or the
Voronoi diagram of P). We call pi of V(pi) the site or
generator point or generator of the i-th Voronoi
polygon and the set P={p1, p2, … , pn} the generator
set of the Voronoi diagram V.

Using the selected metric, we divide Voronoi
diagrams into two classes: the Euclidean and
rectilinear Voronoi diagrams. If we use the
rectilinear metric for a Voronoi diagram, then, due
to the rectilinearity, each straight-line segment of a
bisector in the now rectilinear Voronoi diagram will
be either horizontal, vertical, or inclined at 45° or
135° to the positive direction of the x-axis [4,10].
This finding suggests using the rectilinear Voronoi
diagram for the 8-directional motion planning.

For time complexity considerations it is
necessary to know the properties of the Voronoi
diagrams and algorithms of their constructions.
Therefore, we will briefly summarise them in the
next paragraphs.

P c c
d c c d c cδ δ

⎧ ⎫⎪ ⎪′ ′ = ⎨ ⎬
≤ ≤⎪ ⎪⎩ ⎭

1

2

3 4

1’

4’

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 129

Fig. 6: Examples of the Euclidean and rectilinear
Voronoi diagrams

Assume that Voronoi diagrams are non

degenerate (no four or more of its Voronoi edges
have a common endpoint). Then the following is
satisfied [1,2]:
• Every vertex of a Voronoi diagram V(P) is a

common intersection of exactly three edges of
the diagram.

• A point q is a vertex of V(P) if and only if its
largest empty circle CP(q) contains three points
on its boundary.

• The bisector between points pi and pj defines an
edge of V(P) if and only if there is a point q such
that CP(q) contains both pi and pj on its boundary
but no other point.

• For any q in P, V(q) is convex.
• Voronoi diagram V(P) of P is planar.
• Polygon V(pi) is unbounded if and only if pi is a

point on the boundary of the convex hull of the
set P.

• The number of vertices in the Voronoi diagram
of a set of n point sites in the plane is at most
2n−5 and the number of edges is at most 3n−6.

The fundamental algorithms and their
modifications include the incremental algorithm,
random incremental algorithm, divide and conquer
algorithm and plane sweep algorithm (or Fortune’s

algorithm). More details can be found e.g. in
[1,2,3,6]. The time complexity of the incremental
algorithm is O(n2) in the worst case, and O(n log n)
for the other three algorithms.

4 Voronoi Diagrams with Obstacles
If a generator set of a Voronoi diagram represents
point obstacles and other obstacles are not present in
the plane, then the robot can walk along the edges of
the Voronoi diagram of P that define the possible
channels that maximise the distance to the obstacles,
except for the initial and final segments of the tour.
This allows us to reduce the robot motion problem
to a graph search problem: we define a subgraph of
the Voronoi diagram consisting of the edges that are
passable for the robot. However, some of the edges
of the Voronoi diagram may be impassable. Then
these edges must be omitted from the diagram.

Fig. 7: Voronoi diagram with redundant edges

For scenes with point, straight-line and

polygonal obstacles, the simplest way of finding
optimal trajectories is to compute ordinary Voronoi
diagrams for vertices of obstacles and then remove
those of its edges that intersect obstacles. We get
more precise solutions by approximating the

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 130

polygonal edges by line segments and then applying
the previous approach.

Fig. 8: Voronoi diagram for point, line and
polygonal obstacles

An implementation of this approach is described

in [12]. Using this program, we can determine the
number of line segments that approximate the edges
of polygonal obstacles and compute the final
Voronoi diagram with more precise edges. The last
two figures demonstrate the results. Fig. 7 and 8
show the Voronoi diagram for point, line and
polygonal obstacles with 20 edge segments before
and after removing redundant edges.

Fig. 9 shows the same situation as in Fig. 8, but
for a 40-line-segment approximation, and it also
includes the shortest path between two positions
along the Voronoi diagram edges.

This principle can also be used for rectilinear
Voronoi diagrams that build maps for 8-directional
robot motion planning.

5 Conclusions
In this paper, we compared cell decomposition and
roadmap methods with respect to their time

complexity and proposed applications of the
Voronoi diagrams to general and 8-directional
motion planning.

Fig. 9: Voronoi diagram-based path between two
positions

As algorithms for constructing the Voronoi
diagrams run in polynomial time, the number of
their edges is linearly dependent on the number of
obstacles and algorithms for searching the shortest
paths in graphs are polynomial, too. Since this holds
for all additional operations for finding a collision-
free path of a robot (replacements, extensions of the
rectangular obstacles), the overall time complexity
of all the algorithms proposed is polynomial. This
approach eliminates all the drawbacks of classical
methods (combinatorial explosion, low boundaries
for grid representation and generating many
infeasible solutions).

In the future, we will try to generalize this
approach for cases of more complex shapes of
obstacles and movable obstacles.

Acknowledgments
The results presented have been achieved using a
subsidy of the Ministry of Education, Youth and

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 131

Sports of the Czech Republic, research plan MSM
0021630518 "Simulation modelling of mechatronic
systems".

References:
[1] F. Aurenhammer, Voronoi Diagrams – A

Survey of a Fundamental Geometric Data
Structure, ACM Computing Surveys, Vol.23,
No.3, 1991, pp. 345-405.

[2] M. de Berg, M. van Kreveld, M. Overmars and
O. Schwarzkopf, Computational Geometry:
Algorithms and Applications, Springer-Verlag,
Berlin, 2000.

[3] S. Fortune, Voronoi Diagrams and Delaunay
Triangulations, in: D.A. Du and F.K. Hwang
(eds.), Euclidean Geometry and Computers,
World Scientific Publishing, Singapore, 1992,
pp. 193-233.

[4] S. Guha and I. Suzuki, Proximity Problems for
Points on a Rectilinear Plane with Rectangular
Obstacles, Algorithmica, Vol.17, 1997, pp.
281-307.

[5] M. Kruusmaa and J. Willemson, Covering the
Path Space: A Casebase Analysis for Mobile
Robot Path Planning, Knowledge-Based
Systems, Vol.16, 2003, pp. 235-242.

[6] S.M. LaValle, Planning Algorithms, University
Press, Cambridge, 2006.

[7] A. Okabe, B. Boots, K. Sugihara and S.N.
Chiu, Spatial Tessellations and Applications of
Voronoi Diagrams, John Wiley & Sons, New
York., 2000.

[8] M. Ruehl and H. Roth, Robot Motion Planning
by Approximation of Obstacles in
Configuration Space, 16th IFAC World
Congress, Prague, 2005, 6 pp., submitted.

[9] S. Russell and P. Norvig, Artificial
Intelligence: A Modern Approach, Prentice
Hall, New Jersey, 1995.

[10] M. Šeda, Rectilinear Voronoi Diagram-Based
Motion Planning in the Plane with Obstacles,
Elektronika (Poland), No. 8-9, 2004, pp. 24-26.

[11] K. Sugihara and J. Smith, Genetic Algorithms
for Adaptive Planning of Path and Trajectory of
a Mobile Robot in 2D Terrains, IEICE
Transactions on Information and Systems,
Vol.E82-D, No.1, 1999, pp. 309-317.

[12] P. Švec, Robot Motion Planning Using
Computational Geometry (in Czech), Ph.D.
Thesis. Brno University of Technology, 2005.

[13] A. Zilouchian and M. Jamshidi, Intelligent
Control Systems Using Soft Computing
Methodologies, CRC Press, Boca Raton, 2001.

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007 132

