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Abstract: - Multi sensor fusion is an important component of applications for systems that use correlated data from multiple sensors to 
determine the state of a system. As the state of the system being monitored and many sensors are affected by the environmental 
conditions changing with time, the multi sensor fusion requires a correlation-dependent approach. The behavior of this approach 
should vary according to the correlation parameter. In this paper, we compare our possibilistic correlation-dependent fusion approach 
(PCDF) with the possiblistic combiner Dempster-Shafer. We use time-series infrared images of landmines buried in different types of 
soil. 
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1 Introduction 
Multi image fusion has become an active field of 
research as more and more applications such as medical 
imaging, security, avionics, surveillance and night 
vision utilize multi sensor imaging arrays. Such arrays 
provide a wider spectral coverage and reliable 
information even in adverse environmental conditions 
at a price of a considerable increase in the amount of 
data. Image fusion deals with the data overload by 
combining visual information from multiple image 
signals into a single fused image. 

Detection techniques for buried low-metal landmines 
that are in development can be grouped into three main 
categories: (i) sensors that ‘see’ an image of the 
landmine through scattering, (ii) sensors that detect 
anomalies at the surface or in the soil, and (iii) sensors 
that detect the landmine explosives or chemicals that are 
associated with the explosives. Most if not all of these 
sensors are affected to some degree by soil conditions. 
There is a general agreement that no sensor can by itself 
be used to find landmines under all conditions. Data 
fusion techniques are used to combine the information 
from different sensors to increase the probability of 
detection and decrease the false-alarm rate. 
Most work on data fusion for landmine detection has 
involved data fusion at the decision level [2]. If the 
performance of the individual sensors is strongly 
correlated, then the sensor fusion algorithm may also 
need the correlation coefficients. 

As a practical matter, models of sensor performance do 
not seem to be accurate enough to directly provide this 
information. Given that soil properties can have a very 
large influence on the ROC curve associated with a 
particular sensor [15], we suggest incorporating 
information about the change in the soil properties 
conditions in the area under investigation into the data-
fusion process.  
In [12], L. Kuncheva et al. consider two main issues in 
designing cluster ensembles “separately”: (1) the design 
of the individual “clusterers” so that they form 
potentially an accurate ensemble, and (2) the way the 
outputs of the clusterers are combined to obtain the final 
partition, called the consensus function.  
In our new cluster ensemble methods (PCDF, 
Possibilistic Correlation-Dependent Fusion) [10, 11] the 
two issues are merged into a single design procedure, 
i.e., when one clusterer is added at a time and the overall 
fusion function is updated according to the correlation 
between the two images to be fused. It is seen that 
correlation between two consecutive MWIR images is 
related to the environmental changes (temperature, water 
content, texture, bulk density). 
 
2 Fusion Techniques  
Fusion techniques can be seen as a discriminant 
function, )(cF r

in image confidence space defined in 
such a way that: 

→≥ cassigntcF rr)( Object of Interest 
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→< cassigntcF rr)( Background 

where ],1[]1,0[),,...,,( 21 Riccccc iR ∈∀∈=
r

is an 
image output (confidence) vector with R the number of 
images and t the threshold. Image output vectors are 
defined only at locations where the images from co-
registration and where image data is present. 
The general layout of the image-fusion methods is 
shown in Figure 1. The input of each image-fusion 
method is a confidence level per grid cell.  

 
Figure .1. The generic image-fusion layout. 

 
The output of the fusion process is one for detection 
and zero for no detection per grid cell. Each of the 
methods scales the influence of each of the images in a 
different way.  
This mapping may remove the differences in 
definitions of the confidence levels. The mapped inputs 
are combined in a fusion function to acquire a single 
value per grid cell. The mapping functions and the 
fusion function are given in [1, 2, 3, 4]. 
 
3 The Dempster-Shafer Fusion Method 

For application of the Dempster-Shafer theory to image 
fusion, three inputs per image are needed: the probability 
mass assigned to an object of interest , the 
probability mass assigned to background

)(Mm
)(Mm , and the 

unassigned probability mass )( MMm ∪  . The sum of 
these masses always equals one, so there are only two 
independent masses ( and)(Mm )(Mm ). The mass 

represents a belief in an object of Interest, the 
mass 

)(Mm
)(Mm  represents the belief in background, and 

the mass )( MMm ∪ reflects the uncertainty of the 
image. Each image produces one confidence level at 
each sample location, which must be mapped onto the 
three required probability masses. This is done by using 
the uncertainty as an optimization parameter. 

The confidence levels for image  are mapped onto 
probability masses, using: 

i

iii cuMm )1()( −= (1) 

ii uMMm =∪ )(  (2) 

with  the mapping parameter and  the confidence 
level for image  . The probability masses for image 1, 
2,..,R  are combined using Dempster’s rule of 
combination:  

iu ic
i

)(*)()(*

))()(()(
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with the combined probability mass 

assigned to object of interest, and 

)(,...,2,1 Mm R

)(,...,2,1 MMm R ∪    
the combined uncertainty mass. The output of the 
Dempster-Shafer fusion function is given by the three 
combined probability mass assigned to an object of 
interest plus half the uncertainty: 

)()()( ,...,2,12
1

,...,2,1 MMmMmcF RR ∪+=
r

 (5) 
From the previous, we conclude that Dempster-shafer 
belief functions are assigned to independent sources of 
evidence and is known as a special case of possibilisty 
theory where correlation = 0 [8] and hence, it is not 
expected from this theory to have a good behavior in 
applications of high correlation data such as landmine 
detection.  In later sections, we will present our PCDF 
approach sensitive to correlation. 
 
4 The Possibilistic Correlation-
Dependent Fusion Methods 
We propose a general method for the fusion process, 
which can be used with image outputs that may exhibit 
any kind of (positive, neutral, or negative) correlation 
with each other. Our method is based on the concept of 
Triangular Norms, a multi-valued logic generalization 
of the Boolean intersection operator. With the 
intersections of multiple decisions one needs to account 
for possible correlation among the sources, to avoid 
under- or over-estimates. Here we explicitly account 
for this by the proper selection of a T-norm operator. 
We combine the outputs of the images by the 
generalized intersection operator (T-norm) that better 
represents the possible correlation between the images. 
This approach performs better for correlated satellite 
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images for environmental changes than the previous 
techniques [10-11]. 

The correlation affects the performance analysis [1]. 
The larger the correlation index, the larger the 
redundancy. In particular, the correlation index goes to 
zero if the individual incorrect answers are disjoint for 
all answers. In other words there is always at least one 
correct answer for any class. 
The ρ correlation coefficient [6] gets larger as the 
number of wrong answers is the same for many 
answers. Let be the number of experiments where 
all tools had a wrong answer, be the number of 
experiments with combinations of correct and incorrect 
answers; c is the combination of correct and incorrect 
answers; n is the number of tools. The correlation 
coefficient is then 

fN
c
iN

f

i

c
i

f

nNN

nN
n

+
=

∑
−

=

22

1

ρ (7) 

fN and  are computed using the correlation 
analysis matrix [5]. 

c
iN

In our work, we suggest a new decision-level fusion 
method based on possibilistic fusion for a better 
representation of the correlation among images. 
From the associativity of the T-norms, we can derive 
the associativity of the fusion by: 

)),(,((
)),,(()(

321

321

ccTNormcTNorm
cccTNormTNormcF ==

r

(8) 

with the confidence levels for three images 
and this equation (8) can be computed recursively for R 
images. For instance the operator 

321 ,, ccc

),,( αyxh  is CIVB 
(Context Independent Variable Behavior) whose 
behavior depends on the value of α [7].  
In our approach, we choose a suitable α  to have a 
fusion technique sensitive to correlation. 
1. Generalized T-Norm Family: 
• This family is increasing w.r.t. the parameterα  
• We choose α  such that ρα =  

10
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otherwise 
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2. Schweizer-Sklar T-Norm Family: 
•  This family is a decreasing family w.r.t. the 

parameterα  
•  We choose α  such that )/(1 ∞−= ρα  
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3. Frank T-Norm Family:  
•  This family is decreasing family w.r.t the 
parameterα  
•  We choose α  such that )1/(1 ρα −=  
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1
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4. Hamacher T-Norm Family:  
• This family increasing w.r.t. the parameterα  
• We choose α  such that )1/(1 ρα −=  
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otherwise 
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5 Experiments on Real data 

In the performance evaluation curve, the accuracy is 
compared to the correlation between different images of 
environmental changes. The images are acquired from 
http://apl-database.jrc.it/Home/sigdata.htm/ for landmine 
MWIR images in a sand lane, gravel lane, mixture lane. 
These data were collected at Meerdael (Belgium) 
minefields on 1st, 2nd and 3rd of April 1998 using 
mid-wave infrared cameras - AGEMA (3um-5um). 
These images are chosen to prove the efficiency of 
the algorithm and its usefulness in the landmine 
detection applications [9, 13]. The accuracy here is 
defined by comparing the actual image (priori 
knowledge) with the fused image. 
In order to create this comparison it is of extreme 
importance to have adequate simultaneous information 
on the detection rate over the entire diagram for the 
algorithm.  
The data used for performance evaluation: 
1. AGEMA MWIR image in a sand lane(referred to S 

row in table 1 ) acquired at date 01-04-1998 and 
times 21:34M and 22:04M  

       Computed Correlation = 0.65631 
2. AGEMA MWIR image in  a gravel lane (referred 

to G row in table 1 ) acquired at date 02-04-1998 
and times 20:49M and 21:23M 
Computed Correlation =  0.91762 

3. AGEMA MWIR image in  a mixture lane (referred 
to M row in table 1 ) acquired at date 03-04-1998 
and times 21:19M and 21:48M 
Computed Correlation = 0.94982 

 
Accuracy of  Techniques 
 

 D
A
T
A 

DS G S-S F H 

S ----- 0.93757 
 

0.93757 
 

0.93757 
 

0.93757 
 

G 0.89795 0.92569 
 

0.92569 
 

0.92569 
 

0.92569 
 

M 0.9317 
 

0.95358 
 

0.95358 
 

0.95358 
 

0.95358 
 

Table1. Accuracy gained by the Dempster Shafer 
technique and the different forms of the PCDF 

approach. The points (----) means that the algorithm 
fails to detect any of the object of interest. 
The following figures show the output fused images 
using Dempster-Shafer and the PCDF (the four T-Norm 
CIVB forms gave appropriate results here) 

 
Figure 2.The output fused image using Dempster-
Shafer  (sand lane) 
 

 
Figure 3.The output fused image using the PCDF (sand 
lane) 
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Figure 4.The output fused image using the Dempster 
Shafer (gravel lane) 

 
Figure 5.The output fused image using the PCDF 
(gravel lane) 

 
Figure 6.The output fused image using the Dempster 
Shafer (mixture lane) 
 

 
Figure 7.The output fused image using the PCDF 
(mixture lane) 
 
5 Conclusions  
We have proposed an approach based on possibility 
theory in this paper. The approach is based on 
computing the correlation among different images 
taken at different times to study the change of the 
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environment and use it as a parameter in four T-Norm 
Correlation-Dependent fusion techniques to handle the 
problem of high correlation by introducing the 
correlation parameter in the fusion process.  
 
6 Future Works 

In this paper, we presented two types of T-Norm 
families which are increasing and decreasing w.r.t. the 
parameterα  families. The behavior of the PCDF was 
the same when applied to time-series images of large 
changes of the environment (long periods of time 
proportional to the landscape acquired) while time-series 
images of small changes of the environment (short 
periods of time proportional to the landscape 
acquired)[11], the difference between both types of 
families is distinguished. For future work, we will focus 
on the comparison between decreasing and increasing T-
Norms families and the choice of the suitable form of the 
PCDF Method in the application to a particular problem. 
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