
A Conceptual Model for Business-Oriented Management of Web Services

Jyhjong Lin

Department of Information Management, Ming Chuan University
Kweishan, Taoyuan County, Taiwan 333

 Fax: 886-3-3593875

Abstract

Web services have been developed in recent years as a fundamental technique for the new generation of
business-to-business (B2B) or enterprise application integration (EAI) applications. As perceived, the current
development research about them is focusing on their underlying infrastructures such as SOAP, UDDI, WSDL, WSCL,
BPEL, BPML, and among others. However, once such technical issues get matured and more Web services become
available, the attention will naturally shift from deploying these services to managing them. From the perspective of
business management, this means that these services are monitored and controlled for fulfilling business objectives. In
this paper, we propose an object- oriented modeling approach that addresses this issue by dividing required
mechanisms into three layers: business objective, service agent, and service composition ones. With this architecture,
Web services are managed via the recognition of a business objective, the employment of a service agent that arranges
a composition of demanded Web services for achieving the objective, and the confirmation of interactions/
coordination among these services in achieving the objective. For specification, an object-oriented model is presented
for each layer that describes the working detail of that layer. To illustrate, these models are applied in the fulfillment
of a business travel plan that involves a set of business objectives to be achieved by various Web services offered by
different providers.

Keywords: Web service, business management, object-orientation, conceptual modeling

1 Introduction

Conceptual modeling is an important technique for
representing (part of) a complex situation in an abstract
manner with concise notations. It has been commonly used,
for example, in analyzing and specifying user requirements
of a computer-based application, as well as collecting and
representing information required for dealing with complex
technical and/or managerial issues to be resolved. In
general, conceptual modeling can be achieved by using
function-, data-, or object-oriented ways where the
development of object-oriented ones is motivated by the
drawbacks and problems in the other two kinds: the
significant features and benefits of object- oriented
approaches would make the resultant models more abstract
and hence easier to be understood, maintained, and reused.

For the rapid advances of Internet technologies in recent
years, Web services have been developed as a fundamental
technique for the new generation of business-to-business
(B2B) or enterprise application integration (EAI)
applications. As perceived, the current development
research about them is focusing on their underlying
infrastructures such as XML [1,2], SOAP [3], UDDI [4],
WSDL [5], WSCL [6], BPEL [7], BPML [8], and among
others. However, once such technical issues get matured
and more Web services become available, the attention will
naturally shift from deploying these services to managing
them. From the perspective of business management, this
means that these services are monitored and controlled for
ensuring the fulfillment of a business objective (or goal
used interchangeably in the literature [9]).

In our knowledge, this managerial issue is needed in
order to specifically deal with such a dynamic and
changeable environment on the business/Internet
nowadays. As stated above, in order to address this
complex issue with an abstract conceptual modeling
mechanism, it is not uncommon to think of the
powerful object- oriented paradigm that possesses
such features as encapsulation of an object’s specifics
and interacted/coordinated nature of its behaviors
with other objects; these features make an
object-oriented approach easier to be configured for
an extensive support of addressing this issue. To
account for this, we propose in this paper such an
object-oriented method for modeling and
specification of the business management issue of
Web services.

As clarified in [10], business management of Web
services refers to what service clients really care about
that includes the recognition of a business objective
and how the objective is specified and achieved by
required Web services under a commitment mechanism
(i.e., engaging the achievement of these objectives
through the executions of these Web services). A
traditional way to deal with these needs includes
specifying/directing the executions of these services
with such languages as BPEL [7] and WSCL [6], and
then mapping the execution effects into meaningful
metric values that are inspected for checking the
satisfaction of the business objective. As one may see,
this approach does not address on the mapping with a
holistic manner from what objective is expected to how

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 80

services collaborate to support it; instead, focus is put by an
ad hoc code that maps the execution descriptions into
business metrics.

For this limitation, the authors in [10] proposed a
systematic approach with both a metric model that
describes business expectations (i.e., objectives) and a
service model that depicts how Web services collaborate to
achieve these expectations. Although this approach
supports well a holistic mapping between business- level
expectations and service-level collaborations, it has still
some deficiencies: (1) its service model is based on BPEL
that describes how services collaborate, e.g., being
composed and interacted with each other, in a rather
statically structured manner such that the compositions and
interactions among services cannot be easily
extended/modified for reusing these services in achieving
various but related business objectives; and (2) similarly, its
metric model for describing business objectives is specified
structurally such that the possible relationships, e.g.,
extensions, combinations, and associations, among business
objectives cannot be easily maintained for reusing these
objectives in dealing with different business situations; in
our view, making these relationships maintainable would
specifically benefit for keeping an enterprise competitive by
easy adjustment, e.g., extensions or modifications, of her
business objectives to respond to the dynamic and
changeable business environment nowadays. To overcome
these limitations, our approach takes advantage of the
object-oriented paradigm, together with the use of visual
notations and formal mechanisms, to specify business-level
objectives and their corresponding service-level
collaborations. It employs three layers of constructs:
business objective, service agent, and service composition
ones; with this architecture, the business management of
Web services for an enterprise is accomplished by
recognizing a set of related business objectives where each
objective is engaged by a service agent that arranges a
composition of Web services offered by various providers
for achieving the objective. For specification, an
object-oriented model is presented for each layer that
describes the working detail of that layer: (1) a business
objective model that specifies the desired business
objectives and their relationships; (2) a service agent model
that presents the agents responsible for these objectives and
the compositions of Web services these agents arrange for
achieving these objectives; and (3) a service composition
model that describes the compositions and interactions
among those Web services within a composition.

With these three models, our specifications start from a
higher-level of business objective descriptions and end at a
lower-level of Web service compositions. It should be
particularly noted that our service composition model
imposes formal constructs based on Petri nets [11-13] such
that verification of objectives-compliance of the service
compositions can be conducted; we believe this formality is
very important for the purpose of business management,
since what service clients really care about is the
achievement of objectives by demanded Web services.

For illustration, the three models are applied in the
fulfillment of a business travel plan that involves a set
of business objectives to be achieved by various Web
services offered by different providers.

This paper is organized as follows. Section 2
overviews the background and motivation of the
proposed approach. Section 3 presents the three models
in the approach. Finally, section 4 has the conclusions
and future work.

2 Background and motivation

For an open environment as on the Internet, any
business objective that requires Web services offered
by different providers needs to be monitored and
controlled for ensuring its fulfillment. For the
specification of this issue, some approaches have been
proposed as those stated in [10] and the discussions
about their limitations have already been presented in
the previous section. To address these limitations, the
author in [14] proposed a ‘Web Service
Componentization’ concept that describes in a
(object-oriented) class definition what a service
composition comprises and how its constituent Web
services interact with each other such that the
interactions and compositions of these services can be
easily amended via reuse and specialization for reusing
these services in achieving different business
objectives. In general, based on its object-oriented
structures, this concept provides a sound mechanism
for easy maintenance of the specification of a service
composition. Nonetheless, by using a textual
representation for specifying only the structural aspect
of the composition, it lacks a visual formalism for
specifying and verifying its dynamic aspect such as
how constituent services collaborate and how they
satisfy desired objectives; as commonly recognized,
however, such a visual formalism for behavioral
specification and verification is a critical conduit for
comprehension and reasoning about the composition.

In addition to the issue about service-level
compositions, for the purpose of business management,
the specification of business-level objectives that
provides a systematic mapping between objectives and
compositions is also needed such that what (how)
different objectives are achieved by what (how)
different services, and vice versa, can be easily
captured. Explicitly, this would help an enterprise in
keeping competitive by proposing critical objectives
and monitoring their accomplishments via demanded
Web services. As stated in the previous section, the
approach in [10] specifically addresses this issue by
employing a metric model that provides a holistic view
between objectives and services. However, from our
observation, its metric model is rather statically
structured such that the possible relationships, e.g.,
extensions, combinations, and associations, among
different objectives cannot be easily maintained in order

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 81

to reusing these objectives in dealing with different
business situations; this would still make it difficult to
adjust, e.g., extensions or modifications, these objectives to
respond to the dynamic and changeable business
environment nowadays (note that many existing approaches
that describe business/software objectives such as those
surveyed in [9] actually suffer from the same limitations).

Our method is proposed to supplement the abovementioned
deficiencies in current approaches by providing a visual
formalism for easy specification and maintenance of
business objectives and their corresponding service
compositions. In order to deal with the complexity of
required mechanisms, it supports the specification in a
top-down fashion. As results, a higher-level business
objective model is created first that describes desired
business objectives and their possible relationships without
considering detailed specification. That is, the detailed
specification via service agent and service composition
models starts after all related business objectives have been
described in an abstract level. We think this provides better
understanding about critical objectives before proceeding
too early to formally specify their accomplishments using
some complex notations. Finally, due to its formal
semantics of the service composition model, behavioral
verification of satisfying the desired objectives can be
conducted via formal analysis of the model [15]. Note that
due to its enhanced modeling constructs for an extensive
support of the objective, agent, and composition issues, our
object-oriented model is different from other existing ones,
including the most well-known UML [16-18]. Although
these models can also be modified/extended to support the
same specification as ours does, for space limitations, we
do not address herein how such modifications/extensions
may be conducted.

3 Modeling constructs

The modeling constructs of our approach include three
models: (1) a business objective model that specifies the
desired business objectives for an enterprise and their
possible relationships; (2) a service agent model that
presents the agents responsible for these objectives and the
compositions of Web services they arrange for achieving
these objectives; and (3) a service composition model that
describes the compositions and interactions among those
Web services within a composition.

3.1 The business objective model

In the literature, many classifications for objectives have
been proposed as those discussed in [9] where a distinct is
made between soft (non-functional) ones whose satisfaction
cannot be established in a clear-cut sense and hard
(functional) ones whose satisfaction can be established
through verification techniques. Among other types of
classification, in our knowledge, this distinct is most often
referenced such that our model focuses on the specification
of business objectives with soft and hard object types
(classes).

Figure 1 shows an example model that specifies by
proper object types a ‘travel plan’ objective that is
extended as ‘recommended’ and ‘un-recommended’
ones: to say, a customer would enjoy a planned travel
either through a computer- recommended process:
recommending possible travel plans, evaluating these
recommended plans, booking a selected travel plan,
and finally giving suggestions after the travel, or
through a self-organized process: booking directly a
preferred travel plan and then giving suggestions after
the travel. In these two processes, however, keeping
flexibility on recommending the possible travel plans
and booking a travel plan (i.e., adjusts those plans
recommended and/or booked) is an enhanced objective
for making the customer more satisfied. As shown in
the figure, a (soft or hard) objective object is specified
with (1) attributes such as objective priority and scope;
(2) extensions into more specialized sub-types or
compositions with AND/OR/XOR constituent objects
[19,20]; and (3) associations with other objective
objects [21] such as ‘sequential’ that denotes an
achievement sequence from source to destination, and
‘contribute’ that denotes the contribution of an
achievement for source toward that for destination.
Further, it is noticed that an object that is composed of
one or more constituent soft objects is specifically
classified as a soft one. This is because an objective
that is composed of one or more constituent soft
sub-objectives should be classified as a soft one due to
its satisfaction depending on those of these constituent
sub-objectives.

3.2 The service agent model

With a business objective model, the service agent
model is used to specify more detail about the desired
agents that arranges demanded Web services for
achieving those objectives specified (note that the
reader is referred to [22-24] for employing agents for
the achievement of objectives). Its description includes
the compositions of Web services these agents arrange
and how these services may participate in achieving
various objectives (i.e., a Web service may be
demanded for achieving more than one objective). The
modeling constructs of the service agent model include
four kinds of object type: soft/ hard objective, agent,
and service ones. In particular, each agent object is
specified for realizing a desired agent that arranges a
composition of Web services for achieving a soft/hard
objective; its specification includes a name, required
properties (e.g., the effective period of its
responsibility), and a set of public interface operations
that are purposed for engaging the achievement of the
objective through invoking the operations of its
constituent service objects (that is, in our means, the
execution of each interface operation would result in
those of its constituent service operations that
collaboratively produce a final result as the output of the
interface operation).

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 82

In turn, each constituent service object is specified for
modeling a Web service demanded for achieving an
objective with a description about its provider, port type
exposed, and associated operations.

As shown in Figure 2, two agents are identified that are
responsible for achieving respectively the two
‘planRecommendation’ and ‘planFlexibility’ sub-
objectives under the ‘travel plan’ one identified in Figure
1. Specifically, the ‘recommendation’ agent object is
specified with an ‘effective-period’ property and two
interface operations, ‘recommendplan(in: cond; out:
plan)’ and ‘adjustplan(in: cond, plan; out: plan)’ for

achieving the ‘planRecommendation’ sub-objective. For
the ‘recommendplan(..)’ operation, in particular, its
‘cond’ input parameter is received at the start of its
execution that in turn invokes some operations of the
four constituent service objects; its ‘plan’ output
parameter results at the end of its execution from the
executions of those constituent operations invoked. The
specification of how those constituent operations
invoked collaborate to get the ‘plan’ output parameter
produced will be presented in the service composition
model below.

3.3 The service composition model

With a service agent model, the service composition
model is finally used to present in detail how the
operations of a service agent engage the achievement
of an objective by invoking those of its constituent
service objects that collaborate through various
sequences, e.g., sequential, alternative, and exclusive.
In general, its modeling constructs are based on Petri
nets [11-13] with a set of (normal/ control) transitions
and places. Normal transitions specify the operations
that are executed for achieving desired objectives,
while control transitions impose the control flows for
those executions of normal transitions. Likewise, places
are divided into two kinds: normal places that hold
entity objects for the executions of transitions, and
control places that hold control objects for controlling
the executions of transitions. Each transition is
specified with a name, a set of interaction places that
its execution accesses, and a pre/post- condition that its
execution satisfies. With this specification, a transition
is executable if and only if each of its input places
contains an object that together makes its pre-condition
true. Once executed, objects in its input places are
consumed by the transition, and objects in its output
places are produced that make its post-condition true.

.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 83

In Figure 3, a service composition model is presented
that describes in detail how the executions of the two
interface operations, ‘recommendplan(..)’ and
‘adjustplan(..)’, of the ‘recommendation’ agent object
result in those of the operations of four constituent
service objects. As shown in the figure, at the start of the
execution of the ‘recommendplan(..)’ operation, some
predefined conditions, contained in a ‘cond’ entity
object, are input and then forwarded to the ‘collect()’
constituent service operation that bases on these
conditions to collect desired travel information into a
‘info’ entity object; the info. is then transmitted to the
‘organize()’ operation for organizing adequate travel
plans into a ‘plans’ entity object; finally, the
‘recommend()’ operation evaluates these organized
plans and recommends some suitable ones in a ‘plan’
entity object that is forwarded as the output at the end of
the execution of the ‘recommendplan(..)’ operation.

Thereafter, once some travel plans are recommended, it
is however possibly needed to adjust these plans due to
some conditions changed. Hence, the ‘adjustplan(..)’
operation is then executed in case some new conditions
in another ‘cond’ entity object are provided. In this
situation, the start of the execution results in the
execution of either the ‘collect()’ constituent service
operation for re-recommending some new travel plans or
the ‘adjust()’ operation for simply adjusting those
recommended plans. It is noticed that the two alternative
paths are controlled via the access of a ‘exclusive’
control object by these two operations; in addition, for
the two sets of resultant plans from these two paths, only
one of them is actually available, via the alternative
access of a ‘alternative’ control object by the two
behavioral control operations, ‘enabler()’ and ‘enablea()’,

as the output at the end of the execution of the
‘adjustplan(..)’ operation. Finally, with the service
composition model, one may see that since the model is
based on Petri nets, its formal semantics can then be
applied for behavioral verification of how the two
interface operations of the ‘recommendation’ agent
object engage the achievement of the
‘planRecommendation’ sub- objective by various
collaborations of the four constituent service
operations (e.g., their input/output is consistently
forwarded to/eventually derivable from the service
composition). This can be achieved via decision
procedures that traverse the reachability graph derived
from the service composition. The reader is referred to
[15] for more detail about this issue.

4 Conclusions

Software requirements specification is a key activity in
developing a computer-based application. Motivated
by the problems in other methods, OO specification
methods are developed in order to produce software
more understandable and maintainable. The method
proposed in this paper is based on the object-oriented
paradigm for formal specification about business
management of Web services. In order to deal with the
modeling complexity for the achievement of business
objectives by demanded Web services, business
objectives, service agents, and Web services are
identified and specified in a top-down fashion. As
results, a higher-level business objective model is
created first that describes effectively desired business
objectives and their possible relationships without
considering detailed specification. That is, the detailed
specification with service agent and composition models

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 84

starts after all of related business objectives have been
described in an abstract level. We think this provides
better understanding about desired business objectives
before proceeding too early to formally specify their
achievement using some complex notations. Finally, due
to its formal semantics of the service composition model,
behavioral verification of satisfying those desired
objectives can be conducted via formal analysis of the
model.

The work for business management of Web services has
already become a new discussion. Although some
researches about it have been done, but none of them
provides a complete mechanism for supporting all about
a holistic view between objectives and Web services, a
flexible reusing of these objectives and services, and a
visual formalism for their specification. Our method
presented herein provides an effort on these issues by
using object-oriented visual models for specifying
business objectives and their possible extensions and/or
constituents, employing service agents for engaging the
achievement of these objectives, and imposing verifiable
service compositions for achieving these objectives
under the arrangement of these service agents. In our
knowledge, these models are much helpful for
identifying and specifying those important requirements
about business objectives and their achievement by
demanded Web services.

As the technical issues about Web services are getting
rapidly matured in these years, more Web services are
expected to be available in the near future and hence a
comprehensive mechanism for full supports of their
business management will certainly become much more
desirable. Thus, the development of such a mechanism is
a desired field. In our view, using object-oriented
techniques together with sound modeling constructs is a
promising approach for an effective construction of the
mechanism. In our future work, we will explore further
some other key issues that our models have not
addressed yet, including effective registration and
selection of Web services before creating a business
level agreement for Web services, and desired
manipulations (e.g., create, delegate, assign, cancel, and
release) on the agreement during its lifecycle. As stated
in [25,26], these issues are critical for keeping an
agreement flexible to achieve managerial purposes.
Therefore, how to specify them by using our models’
constructs will be carefully explored. Meanwhile, we
will construct a tool to facilitate practical application of
our models. These include a design environment for
building the abstract business objective model and then
deriving the detailed service agent and composition
models. The specification method presented in section 4
will be integrated with the tool when constructing the
three models.

References

[1] Extensible Markup Language (XML), http://www.w3.org/

TR/xml11.

[2] C. Goldfarb and P. Prescod, The XML Handbook,
Prentice-Hall, 1998.

[3] SOAP, http://www.w3.org/2002/ws.
[4] UDDI, http://www.ibm.com/services/uddi/ standard.html.
[5] WSDL, http://www.w3.org/TR/wsdl.
[6] A. Banerji, et al., Web Services Conversion Language

(WSCL) 1.0, W3C note, March 2002.
[7] T. Andrews, et al., Business Process Execution Language

for Web Services (BPEL) 1.1, May 2003.
[8] BPML, http://www.bpmi.org.
[9] A. Lamsweerde, “Goal-Oriented Requirements Eng.: A

Guided Tour,” Proc. of 5th IEEE Int’l Conf. on
Requirements Engineering, Aug. 2001, pp. 249-262.

[10] F. Casati, et al., “Business-Oriented Management of
Web Services,” CACM, vol. 46, Oct. 2003, pp. 55-60.

[11] J. Peterson, “Petri Nets,” ACM Computer Surveys, vol.
9, no. 3, Sep. 1977, pp. 223-252.

[12] J. Peterson, Petri Net Theory and The Modeling of
Systems, Prentice-Hall, 1981.

[13] E. Yiannis and L. Thomas, “Specification and Analysis
of Parallel/Distributed Software and Systems by Petri
Nets with Transition Enabling Function,” IEEE TSE,
vol. 18, March 1992, pp. 252-261.

[14] J. Yang, “Web Service Componentization,” CACM, vol.
46, no. 10, Oct. 2003, pp. 35-40.

[15] J. Lin, et al., “Object-Oriented Specification and Formal
Verification of Real-Time Systems,” Annals of Software
Engineering, 1996, vol. 2, pp. 161-198.

[16] G. Booch, et al., The Unified Modeling Language User
Guide, Addison Wesley, 1999.

[17] M. Fowler and K. Scott, UML Distilled: Applying the
Standard Object Modeling Language, Second Edition,
Addison Wesley, 2000.

[18] J. Rumbaugh, et al., The Unified Modeling Language
Reference Manual, Addison Wesley, 1999.

[19] A. Dardenne, et al., “Goal-Directed Concept
Acquisition in Requirements Elicitation,” Proc. of 6th
Int’l Workshop on Soft. Spec. and Design, 1991, pp.
14-21.

[20] A. Dardenne, et al., “Goal-Directed Requirements
Acquisition,” Science of Computer Programming, vol.
20, 1993, pp. 3-50.

[21] R. Darimont, et al., “GRAIL/KAOS: An Environment
for Goal-Driven Requirements Engineering,” Proc. of
20th Int’l Conference on Soft. Eng., April 1998, vol. 2,
pp. 58-62.

[22] A. van Lamsweerde, et al., “Managing Conflicts in
Goal-Driven Requirements Engineering,” IEEE Trans.
on Software Engineering, Nov. 1998.

[23] A. van Lamsweerde and L. Willemet, “Inferring
Declarative Requirements Specifications from
Operational Scenarios,” IEEE Trans. on Software
Engineering, Dec. 1998, pp. 1089-1114.

[24] E. Letier and A. van Lamsweerde, “Agent-Based Tactics
for Goal-Oriented Requirements Elaboration,” in Proc.
of 24th Int’l Conf. on Software Engineering, May 2002.

[25] K. Jain, et al., “Agents for Process Coherence in Virtual
Enterprises,” Communications of the ACM, vol. 42, no.
3, March 1999, pp. 62-69.

[26] K. Jain and M. Singh, “Using Spheres of Commitment
to Support Virtual Enterprises,” in Proc. of 4th ISPE
International Conference on Concurrent Engineering:
Research and Applications (CE), International Society
for Productivity Enhancements (ISPE), Aug. 1997, pp.
469-476.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 85

