
An Architecture for Web-based DSS

Huabin Chen a) , Xiaodong Zhang
 b) , Tianhe Chi a)

a) Institute of Remote Sensing Applications, Chinese Academy of Sciences
b)
 Corresponding Author, School of Information and Electrical Engineering, China

Agricultural University

P.O. Box 698, Beijing 100083, China

E-mail: zhangxd@cau.edu.cn

Abstract: As the web platform continues to mature, we see an increasing number of amazing technologies that

take DSS (Decision Support Systems) to new levels of power and usability. By integrating new powerful

technologies into DSS, we get higher performance results with additional functionalities. The most recent

development capturing the attention of the browser based application developers are Web Service, Struts and

AJAX (Asynchronous JavaScript and XML). In this paper we present a generic and performance efficient

architeture for integrating Web Services, Struts and AJAX models into the Web-based DSS.

Key-Words: DSS, Web-based, AJAX, Web Services, Struts, MVC

1 Introduction
Information systems researchers and technologists

have built and investigated DSS for more than 35

years [1]. Beginning with building model-oriented

DSS in the late 1960s, theory developments in the

1970s, and the implementation of financial planning

systems and Group DSS in the early and mid 80s,

during the mid-1980s we have proposed and

implemented Intelligent DSS through combining

knowledge system with DSS. Now, the

implementation of Web-based DSS in the mid-1990s

became active topics and made influence widely.

 Web-based DSS mean computerized systems that

deliver decision support information or decision

support tools to a manager, business analyst, or

customer using a “thin-client” web browser like

Netscape Navigator or Internet Explorer. The

computer server that is hosting the DSS application is

linked to the user’s computer by a network using the

Transmission Control Protocol/Internet Protocol

(TCP/IP) and the entire application is implemented

using web technologies. A few years before, Web

technologies like HTML and JSP had been used to

implement any category or type of DSS

(communications-driven, model-driven, data-driven,

document-driven, knowledge-driven or a hybrid), but

the user interface was substandard compared to

client-server systems and integration of the

applications with database and sophisticated

modeling software was limited [2].

 Those problems have been overcome by some

new web technologies. This article focuses on how to

use new web technologies to build Web-based DSS

with high retractility, reusability and easy

maintaining.

2 Key Web Technologies
Effective decision-making requires the integration of

knowledge, data, simulation models, and expert

judgment to solve practical problems and provide a

scientific basis for decision-making. User-friendly

decision support tools are needed to help different

stakeholder groups develop, understand, evaluate and

share alternative management strategies. The tools

should integrate a suite of components consisting of

database management systems, other systems like

geographic information systems, simulation models,

decision models, and user-friendly interfaces that

could then be available to different stakeholder

groups. Here we propose to adopt some new

technologies listed below to improve the system

integration, and user-friendly interfaces of

Web-based DSS.

2.1 Web Services
Web Services [3] define a platform-independent

standard based on XML to communicate within

distributed systems. They are loosely coupled and

allow short-term cooperation between services. The

main protocol defining the kind of communication to

a Web Service is SOAP (Simple Object Access

Protocol).

2.2 Struts
Struts [4], which utilizes the Model-View-Controller

(MVC) model 2, is a free open-source framework for

creating Java web applications. The Model represents

the business or database code, the View represents

the page design code, and the Controller represents

the navigational code. Since the framework separate

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 75

database code, page design code, and control flow

code, larger applications become easy to maintain

and extend. Struts works well with nouveau

technologies like AJAX and Web Services.

2.2 AJAX
AJAX [5] is an important web development model

for the browser based web applications. It uses the

JavaScript XMLHttpRequest function to create a

tunnel from the client's browser to the server and

transmit information back and forth without having

to refresh the page. This is meant to increase the web

page's interactivity, speed, and usability. AJAX uses

XHTML for the data presentation of the view layer,

DOM, short for Document Object Model, which

dynamically manipulates the presentation, XML for

data exchange, and XMLHttpRequest as the

exchange engine that ties everything together. The

data travels in XML format because it transmits

complex data types over clear text. High performance

Google Maps [6] is the best-known application which

uses this new powerful browser based application

model.

Since Struts, AJAX and Web Services are all XML

based structures they are able to leverage each others

strength. The new Web technologies provide a great

opportunity for sharing information and applications

with decision makers.

3 Designing and Developing Web-based DSS
Fig.1 helps to illustrate our architecture from a

high-level point of view. Based on the three-layer

architecture which is the most common web

application architecture, we firstly divide the whole

system into three parts: the Presentation Layer, the

Business Logic Layer and the Data Persistence

Layer. And then we adopt new technologies

motioned above to improve the system architecture.

 The Presentation Layer is basically the GUI

(Graphic User Interface) and all of the components

associated with the interface. At this layer the data is

given a presentation structure that the browser will be

able to display. The Business Logic Layer

implements the domain specific business processes

and rules as well as deals with managing the model

computing services and authorization. The Data

Persistence Layer comprises all the persistent data

stores and the data access middleware. For example,

it not only encompasses a relational database, files, or

XML documents, but also contains the class library

used to visit data such as JDBC (Java Database

Connectivity).

Presentation Layer

Business Logic Layer

Data Persistence

Layer

Browser

Web Server

Application Server

Database

Data Access Middleware

Files

Fig.1 Three-layer architecture

3.1 Web Services in the Business Logic

Layer
In the Business Logic Layer, we propose to adopt

Web Services technologies (see Fig.2). A new

Services Container is added. Also we can name the

container as domain services layer. Separating this

layer makes our code more reusable and easier to test.

With Unit Testing tools, we can easily test code in the

domain services layer independently and

automatically. When applying this architecture, for

easier to manage/test code in this layer and to

decouple the web presentation layer from this layer, it

is suggested to design services with interfaces.

Fig.2 Web Services in the Business Logic Layer

 Comparing Fig.2 with Fig.1, we can see the

differences are three new components Service

Interfaces Definitions, Service Implementations and

are Service Factory added. Service Interfaces

Definitions are the interfaces of analytical services

we want to provide in our DSS. Service

Implementations are the codes of implementing the

service interfaces. Service Factory is a factory used to

produce services, we can pass the service interface to

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 76

it and it returns one specific service interface

implementation.

 As we can see in Figure 2, the web application

only depends on the Service Factory and the Service

Interfaces Definitions, which means we can use

inversion of control to configure services

implementations in configuration file (web.xml/

web.config), and Service Factory will discover and

load these implementations at runtime and return to

web presentation layer. This kind of design

decouples the web application layer from the service

implementations so that DSS services can be

developed synchronously and independently.

Extending DSS analytical tools become easier.

3.2 Struts: Connect the Presentation Layer

and the Business Logic Layer
The MVC pattern is the most popular design pattern

to design and implement the three-layer architecture.

Struts which we add in the system framework here is

one of the most widely used web MVC frameworks

in Java. Fig.3 shows a Controller Layer added

between the Presentation Layer and the Business

Logic Layer. Also we adopt AJAX in the

Presentation Layer.

Fig.3 The architecture after Struts added

 The Controller Layer is composed of

ActionServlet, ActionClass and ActionMapping.

ActionServlet, which plays the role of controller, is a

servlet that maps events (an event generated by

XMLHttpRequest here) to classes. All the requests to

the server go through ActionServlet. When an event

incomes, the servlet container turns it into an

HttpServletRequest. The ActionServlet looks at the

incoming event and dispatches the request to an

ActionClass according to a configuration file in XML

(named struts-config.xml). The struts-config.xml

determines what ActionClass the Controller calls.

The struts-config.xml configuration information is

translated into a set of ActionMapping, which are put

into container of ActionMappings (a collection of

ActionMapping objects).The ActionMapping

contains the knowledge of how a specific event maps

to specific Actions. The ActionServlet passes the

ActionMapping to the ActionClass via the perform()

method.The ActionClass is a model wrapper around

the business logic. The purpose of ActionClass is to

translate the HttpServletRequest to the business

logic. To use the Action, we subclass and overwrite

the execute() method.

 Each ActionClass maps to a distinct process. The

ActionClass calls the relevant methods in the Sevices

Container to make use of a Web Service. The Sevices

Container gets the required response or an exception

if one is raised, and passes it back to the ActionClass.

The ActionClass can either process the result and

forward the response to the XMLHttpRequest or call

the relevant model service to perform further

processing.

 The model computing service of DSS is

implemented as a set of Java classes named Service

Implementation in Fig.3 and should not contain any

View-related code. Each model service component

will offer a set of services, and the components

collectively offer a set of common services as well. In

the course of processing, the ActionClass can call the

required methods in the relevant model service

components. These components pass the required

data to the model service, and the model service

performs any necessary business logic processing

and retrieves any necessary data from the Data

Persistent Layer.

3.3 AJAX Model: A Rich Client Interface
User interface is important in a Web development

environment, and it probably becomes more

important because so many users of various levels of

sophistication can potentially access some or all DSS

capabilities. The three-layer architecture we

mentioned above is essential for collaborative or

centrally coordinated DSS, but they raise the specter

of network latency, with its ability to break the spell

of user productivity. Although a general purpose

solution to the conflict between the two exists in

asynchronous remote event handling, the traditional

request-response model of the classic web

application is ill suited to benefit from it.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 77

 We’ve found some key characteristics of the

browser of DSS different from what traditional Web

applications represent. Firstly, the DSS browser hosts

an application, not content. Secondly, the DSS server

delivers data, not content. Thirdly, the DSS user

interacts continuously with the application, and most

requests to the server are implicit rather than explicit.

Finally, the Presentation Layer’s code lib is large,

complex, and well structured and we have to take

good care of it.

 Due to these issues, we adopt AJAX in our

Web-based DSS by writing custom JavaScript codes

that directly use the XMLHpptRequest protocol’s

API. AJAX gives expression to a lot of unrealized

potential in the web browser technologies. Google

and a few other major players are using AJAX to

raise the expectations of the general public as to what

a web application can do. AJAX isn’t a single

technology. Rather, it’s a collection of four

technologies JavaScript, CSS (Cascading Style

Sheets), DOM (Document object Model) and

XMLHttpRequest that complement one another.

Fig.4 The four main components of AJAX

 Our AJAX typically sit at the end of this chain,

acting as client only, so we can treat the entire

three-layer system as a single black box labeled

“Server” for the purposes of our current discussion.

Fig.4 shows how the technologies fit together in

AJAX. JavaScript defines business rules and

program flow. The DOM and CSS allow the

application to reorganize its appearance in response

to data fetched in the background from the server by

the XMLHttpRequest object or its close cousins.

Fig.5 Visualization on the browser by AJAX

 Fig.5 illustrates a variety of possibilities for the

visualization of DSS user interface in the

Presentation Layer. With a map as background, we

draw isolines dynamically on the browser to visualize

the direction and strength of pollution diffusion

between different times.

4 Advantages and Disadvantages
The architecture we proposed above based on MVC

allows us to interact with all the features of the

application without knowing how the different

components interact. Applying the approach to DSS

development allows us to take advantage of many

well-known merits such as flexibility in the system,

easy maintenance and upgrade, reducing the

development cycle time by reusing existing

components.

 Web Services technologies provide a

language-neutral, environment-neutral programming

model that accelerates application integration inside

and outside the DSS. Application integration through

Web Services yields flexible loosely coupled DSS.

Because Web Services are easily applied as a

wrappering technology around existing applications

and information technology assets, new model and

analytical tools can be deployed quickly and

recomposed to address new opportunities. As

adoption of Web Services accelerates, the pool of

analytical services will grow, fostering development

of more dynamic models of just-in-time application

integration over the Internet.

 By using AJAX in DSS, we can keep all of the

visualization functionality in browser area without

having to request server a new page. There will be no

history pages, since we never left the page. Ajax

meets a need in the DSS for richer, more responsive

web-based clients that don’t need any local

installation.

 There are also drawbacks in the architecture. First

of all, it increases complexity of the system

development. Secondly, perfect decoupling of every

layer is almost impossible. Some changes which

happen in the parameter structure and formats may

ignite the changes in the Business Logic Layer and

the Presentation Layer. Finally, the AJAX model is

not platform-independent. We have to be careful of

the coding and implementation differences between

different web browsers.

5 Conclusion
Simply making an existing DSS accessible by using a

Web browser to stakeholders will often lead to

unsatisfactory results. Systematic development

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 78

approaches must be explicitly chosen. In our

proposed architecture design implementation, we

extend the common three-layer architecture and

modified the framework of Struts. But we don’t

change the technologies in the AJAX model and Web

Services. By using the same theoretical standards, we

can integrate more DSS analytical tools into our

existed systems.

6 Acknowledgements
This work is supported by the Institute of Remote

Sensing Applications, Chinese Academy of Sciences

and school of Information and Electrical Engineering,

China Agricultural University.

References:

[1] Power, D.J., A Brief History of Decision Support

Systems, DSSResources.COM, World Wide Web,

http://DSSResources.COM/history/dsshistory.ht

ml, version 2.8, 2003

[2] Power, D.J., S. Kaparthi, Buliding Web-based

Decision Support Systems, Studies in Informatics

and Control, Vol.11, No.4, 2002, pp. 291-302.

[3] Gottschalk, Introduction to Web services

architecture, http://www.research.ibm.com/journ

al/sj/412/gottschalk.pdf

[4] http://struts.apache.org/

[5] Rob Gonda, AJAX World Magazine Special

Feature: What Is AJAX?, http://cfdj.sys-con.com

/read/138966.htm, 2006

[6] http://maps.google.com

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 79

