
Effective Software Management– Where Do We Falter?

SYED JAWAD HUSSAIN1

 KHALID RASHID1

 H. FAROOQ AHMAD2

SYED FAWAD HUSSAIN3

Department of Computer Science, Faculty of Applied Science
International Islamic University

Sector H-10, Islamabad

PAKISTAN1

NUST Institute of Information Technology
National University of Science and Technology

Rawalpindi
PAKISTAN2

Laboratoire TIMC-IMAG
Institute Nationale Polytechnique

Grenoble
FRANCE3

Abstract

Construction industry has been performing better than the software industry in delivering project on
time and within budget. A comparative study is presented that shows the difference in development
methodologies in the two industries. A new software development methodology is proposed that
borrows some concepts from the design-bid-build strategy of the construction industry and merges it
with the iterative nature of software intensive development.

1. Introduction
Software industry suffers from an alarming
rate of project failure. As low as 12 percent of
the total projects get completed on time, within
budget and with the required functionalities
[3]. Several of the projects are destined for
failure right from the day they are started. The
question is where do we falter? After 40 years
of software development, we still haven’t
reached the level of maturity and confidence
[7]. The high rate of failure and the causes of
failure have been identified on numerous
occasions [8], [9], [13], [14]. Some of the
causes pointed out in the literature are (i)
Continuous changes in scope, (ii) Incomplete,
and ambiguous requirements, (iii) Poor
management, (iv) Unrealistic expectations, (v)
and wrong software development process

model. The software development process
models have been blamed on several
occasions. Process models like the prototyping
paradigm, incremental model, spiral model,
win win spiral model, unified process later
upgraded to the unified process lifecycle, etc
have all been proposed and tried but still we
lack the much desired maturity. A simple
website expected to be completed in 11 weeks
took 8 months and twice the cost to complete.
In medium and large projects, the problem is
even worse.

Perhaps there is some lesson for us in the more
mature, more successful industries. Perhaps we
should explore how they do it, to achieve a
much better success ratio. As Poppendieck et
al quote in [7] that when a construction project

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 13

mailto:jawadsyed@gmail.com
mailto:drkhalid@iiu.edu.pk
mailto:farooq@comtec.com
mailto:fawad.hussain@imag.fr

is announced, people have confidence that
after five years they would have a spectacular
art center but the authors fear that same level
of confidence is not evident when a company
announces its intentions of overhauling its
software system.

2. Literature Survey
Several papers on software project
management have quoted examples from the
construction industry in an attempt to relate the
success ratio and the lessons that can be learnt
from it. [4], [6], [7]. This paper attempts to
compare the two disciplines and pin points
certain strategies that can be adopted to the
software industry from the construction
industry. A new methodology is then proposed
based on the Design-Bid-Build methodology
presented in the section below.

2.1. Methodology of the Construction

Industry
The Construction industry has also tried
several management methodologies and have
been, on the average, more successful than the
Software industry in delivering successful
projects [4],[7]. One of the tried and tested
methodology of getting projects developed is
the Design-Bid-Build strategy where by one
company is hired to design the project then
bidding takes place to select a contractor to
build the project [1]. This strategy divides the
project into two and allows the relevant
company specializing in the work to take on
the task. Though new methodologies have
come up in the construction industry, several
companies still continue to follow the beaten
path.

2.2. Methodology of the Software

Industry
The Software Industry normally takes up the
complete software development project from
requirements gathering to testing to
deployment as one project. The development
firm starts off with requirements gathering and
analysis, then the same firm and sometimes the
same set of people make the design and then
proceed to development, testing and

deployment. Though this approach may
propose a lot of advantages, we still need to
rethink whether the construction industry’s
tried and tested methodology of splitting the
task into two is better. One firm, the architect,
specializes in making the design and
architecture of buildings. The owner contacts
the architect firm to develop the design [1].
The architect firm specializes in the job, they
gather the requirements and develop an
architecture for the building [7]. This gives the
architect firm the liberty to focus on the actual
task of gathering the requirements and
proposing the best solution without having to
bother about the so called umbrella activities
like scope management and such others. The
software development firms on the other hand
take up the issue of scope management right
from day one. The Project Management Body
of Knowledge [15] describes scope
management as one of the keys to project
success least realizing that over emphasizing
on scope at an early stage only defer the
problem and does not solve it. Software
projects still continue to fail. Several reports
and studies quoted in [12] point to the high rate
of failure in the software industry and some of
the main reasons for such a high failure rate.
Krasna et. al in [11] attribute poor planning as
another reason for project failure.

2.3. Comparison of The Construction

and Software Industries
Though there are several dissimilarities
between the two industries, the construction
industry may still hold certain basic
management solutions. One thing that is
evident is that construction contractors
constructing the buildings are clearer about the
details of what is to be developed. Definitely,
this accounts, to some extent, to the tangible
nature of the product input and output but still
decoupling the analysis and design phase from
the rest of the project is a basic rule and would
work fine with the more intangible software
industry. Why do software project managers
have to estimate complete project development
cost before requirement analysis when most of
the details are not clear. If construction

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 14

engineers were to work on the methodologies
laid down in the software industry, they would
surely not be able to maintain their rate of
project success.

Some of the reasons of failure quoted in [10]
are similar to the reasons of failure of IT
projects mentioned in the CHAOS report of the
Standish Group [3].

3. Proposed Methodology
The complete project should be divided into
two parts, the first dealing with analysis and
high level design. After acceptance of the
Software Requirement Specification document
and an architectural design of the system, the
project should be considered complete. The
actual development of the project should be
treated as a different project. A new cost and
schedule estimate should now me made for the
actual development and deployment of the
project. Definitely, by now, with all the details
of the requirements, the company bidding for
the project is in a better position to make more
realistic estimates. This second part of the
project could be a separate company but
ideally it should be the same company that
completed the first part. This strategy may
sound familiar, the Staged Contract or
Milestone Based Development methodologies
[5] have been quite successful in the
90’s.These methods also suggested the
division of a project into multiple tasks.
Certain Pakistan Government projects do treat
the analysis part as a separate project, but their
terms and conditions do not permit the
organization performing analysis to bid for the
development project. This takes away all sense
of responsibility from the analysis company
involved. It also reduces the charm of the
project in terms of future rewards in return of
the good work that they may have done in the
analysis project. Ideally the project should be
open to all organizations including the analyst
company; in fact, this company should be
given extra weightage as it has a better
understanding of the system. This is to reap the
benefit of continuity and the sense of
responsibility that would lie on the company

performing analysis. By treating the analysis
and high level design as a separate project
from the development project, the company
performing analysis would be in a better
position to invest more on its analysis team.

Thus the project starts on a linear sequential
approach, analysis and high level design are
completed in sequence in the first part of the
project. Next, the iterative approach is to be
adopted for the detailed design, development,
testing, and deployment of the project. The
proposed solution emphasizes on achieving the
benefits of both the Iterative process model
and conventional Waterfall software paradigm.
The Waterfall model divides the development
of software into distinct non-overlapping
phases. Each phase is completed before the
next goes on floor, thus leaving no option of
returning to an earlier phase. Theoretically it
seams perfect and targeted towards achieving
ultimate quality standards but practice has
proved otherwise. Mostly the customer/user is
not able specify all the requirements at such an
early stage, similarly rectification of any
error/mistake in design phase becomes very
costly at later stages.

The Iterative method enables faster
development [2], but it also carries certain
limitations of its own. The proposed process
model combines the two. Start of with a proper
analysis and requirement gathering phase.

3.1. Analysis
Perform a thorough analysis and get the
Software Requirement Specification (SRS)
document signed off by all the stakeholders.
Maintain a certain level of abstraction and do
not go into such minute details that are not
feasible to specify at this phase.
The analysis phase should be carried out in the
normal linear sequential model style. It is
recommend to produce a prototype for the sake
of requirements gathering. A storyboard
document containing all the screen shots along
with a high level description should be
attached with the SRS document while getting
it signed from customer.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 15

3.2. High Level Design
After analysis, construct a high level design
specifying the architecture for the application,
development language and tools, coding
standards and style, etc. All major design
decisions should be done at this stage. This
gets you ready for rapid iterations resulting in
incremental releases. All major decisions have
been made, user requirements and ultimate
goal is very clear and high level architecture is
ready.
This sets an ideal stage for carrying out the
iterations and build on the existing system.
Each iteration should ideally add a substantial
chunk of functionality and should consist of
the following phases.

3.3. Detailed Design
Detailed Design is carried out for each release.
The detailed design gets input from SRS and
High level design and from the customer’s
feedback on previous releases. New
functionality and changes on previous release
are planned and designed at this stage.

3.4. Coding

Here we translate the design into executable
application. Coding should be done on
standards so as to make it maintainable and
easy to change. All changes requested by
customer on previous release should be
incorporate during this phase.

3.5. Testing
Unit testing is carried out to verify that what
ever has been produced is of quality and meets
the user expectations. A short integration
testing is also carried out to ensure that new
release has not caused errors in other parts of
the system. All this should be carried out to
verify the major functionality of the system
and we should leave the minute details for the
customer to test and verify.

3.6. Release and Feedback
System should be delivered to customer
through a series of releases. Each release
should provide a substantial chunk of
functionality useful to the user and it should
span between two weeks to four weeks.
Prepare a separate release document for each
release. Share each release with customer and
ship it along with a release note document. The

Figure 1: Proposed Methodology

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 16

release note document should contain
reference to the SRS document and detailed
description of functionality covered in the
particular release.
Release Plan should be developed in such a
way that customer reviews the release and
gives feedback before the next release is
shipped. Conduct a short feedback meeting
with the customer after every release. In this
meeting, try to get verification from customer
that the release covers all the requirements
(implicit, explicit and exiting requirements)
and that it functions properly and is to the
satisfaction of the customer.

3.7. Project Closure
The closure phase is carried out after all the
releases have been delivered. It’s a short phase
parallel to the Transition Phase in the Unified
Process Lifecycle. Conduct a setup review
based on the release notes to verify to the
client that all the requirements have been
covered. If the feedback received after every
release has been incorporated and got verified
from customer, the closure phase is supposed
to be short and smooth.

4. Conclusion
The Design-Bid-Build Strategy of the
construction industry divides a project into two
allowing the expert to handle the relevant task.
The architect designs the building but does not
indulge in the actual construction. The
Contractor, responsible for construction, does
not lay hand on the architecture designing.
By separating the analysis and high level
design from the rest of the project, we propose
to adopt the design-bid-build strategy like
approach to software development. This would
improve the correctness of our planning and
success ratio of software projects.

5. Future Work
The methodology is being implemented on
practical projects to study the results. On one
of the projects, the analysis phase output has
been comparatively better because of the free
hand analysts had to do their job. A complete

result shall be shared after completion of these
projects.

6. References
[1] Adekunle S. Oyegoke, UK and US

Construction Management Contracting
Procedures and Practices: A comparative
Study, Engineering Construction and
Architectural Management, pp 403 –
417, 2001

[2] Antony Powell, Modeling Time-
Constrained Software Development, 5th
International Workshop on Process
Simulation and Modeling, 2004

[3] CHAOS Report, The Standish Group
International, 1995

[4] Chris Sauer, L. Liu, Kim Johnston,
Enterprise Level Project Management
Capabilities: A Comparison of the
Construction and IT Services Industries,
2000

[5] Christopher M. Lot, Breathing New Life
into the Waterfall Model, IEEE
Software, September 1997

[6] David Alev, The Scope went through the
roof, http://consultingacademy.com,
2005

[7] M. Poppendieck, T. Poppendieck, A
Rational Design Process – Its Time to
Stop Faking It, 2001

[8] J. Johnson, CHAOS: The Dollar Drain
of IT Project Failures, Application
Development Trends, pp 41-47, 1995

 [9] Joichi Abe, Ken Sakamura, Hideo Aiso,
An Analysis of Software Project Failure,
Proceedings of the 4th Software
Engineering, 1979

[10] Low Sui pheng, Quek Tai Chuan,
Environmental Factors and Work
Performance of Project Managers in the
Construction Industry, International
Journal of Project Management, pp 24-
37, 2006

[11] Marjan Krasna, Ivan Rozman, Bruno
Stiglic, How to Improve the Quality of
Software Engineering Project
Management, ACM SIGSOFT, Software
Engineering Notes Vol 23, No 3, 1998

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 17

http://consultingacademy.com/

[12] M. Bronte-Stewart, Developing a Risk
Estimation Model from IT Project
Failure Research, 2005

[13] M. Heusser, Managing a Doomed
Software Project: Practical Suggestions
for Breaking the Bad News, InformIT,
13-Jan-2006

[14] M. Jorgensen, K.J. Molokken Ostvold,
How Large Are Software Cost
Overruns? Critical Comments on the
Standish Group’s CHAOS Reports,
Information and Software Technology,
Vol. 40, Issue 4, pp 297-301, 2006

[15] Project Management Institute Inc., A
Guide to Project Management Body Of
Knowledge, Third Edition

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 18

