
LODAP: A LOg DAta Preprocessor for mining Web browsing patterns

G. CASTELLANO, A. M. FANELLI, M. A. TORSELLO
Department of Computer Science

University of Bari
Via Orabona, 4 - 70126 Bari

 ITALY

Abstract: - In this paper, we present LODAP, a log data preprocessor which is able to extract user sessions starting
from the requests stored in the log file of a Web site. LODAP is composed of several modules. A data cleaning
module cleans the log file by removing useless records in order to retain only relevant requests encoding the user
navigational behaviour. The data structuration module groups the remained requests in user sessions, by using a time-
based method. Finally, the data filtering module considerably reduces the size of data concerning the extracted user
sessions by deleting the least visited pages and the uninteresting sessions. In addition, a data summarization module
creates reports which represent information summaries mined from the analyzed log file and containing the results
provided by each module of LODAP. The implemented tool is characterized by a wizard-based interface which guides
the analyst during the preprocessing of the log data through a sequence of “ panels”. Each panel is a graphical window
which offers a basic functionality of the processor. Tests on the log files of a specific Web site show that the LODAP
tool can effectively reduce the log dataset size and identify significant user sessions.

Key-Words: - Data cleaning, data filtering, data preprocessing, user sessions identification, Web mining, Web usage
mining.

1 Introduction
The explosive growth of Web applications and online
services makes the Web the most important source of
information today. Since Web applications are becoming
more complex in their structure and content, their use
may often result difficult for no-expert users. Extracting
useful patterns from browsing behavior of users in order
to understand their preferences is becoming a
fundamental facet in the development of adaptive Web
sites. Accurate identification of user browsing patterns is
particularly important in Web personalization not only to
help the site's owner in improving its quality but also to
adapt the content/structure of the site.
In the process of discovery and analysis of Knowledge
from World Wide Web, Web mining covers a crucial
role. Web Usage Mining (WUM) is a recent research
area devoted to mine browsing patterns from usage data
typically stored in Web log files on Web servers [5].
A WUM methodology typically includes three main
steps: data preprocessing, pattern discovery and pattern
analysis. Among these, data preprocessing is a very
crucial step since the success of the next steps depends
heavily on the results of this first task [7]. Indeed, once
properly preprocessed, data can be expressed in a
consistent manner useful to automatically derive the
users' interests through a process of pattern discovery.
Briefly speaking, the aim of data preprocessing is to
identify user sessions, encoding the navigational
behavior of users, starting from the information
contained in the Web log files. A Web log file contains

requests made to the Web server in chronological order.
According to the Common Log Format [1], a line of a
log file contains: the client’s host name or IP address, the
request’s date and time, the operation type (GET, POST,
HEAD, and so on), the requested resource name (URL),
a code indicating the status of the request, the size of the
requested page (if the request is successful). As an
example, a record in a log file appears as:

66.249.65.243 - - [26/Mar/2006:07:10:44
+0200]
"GET/gallery2/main.php?g2_view=core.DownloadI
tem&g2_itemId=5875 HTTP/1.1" 200 1745276

In order to develop a WUM methodology for dynamic
link suggestion, in this paper we focus on the
preprocessing of log data and identify three main steps:
• Data cleaning: log data are cleaned by removing

irrelevant records (e.g. accesses to multimedia
objects, robots' requests, etc.) so as to retain only
information concerning accesses to visited Web
pages.

• Data structuration: the selected requests are
structured into user sessions. Each user session
contains the sequence of pages visited by the same
user during a certain time period.

• Data filtering: Web requests are further selected by
retaining only URLs of the most visited pages.

To perform preprocessing, we designed and
implemented a software tool, called LODAP (LOg DAta

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 12

Preprocessor) that takes as input log files related to a
Web site and outputs a database containing some
statistics about pages visited by users and the identified
user sessions. A key feature of LODAP is the wizard-
based interface that guides the user during the
preprocessing of the log data. Tests on log files of a
specific Web site show that the developed preprocessing
tool can effectively reduce the log dataset size and
identify user sessions which encode the user navigational
behavior in a significant manner.

Data Cleaning
Data Summarization

Workspace
Data Structuration

Data Summarization

Data Filtering
Data Summarization

Web Log Data

User Sessions

Fig. 1. Architecture of the log data preprocessing tool. Data
flow (solid arrows) and control flow (dashed arrows)
among LODAP panels are shown.

2 Architecture of LODAP
The architecture of the log data preprocessor (fig. 1)
includes the three main modules corresponding to the
steps of the data preprocessing process, namely data
cleaning, data structuration and data filtering. In
addition, a further module is included in the structure of
LODAP, called data summarization. In particular:
• The data cleaning module removes redundant and

useless records contained in the Web log file;
• The data structuration groups the remaining Web

requests into user sessions;
• The data filtering module selects the most visited

pages in the Web site;
• The data summarization provides reports containing

information useful for the aims of the process of log
file analysis. As illustrated in fig. 1, this component
is employed in every module of the tool in order to
illustrate the obtained information.

The tool has been designed to provide a visual
framework for log data processing with a graphical

“wizard”-based user interface that supports the analyst in
carrying out the successive steps of log data
preprocessing through a sequence of “panels”. Each
panel is a window that offers, through a graphical user
interface, a basic functionality concerning a specific
subtask of the preprocessing (e.g. data loading, data
cleaning, etc.).
On the architectural level, panels are associated to
procedural modules that are connected to a workspace,
implemented as a Microsoft ACCESS database, wherein
all transient information coming from each panel are
collected and properly organized (fig. 1). The user
decides when to pass from one panel to the successive,
by pushing a “Next” button which is common to all
panels. A “Back” button is also available in each panel,
thus allowing a bi-directional control flow of the
preprocessing. Information gathered into each panel is
actually saved in the workspace, hence a backward step
from a panel to its preceding does not cause information
loss.
In the following, we describe in detail the functions of
each module in LODAP.

2.1. Data cleaning
The data cleaning module is intended to clean Web log
data by deleting irrelevant and useless records in order to
retain only usage data that can be effectively exploited to
recognize users’ navigational behavior. Since Web log
files record all user interactions, they represent a huge
and noisy source of data, often comprising an high
number of unnecessary records. By removing useless
data, we can reduce the size of these files in order to use
less storage space and to facilitate upcoming steps. Of
course the choice of log data to be removed depends on
the ultimate goal of the web personalization system. In
our case, the goal is to develop a WUM system to offer
personalized dynamic links to the site’s visitors, hence
the system has to keep only log data concerning explicit
requests that actually represent users’ actions. As a
consequence, the data cleaning module has been
developed to remove the following requests:
• Requests with access method different from “GET”.

Generally, requests containing a value different from
“GET” in the field of the access method do not refer
to explicit requests of users but they often concern
with CGI accesses, properties of the Server, visits of
robots, etc. Hence, these requests are considered
non-significant and, consequently, they are removed
from the log file.

• Failed and corrupted requests. These requests are
represented by records containing a HTTP error
code. A status with value of 200 represents a
succeeded request. A status with value different
from 200 represents a failed request (e.g. a status of
404 indicates that the requested file was not found at

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 13

the expected location). Also corrupted lines with
missing values in some fields are eliminated in order
to clean log files from incomplete information.

• Requests for multimedia objects. Due to the model
underlying the HTTP protocol, a separate access
request is executed for every file, image, multimedia
object embedded in the requested Web page. As a
consequence, a single request for a Web page may
often produce several log entries that correspond to
files automatically downloaded without an explicit
request of the same user. Requests for such type of
file can be easily identified since they contain a
particular URL name suffix, such as gif, jpeg, jpg,
and so on. Whether to keep or remove requests for
multimedia objects depends on the kind of Web site
to be personalized and on the purpose of the WUM
system. In general, these requests do not represent
the effective browser activity of the user visiting the
site, hence they are deemed redundant and are
removed. In other cases, eliminating requests for
multimedia objects may cause a loss of useful
information. The decision upon retaining or
removing these entries is left to the analyst, who can
select the suffixes to be removed in a panel of the
data cleaning module (see fig. 2).

• Requests originated by Web robots. Log files may
contain a number of records corresponding to
requests originated by Web robots. Web robots (also
known as Web crawlers or Web spiders) are
programs that automatically download complete
Web sites by following every hyperlink on every
page within the site in order to update the index of
search engine. Requests created by Web robots are
not considered usage data and, consequently, have to
be removed. To identify web robots’ requests, the
data cleaning module implements two different
heuristics. Firstly, all records containing the name
“robots.txt” in the requested resource name (URL)
are identified and straightly removed. The second
heuristic is based on the fact that the crawlers
retrieve pages in an automatic and exhaustive
manner, so they are characterized by a very high
browsing speed (intended as total number of pages
visited/total time spent to visit those pages). Hence,
for each different IP address we calculate the
browsing speed and all requests with this value
exceeding a threshold (pages/second) are regarded as
made by robots and are consequently removed. The
value of the threshold is established by analyzing the
browser behaviour arising from the considered log
files.

After data cleaning, only requests for relevant resources
are kept in the database. We formally define

{ }1 2, ,...,
RnR r r r= as the set of all distinct resources

requested from the Web site under analysis.

2.2 Data structuration
This module groups the unstructured requests remaining
in the log data into user sessions. A user session is
defined as a limited set of resources accessed by the
same user within a particular visit. Identifying user
sessions from the log data is a difficult task because
many users may use the same computer and the same
user may use different computers. Hence, one main
problem is how to identify the user. For Web sites
requiring user registration, the log file contains the user
login that can be used for user identification. When the
user login is not available, we simply identify a user
from the IP address, i.e. we consider each IP address as a
different user (being aware that an IP address might be
used by several users). We define as

the set of all the users (IP) that have accessed that web
site.

{ }1 2, ,...,
UnU u u u=

Fig. 2. A panel of the Data Cleaning module.

According to other approaches proposed in the literature
[3], [4], we exploit a time-based method to identify
sessions. Precisely, as in [2] and [6], we consider a user
session as the set of accesses originating from the same
user within a predefined time period. Such time period is
defined by considering a maximum elapsed time maxtΔ
between two consecutive accesses. Moreover, to better
handle particular situations which might occur (such as
users accessing several times to the same page due to
slow connections or intense network traffic), a minimum
elapsed time mintΔ between two consecutive accesses is
also fixed. We define a user session as a triple
() () () (), ,i i i iu t=s r where represents the user

identifier, is the access time of the whole session,
is the set of all resources (with corresponding access
time) requested during the i-th session, namely

()iu U∈

()it ()ir

() () () ()1 1 2 2, , , ,..., ,
n ni i

i i i i i i it r t r t r=r with , where the i
jr R∈

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 14

access time to a single resource satisfies the
following:

i
kt

 and . 1
i
kt t+ ≥ i

k min 1 max
i i
k kt t t t+Δ < − < Δ

Summarizing, after the data structuration phase, a
collection of sessions is identified from the log
data. We denote the set of all identified sessions by

Sn ()is

() () ()2, ,..., SnS = 1s s s .

Once all the sessions have been identified, the data
structuration module presents a panel that lists the
extracted sessions and enables the analyst to visualize
and eventually save the details (IP address, requested
resources in the session, date and time of the requests) of
each user session (see fig. 3).

 Fig. 3. A panel of the Data Structuration module.

2.3 Data filtering
After the identification of user sessions, LODAP
performs a data filtering step to leave out less requested
resources and retain only the most requested ones. More
precisely, the aim of the data filtering module is to
remove the least requested resources in order to filter
only the resources requested in most of the identified
user sessions. For each resource , we consider the
number of different sessions that required and
compute the quantity . Then, we define a

threshold ε whose value is a low percentage of NS and
remove each request with

ir

iNS ir

1...
max

R
ii n

NS NS
=

=

iNS ε< . In this way, the data
filtering module can considerably reduce the number of
relevant requested resources, thus providing a volume of
data that can be easily managed in the next steps of
usage mining.
Besides removing the entries corresponding to the least
requested resources, the data filtering module eliminates
all the user sessions that comprise only less requested

resources. In this way, the size of data is even more
reduced.

2.3 Data summarization
Each module of the LODAP tool provides a set of
statistics that summarize the results of the performed
pre-processing step. To do this, each module makes use
of a sub-module, called data summarization, that
generates reports summarizing the information obtained
after the application of pre-processing step. These
statistical information permit to obtain a schematic and
concise description of the usage data mined from the
analyzed log file. Precisely, the created statistical reports
provide the necessary information to detect some
particular aspects related to the user browsing behavior
or to the traffic of the considered site (such as how many
images, videos, etc are downloaded; the volume of the
requests made; how many requests are generated by
robots, etc).

Fig. 4. The first information summary.

Each time the data summarization sub-module is
invoked by other modules, it accesses to the data stored
in the database representing the workspace of LODAP
and creates a specific summary. A preliminary summary
is generated as soon as the log data are loaded into the
pre-processor and contains information about the total
number of requests of the analyzed log file, the number
of the satisfied requests, the number of failed or corrupt
requests, the volume of transferred bytes, ecc. (fig. 4).
Another report (fig. 5), generated when the data cleaning
is completed, contains information as the number of
requests having methods different from GET, the
number of requests corresponding to multimedia objects
(images, videos, sounds, ecc), the number of visits made
by robots, ecc, are included.
When the data structuration phase is concluded, another
report is created that contains the information about the

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 15

number of the extracted user sessions and the details of
each session.
Finally, a conclusive report is generated when the data
filtering is performed and the entire process of log file
analysis ends. This report contains information about the
number of requests contained in log file before the data
filtering step, the number of requests contained in log
file after the data filtering step, the number of the deleted
requests through the data filtering step, the percentage of
deleted requests referred to the initial number, etc.

Fig. 5. The Data Cleaning summary.

3 Simulation results
The developed log data preprocessor was tested on log
files stored by the Web site Server of the town of Pisa
(Italy) available at the URL www.comune.pisa.it. In
particular, we considered portions of log files containing
the requests received by the server during the same time
interval of three hours (from 4:00 pm to 7:00 pm) of
three different days, as indicated in table 1.

 Table 1. The considered Web log files.
Log file Date Size (KB)

A 12/01/2005 5745
B 12/02/2005 5089
C 12/03/2005 3554

The results of the preliminary analysis of these log files
are reported in table 2, which shows the information
provided by the data summarization module as soon as
the log data are loaded into the database. In the
following sections we describe the information mined

from the examined log files by the application of each
module of LODAP.

 Table 2. The first statistical report.
Statistics Log file A Log file B Log file C
Total Requests 59062 53543 36968
Satisfied Requests 53839 49467 33200
Corrupt Requests 24151 27171 6377
Failed Requests 4820 3870 3657
Requests to files 9220 6695 5399
Requests to other resources 403 206 111
Served hosts 2134 1699 1112
Transferred KBytes 903196 735518 484314

Table 3. Information extracted in the data cleaning module
Request category Log file A Log file B Log file C
Methods
Propfind 111 106 48
Head 965 926 899
Options 102 109 34
Post 118 91 13
Multimedia Objects
.jpg 14633 13061 8990
.ico 669 351 1947
.jpeg 18 13 13
.gif 29338 29419 19602
.png 14 16 11
.bmp 21 16 7
.mp3 17 15 7
.wav 12 4 0
.avi 0 0 0
.mpeg 0 0 0
.wmv 24 5 8
.mid 25 11 5
.tif 127 51 8
.swf 53 78 8
.ram 17 6 10
.rm 16 6 6
Other Requests
Robots 23 46 44
Failed requests 4820 3870 3657
Directory 1877 1028 524
Corrupt lines 24151 27171 6377
Status Code <> 200 30757 32446 10600
.pdf 1757 1160 659
.txt 42 49 49
.doc 135 111 49
Summary
Cleaned log requests 1629 1263 2537
% initial size 2.76% 2.36% 6.86%

3.1 Data cleaning
The data cleaning module analyzes the log file in order
to individuate the number of requests deemed irrelevant
because don’t represent explicit requests of users (such
as requests for multimedia objects, accesses with
methods different from “GET”, requests made by robots,
etc). As explained before, the results of data cleaning
depend on the choices made by the analyst when using

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 16

http://www.comune.pisa.it/

the wizard-based tool. In our experiments, we decided to
remove all possible categories of irrelevant requests
(described in section 2.1).
To identify requests made by web crawlers, we set the
threshold related to the browsing speed to 0.5 (which
means an average access time to a resource equal to
2sec). The information obtained after the cleaning of the
three considered log files are illustrated in table 3. We
point out that an overlap may occurs between two
categories of identified requests. For example, a visit
with method “Head” may be also a request for a
multimedia object. In these cases, the data
summarization module counts twice the removal of the
request, even though only one record is deleted from the
log file.
The last two lines of the table 3 show, respectively, the
number of remained requests after data cleaning and the
size of the cleaned log file expressed in terms of
percentage referred to the initial size. It can be seen that
for all the considered log file, the data cleaning module
can effectively reduce the size of the log data to a small
percentage of the initial size. This is especially true for
the log file A and B, which contain a higher number of
corrupt requests and requests with code <>200 in
comparison to log file C.

3.2 Data structuration and data filtering
After data cleaning, the three log files were processed by
the data structuration module in order to identify user
sessions. For the considered log files, we did not have
user login information, so we used only the IP address to
identify distinct users. For user session identification, we
set the maximum value for the elapsed time
between two consecutive requests to 30 minutes and the
minimum value to 2 seconds. The number of
extracted user sessions for each examined log file can be
seen in table 4.

maxtΔ

mintΔ

After data structuration, the application of the data
filtering module reduced further the size of Web log data
by deleting the requests related to the less accessed
resources. The elimination of these requests was made
by setting the threshold ε to 10%. The results of this
process are summarized in table 4. It can be seen that
from the three analyzed log files a number of 96, 56 and
112 significant requests was identified, from what we
determined 198, 136 and 118 user sessions, respectively.

 Table 4. Data structuration and data filtering summary
 Log file

A
Log file
B

Log file
C

User sessions 198 136 118
Requests before data cleaning 143 105 188
Requests after data cleaning 96 56 112
Deleted requests 47 49 76
% Deleted requests 32.87% 46.67% 40.43%

4 Conclusion
The information obtained with our experiments show the
effectiveness of the LODAP tool, not only in reducing
considerably the size of Web log files but also in
grouping Web requests into a number of user sessions
which can encode the user browsing behavior in a
significant manner.
How to describe the preferences of users on the base of
their navigational behavior is a problem that we are
going to face in future works. Indeed, once user sessions
have been identified, they can be used to understand the
preferences of each user and derive the degree of interest
that each user shows for a Web resource. Several
measures and/or heuristics can be applied to obtain the
degree of interest for a Web resource.
A possibility is to consider the degree of interest to a
resource as strictly related to the frequency of accesses
to that resource (number of accesses to that resource /
total number of accesses during the session) and to the
time the user spends on the same one. We defer this
facet in future works.

References:

[1] http://www.w3.org/Daemon/User/Config/Loggin.ht

m#common-logfile-format.
[2] O. Nasraoui, World Wide Web Personalization, In J.

Wang (ed), Encyclopedia of Data Mining and Data
Warehousing, Idea Group, 2005.

[3] G. Paliouras, C. Papatheodoru, V. Karkaletsis, P.
Tzitziras, C. D. Spyropoulos, Large-scale mining of
usage data on Web sites, AAAI Spring Symposium on
Adaptive User Interface, Stanford, California, pp.
92-97, 2000.

[4] J. Pei, J. Han, B. Motazavi-Asl, H. Zhu, Mining
access patterns efficiently from web logs, in: Paci.c-
Asia Conference on Knowledge Discovery and Data
Mining, pp. 396–407, 2000.

[5] D. Pierrakos, G. Paliouras, C. Papatheodorou, and
C. D. Spyropoulos, Web usage mining as a tool for
personalization: a survey. User Modeling and User-
Adapted Interaction, Vol. 13, No. 4, pp. 311-372,
2003.

[6] B.S. Suryavanshi, N. Shiri, and S.P. Mudur, A
Fuzzy Hybrid Collaborative Filtering Technique for
Web Personalization, in Proc. of 3rd Workshop on
Intelligent Techniques for Web Personalisation
(ITWP’05), in conjunction with the 19th
International Joint Conference on Artificial
Intelligence (IJCAI05), Edinburg, Scotland, UK,
2005.

[7] Tanasa D. and Trousse B., Advanced Data
Preprocessing for Intersites Web Usage Mining. In
IEEE Intelligent Systems, 19(2), pp. 59-65, 2004.

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 17

	Methods
	Multimedia Objects
	Other Requests
	Summary

